
Bootstrapping P2P VPN

Felix Weißl
Betreuer: Benjamin Hof, Lukas Schwaighofer

Seminar Future Internet SS2014
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: felix.weissl@tum.de

ABSTRACT
Decentralized or P2P (peer-to-peer) VPNs (virtual private
networks) are popular due to their advantage over central-
ized VPNs or the classic client-server model. This paper
surveys the main difficulties of P2P VPNs in general, but
most importantly of bootstrapping a new peer in such a
network which is the mechanism of a new peer finding and
joining it. Different solutions are indicated on existing im-
plementations and evaluated separately. Especially the two
contrasting models of supernodes versus the joining over an
existing public overlay are examined for they are most com-
monly deployed in existing P2P VPNs. It becomes apparent
that the presented solutions only partly cover the needed
functionality, especially in terms of security and the traver-
sal of NAT devices.

Keywords
peer-to-peer, virtual private network, boostrapping, decen-
tralized overlay, NAT traversal

1. INTRODUCTION
Peer-to-peer networking has gained a great interest in the
last years due to many popular applications in file sharing
(BitTorrent, Gnutella, KaZaA), but also media streaming
or voice-over-IP services such as Skype. Its main advantage
over the client-server model is that no central authority such
as a server is needed for sharing resources because every node
(peer) is taking part in the network actively, by meaning of
relaying data for other nodes.

A virtual private network (VPN) provides an illusion of a lo-
cal area network by creating secure and authenticated com-
munication links amongst its participating nodes over the
global Internet [23]. Today VPNs are frequently used, e.g.
in companies so that employees can enter the intranet se-
curely without beeing physically linked to it. But they are
also attractive to home users who can establish a secure end-
to-end connection with each other for sharing data or other
local resources.

A P2P VPN - as the name suggests - combines these con-
cepts and therefore offers a completely decentralized overlay
network. Operations that work for client-server model have
to be rethought and adapted to a distributed overlay model.

The rest of this paper is organized as follows. Section 2
gives short background information and definitions about
the main terms used later in this work. Section 3 explains

the key requirements of a P2P VPN and two main prob-
lems of the bootstrapping mechanism: peer discovery and
NAT traversal. Existing implementations and how they
solve these issues are discussed in Section 4. Other inter-
esting or notable approaches are shown in Section 5 while
Section 6 presents concluding remarks.

2. BACKGROUND
A P2P system relies on a network topology where the nodes
are connected to each other and have the purpose of sharing
resources such as storage, bandwith or CPU cycles. They
form a self-organizing overlay without the need of a central-
ized server or authority [18, p. 6].

An overlay network is defined as an application layer virtual
or logical network in which end points or nodes are address-
able and that provides connectivity, routing and messaging
between these nodes [18, p. 7]. An overlay is layered on top
of an existing layer, called underlay, which in our context is
the global Internet [3].

In centralized VPNs all the communication flows through
one server which also provides bootstrapping and authenti-
cation. Two peers never directly send packets to each other
because there is always a central authority such as a dedi-
cated server relaying the traffic between them. Of course,
this server can become a single point of failure which is a
problem for high availability networks. A popular imple-
mentation of this technique is OpenVPN [15].

In decentralized networks however, there is no distinction
between clients and servers since every peer in the network
is equal. Routing, bootstrapping and authentication is done
directly with each other and as a result must be explicitly
defined [23]. By decentralizing the network, bandwidth and
computation can be distributed between the peers.

In unstructured P2P systems a node relies only on its ad-
jacent nodes by the terms of routing and forwarding. The
graph is randomly created depending on which nodes are
joining or leaving and their interactions. That makes join-
ing and leaving rather easy, but has a problem in searching,
e.g. a file, because the request has to go through the entire
network in the worst case. Two popular implementations are
n2n [13] and P2PVPN [6] which are discussed in Section 4.1.

Structured P2P systems provide distributed lookup services
by forming a self-organizing topology such as a ring [23],

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

1 doi: 10.2313/NET-2014-08-1_01



a tree or a mesh structure where every node has a link to
all other nodes in the network. These lookup services are
provided by so called distributed hash tables (DHT). They
are decentralized data structures, in which keys with associ-
ated data are mapped to specific node IDs in the overlay [21].
DHTs are typical for structured P2P systems and commonly
used in P2P architectures.

3. REQUIREMENTS AND DIFFICULTIES
Before introducing existing P2P VPN implementations this
Section first mentions certain requirements that have to be
fulfilled and difficulties that have to be dealt with.

3.1 Requirements
The main design goals mentioned in [8, 9, 2] for a purely
decentralized bootstrapping mechanism to fullfil are:

1. Availability: Every peer must be able to join or leave
the network when it desires to. That means the boot-
strapping mechanism must be guaranteed at any time
which makes an approach with an unstable success rate
insufficient [8]. A single point of failure should always
be avoided as far as it is possible for decentralized net-
works. That is also ensured by equally distributing
workload between the peers so that an attacker cannot
compromise the availybility by initiating DDoS attacks
on them.

2. Automation and Self-organization: For a desired real
world applicability a peer has to be able to join the
network with as little as possible manual interaction.
Furthermore the bootstrapping mechanism should not
have to rely on prior knowledge, e.g. a list of bootstrap
servers that a joining node needs to have stored [2].

3. Efficiency: Although our main focus in this paper is
the connection establishment, it is important to keep
the time period for that to a minimum.

4. Scalability and Robustness: The bootstrapping mech-
anism has to work in small private as well as in large
communication networks involving millions of peers. If
certain peers malfunction or leave the network rapidly,
there have to be procedures changing the network back
to its full functionality. In this context “churn” is the
rate of joining and leaving peers of a network [1].

5. Security: Trusting each other in P2P systems is harder
than in centralized systems where authorities can in-
teract as a trusting party such as a PKI. Therefore is
important to prevent bad peers from joining the net-
work.

3.2 Finding a peer
The initial problem for a peer before connecting to the P2P
VPN is to discover the network and an active participant as
an entry point. We assume that a previous connection has
never been established so it is not possible to own some kind
of peer cache.

As a first approach one could integrate a list of known peers
into the P2P software itself. Gnutella for instance, a very
large decentralized peer-to-peer network, uses this

approach [5]. Of course these peers must have a high avail-
ability and become target for attacks. Internet providers
could use this information to prevent their clients from join-
ing such a network. The peer list, in this context often called
hostlist or webcache (Gnutella) [7], could also be shared and
requested on a public HTTP server. But this would end up
in a partially centralized architecture, so this is not an opti-
mal solution. The second approach demonstrated in [5] uses
brute-force scanning over a list of promising IP addresses.
The list is a result of a special heuristic using statistical pro-
files using the IP ranges of start-of-authorities in the domain
name system [5]. This method requires that developers can
get a list of IP addresses for the network and that the peers
use the default port for the protocol. A similar approach is
presented in Section 5.

3.3 Middlebox Traversal
Another technical issue with P2P VPNs are middleboxes
such as Network Address Translators (NATs) and firewalls.
A firewall is used to filter incoming and outgoing traffic and
is set up on the edge of the global Internet to a local network
for protection. The firewall’s filter rules are usually designed
to block incoming connections that are not a response to a
previous outgoing request. That is a problem for P2P net-
works where a new peer wants to communicate with another
peer behind such a device for bootstrapping. NAT devices
on the other hand help to overcome the shortage of global
IPv4 addresses by hiding a local network behind just one
globally routable IP address. All clients in this local net-
work are given private IP addresses (e.g. in 192.168.0.0/16)
and every packet’s local IP and port are translated to a
global IP and port. That means that local clients cannot be
addressed directly with a unique IP before the peer behind
the NAT initiates the connection and the NAT can route the
packet properly. The ongoing migration from IPv4 to IPv6
does not necessarily resolve this issue. Although NAT is
not needed anymore and peers could directly communicate,
firewalls would still be essential for blocking unwanted, in-
coming connections. Also since IPv4 is still deployed, NAT
will be as well.

It can be assumed that the majority of peers in P2P net-
works are home users and behind a NAT device or a firewall
as well. Thus NAT traversal mechanisms are inevitable for
operating a P2P VPN.
A simple mechanism for a host behind a NAT (“NATed”
host) would be to configure the NAT device yourself and
enable port forwarding, so that all connections can traverse
on a negotiated port. Because the majority of users would
not have the rights or knowledge to do this, this is not really
an option. The common NAT traversal mechanisms used in
current implementations are elaborated on the subsequent
Sections.

3.3.1 TURN: Traversal using Relay around NAT
TURN [10] is very reliable and deployed in centralized VPNs.
If two NATed hosts want to communicate, each of them has
to initiate a connection with a well-known globally routable
server. This TURN server relays every message between
both hosts and therefore also passing both NAT devices.
Of course this is a very inefficient and resource-intensive
method and only scalable for small networks. But since this

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

2 doi: 10.2313/NET-2014-08-1_01



Figure 1: Here autonomous traversal of a NAT device (represented as wall) is shown. The solid line describes
outgoing and the dashed line incoming ICMP packets. Figure source: [11]

is the only method working on all existing NATs relaying is
a useful alternative if other traversal methods fail [4].

3.3.2 UDP Hole Punching
“Hole punching” is one of the simplest and most practical
NAT traversal techniques [4] for the scenario that two hosts
are behind a NAT device. Both NATed hosts have to have
an active UDP session with a so-called rendezvous server.
First both hosts exchange their private and public endpoint
information (local and global IP:Port) via the rendezvous
server as an intermediary using the Session Traversal Utili-
ties for NAT protocol (STUN) [16]. By this point the server
is not needed anymore. Both hosts try to establish a UDP
connection between each other on both endpoints. Con-
sidering the simple scenario of both hosts residing in the
same network, the connection can be established. In the
scenario with two different NATs, the first outgoing mes-
sage of both hosts“punches a hole”through their own NATs.
That means if the NAT is well-behaved, it will preserve the
hosts private endpoint and allow incoming traffic and ad-
dress translation [4]. Well-behaved NATs in this context
are cone NATs, which support consistent endpoint trans-
lation, and not symmetric NATs, where “hole punching” is
not successful [4]. Tests on a wide variety of deployed NATs
have shown that about 82% support hole punching using
UDP [4].

3.3.3 TCP Hole Punching
Since there are VPNs relying on TCP such as P2PVPN (Sec-
tion 4.2.1) hole punching is needed for TCP as well. Com-
pared to UDP the idea is very similar, however since TCP
is a stateful protocol, there are some issues. For a successful
hole punching both NATs need to be able to establish a con-
nection with the rendezvous server and the other hosts NAT
device over the same port. Both connections need a TCP
socket which binds to the specific port and this fails if the
port is already bound to another TCP socket [4]. Addition-
ally another socket is required to listen for incoming connec-

tions at the same time. Since this is not possible with todays
Berkeley (BSD) sockets, the option SO REUSEADDR must
be used which allows multiple socket bindings to the same
local endpoint [4].

The NAT traversal procedure is as follows. Both NATed
hosts use their active TCP session with the rendezvous server
to exchange their public and private endpoints (local and
global IP:Port) similar to Section 3.3.2. Using the same local
TCP ports that both hosts used with the rendezvous server,
they keep sending messages to each other’s private and pub-
lic endpoints while listening for incoming messages [4]. Once
the outgoing messages succeed and incoming messages can
use the created“hole”, the connection must be authenticated
to make sure that the other host is really the desired one. In
the same test environment as before with UDP, TCP hole
punching is supported by about 62% of deployed NATs [4].

3.3.4 Autonomous NAT traversal
A profoundly different method proposed by Müller et al. [11]
traverses NAT devices without any third party. We assume
that there is a host A behind a NAT device and we are
aware of its global IP address, e.g. obtained from a peer list.
If an external host B (not behind any NAT device) wants
to communicate with this host A, only two messages are
required:

1. The NATed host A continuously sends ICMP ECHO
REQUESTS to an unallocated IP address, such as
1.2.3.4 [11]. The expected incoming ICMP DESINA-
TION UNREACHABLE packets can be ignored.

2. Because the NAT device now routes corresponding re-
ply messages, the external non-NAT host B sends a
fake ICMP TTL EXPIRED message, which the NAT
host A listens for. Such a messages doesn’t have to
have 1.2.3.4 as source address to be transmitted [11].
Therefore B is the source and the port for future mes-
sages is added through the payload as a new ICMP

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

3 doi: 10.2313/NET-2014-08-1_01



packet. As A is now aware of B ’s IP global IP ad-
dress, it can initiate the actual connection.

A more descriptive representation can be seen in Figure 1
with the two messages numbered likewise.

An implementation of this relatively new approach is the
pwnat tool by Samy Kamkar. It is also implemented by
GNUnet as a transport plugin [12]. Unfortunately for send-
ing these ICMP messages, peers need superuser privileges
which may not be available. Müller et al. also propose
an alternative method using UDP packets instead of ICMP
ECHO REQUESTs which works better on some NAT imple-
mentations. Through testing this combined traversal method
on a large number of NAT implementations it has shown
that the success rate quite remarkable averaging at 82% [11].
Unfortunately this approach has a very little success rate if
both hosts are behind NAT devices.

Summarizing this Section, none of these traversal techniques
work for every NAT implementation and most of them re-
quire a third party. Therefore systems typically implement
more than one technique for high success rates [11].

4. CURRENT APPROACHES
There are several approaches which meet the requirements of
the previous Section 3 to some extent, but not in its entirety.
This shows that this topic still needs research in the future.
In this context we distinguish two common bootstrapping
methods - using supernodes and existing public overlays.
Other notable approaches which do not fit in this Section
are discussed in Section 5.

4.1 Supernodes
This model is not a purely decentralized VPN model in
which no participant has significantly more features or work-
load than the others. As implied in Figure 2 these supern-
odes or superpeers build a backbone overlay [1, p. 64] and
are deployed to deal with the issues of bootstrapping, NAT
traversal and routing between the other edge nodes.

Figure 2: This shows an overlay architecture where
supernodes are used for a variety of services, includ-
ing bootstrapping. Figure source: [13, p. 6]

4.1.1 N2N
N2N is an unstructured layer-two over layer-three
P2P VPN [13] released open-source. The software comes
with two binaries, the client for edge nodes and the server

for supernodes. Technically both can also run on the same
physical machine. To create the network, there have to be
one or more supernodes which must be directly address-
able, that is without a NAT device in between. Usually
nodes with high bandwidth and computing power are used
as supernodes. Each supernode has to set up communica-
tion with one other supernode. The same applies to new
edge nodes which require to know the global endpoints of a
supernode to join the network. For peer discovery supern-
odes use layer-two broadcast and they also forward broad-
cast and multicast packets of the other supernodes to their
edge nodes. The result is that each edge node receives these
messages and can build up a peer list ({MAC, UDP socket}
pair) of the network. As UDP socket we describe the re-
spective endpoint information, that is IP and port.

As previously mentioned there could be middleboxes (see
Section 3.3) between supernodes and edge nodes. For the
NAT traversal N2N uses UDP hole punching (see
Section 3.3.2). Each edge node uses this list to start the
so-called peer registration [13] in which it sends out regis-
tration requests directly to the other edge nodes. If this
UDP hole punching is not successful the specific NAT im-
plementation is probably not supported. If both edge nodes
have symmetric NATs, the usual NAT traversal is not pos-
sible. That is because the global endpoints which are used
between an edge node and a supernode cannot be reused
with another edge node instead of the supernode. Symmet-
ric NATs would use a different external mapping [13]. In
this scenario the supernode works as a relay between the
two edge nodes (see Section 3.3.1).

However, N2N is quite inconvenient for end users because
bootstrapping and supernode set-up is not automated and
has to be deployed by the edge nodes. N2N 1.x also has
some security limitations mentioned on its project site such
as the lack of authentication or its vulnerability to replay
attacks due to missing nonces in its encryption. A second
version with enhanced security extensions is still in devel-
opement [13].

Regarding the requirements in Section 3.1 it is questionable
if N2N VPNs are scalable with a high amount of users due
to the ongoing broadcast and multicast messages.

4.1.2 Tinc
Tinc VPN [19] is more decentralized than N2N because it
is organized as a mesh network in which every node relays
data for other nodes where it is needed [19]. This may sound
similar to supernodes in N2N but every peer has the same
functionalities here. The drawback is that this network lacks
self-organization and requires explicit specification of which
links a node has to create [23]. That means the network has
to be organized by hand to be able to deploy tinc’s routing
protocols [22]. Furthermore tinc doesn’t work well if nodes
leave. If the missing node was the only one keeping the net-
work together, the network splits in two different ones [22].

4.2 Public Overlays
Another method proposed in [21] is to bootstrap an own
private overlay by using existing public overlays with a high
availability. This is especially interesting for home users for

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

4 doi: 10.2313/NET-2014-08-1_01



Figure 3: A public overlay is used to bootstrap a private overlay. Figure source: [22, p. 3]

which the configuration and set-up of own rendevouz servers
or supernodes may be too difficult or costly.

4.2.1 P2PVPN
The application “P2PVPN” is a decentralized unstructured
and open-source VPN [6] and is primarily designed for home
users, offering a GUI alternative to N2N and claiming equal
funcionality. For bootstrapping it uses the filesharing pro-
tocol BitTorrent as a public overlay and entry point. The
BitTorrent network is a very popular and large-scale P2P
network. The first peer creates the overlay by registering a
virtual file on a so-called tracker which works as a rendezvous
point now [21]. Following peers who must be aware of its
hash value and can obtain the peer list from the tracker. If
a tracker goes offline, a different one has to be used. But
P2PVPN also offers users to disable the BitTorrent option
and bootstrap a purely decentralized network themselves.
In this case at least one peer has to be globally routable
and must serve as entry point. The first peer can now gen-
erate so-called invitations, which are similar to certificates
used in the TLS protocol, and only valid for a single peer.
They contain all information needed for an external peer to
join the network either with the use of a BitTorrent tracker
or the direct way with IP and port. The user only has to
specify the lifetime of this peer, the other values (signatures,
keys) are generated by P2PVPN. These invitations have to
be transmitted over a secure channel manually. For peer
authentication P2PVPN uses RSA key pairs; inside the net-
work traffic stays encrypted with AES using CBC mode.

Unfortunately NAT traversal is not provided at all and own
port forwardings must be configured by hand. Furthermore
it has been evaluated that P2PVPN’s routing algorithms
do not scale well and the software may have problems with
large networks [6, p. 61]. That is because update messages
between the peers contain their whole routing table.

4.2.2 GroupVPN
In [21] two possible public overlays, XMPP and Brunet, are
discussed and extended to the decentralized structured and
P2P VPN model called GroupVPN. The Extensible Messag-
ing and Presence Protocol (XMPP), also known as Jabber,
is a popular XML based messaging protocol [17] which is
used in many popular overlays such as GoogleTalk (until
2013) or Facebook Chat [21]. Brunet on the other hand
is a freely available DHT (see Section 2) similar to the de-
funct OpenDHT which was running on the global research
network PlanetLab using the Symphony protocol, therefore
creating a dedicated bootstrap overlay [21]. A bootstrap
overlay consists of one or more bootstrap resources which
at least one is publicly available for users with the desire to
join. After requesting so called bootstrap nodes from one of
these resources it assists in connecting the user with other
nodes in the new joined overlay.

The bootstrapping scheme is similar to “P2PVPN” (see Sec-
tion 4.2.1). For a better understanding Figure 3 is quite
helpful: First a node connects with the public overlay and
exchanges public endpoint information. This is done using
the STUN protocol (compare Section 3.3.2). The next step
is to look up the entry of the desired private network in the
public networks DHT. Now another peer, which is in both
networks, is used for joining the private network.

5. OTHER WORK
This Section mentions approaches of bootstrapping that were
not being implemented in P2P software. Despite this, they
deal with the bootstrapping problem in a different way as it
could be seen in the previous Sections.

In [2] the authors describe an approach of Local Random
Access Probing where a peer first joins a “bootstrap P2P
network” to bootstrap into the actual desired network by
name lookup. Of course the problem is just shifted to boot-
strapping into this “bootstrap P2P network”. That is done
by a variant of the existing Random Access Probing where a

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

5 doi: 10.2313/NET-2014-08-1_01



peer sends messages to random IP addresses until it finds a
node which is already part of the bootstrap P2P network. As
a difference to that only address ranges around the current
IP address of the user are probed. The idea is that private
users with Internet access via dialup networks (DSL, cable)
would more likely use P2P applications and can profit from
an increased communication speed [2]. As an example the
eDonkey filesharing network, usually port 4662, is tested in
the German IP address space, considering only dial-up net-
works since the probability for them running such a protocol
is higher than others. As a result bootstrapping is successful
after around 600 probes which averages in an overall time
of 20 seconds. This approach is promising and fulfills most
of the requirements of Section 3. The drawback is of course
that such a large “bootstrap P2P network” such as eDonkey
has to exist in the first place. Furthermore TCP SYN port
scan is used as a probing mechanism which requires that
the network has a unique port that every peer uses for the
protocol.

Another approach uses the Internet Relay Chat (IRC) [14],
an open, decentralized network of chat servers with high
availability [9]. IRC is interesting because once connected
to one server of an IRC network, one could communicate
with any other client in the same network. Knoll et al. [9]
provide a decentralized bootstrapping mechanism for IRC:

1. Connect: Choose an arbitrary IRC server of a specified
network and join the chat room, a so-called channel,
as a new user with a chosen unique nick name.

2. Discover: If bootstrapping peers (e.g. nick name for-
mat “bs peer”) are available in the channel, proceed
with the request. If not, this peer becomes a new boot-
strapping peer, meaning that a new overlay is created
here.

3. Request: The peer requests a peer list and one of the
bootstrapping peers responds with a “bootstrapper”
list. This list contains contact information of the ac-
tual bootstrapping peers. This way the ones that are
in the IRC channel are not necessarily the same as the
ones that are directly requested outside the channel.

4. Overlay join: With the given list the channel can be
left and the peers can be contacted directly. Because
these could be hidden behind a firewall or NAT de-
vice, a NAT traversal mechanism based on the STUN
protocol using supernodes is used [20].

Their approach does not focus on the security and privacy
aspects but on the practicality, e.g. an attacker could mas-
querade as one of the bootstrapping peers and send own lists
to new peers.

A second approach by Knoll et al. [8] uses DDNS, a dy-
namic variant of the Domain Name System. Dynamic DNS
providers offer clients to to map their IP addresses to a
(sub)domain name via a password-protected web interface.
The idea is that one bootstrapping peer is always mapped to
this domain. Clients outside the network can request a peer
list using the domain name which is the only thing they have
to know about the network. If the current bootstrapping

peer leaves, one of the other peers replaces it with its own
IP address. The evaluation shows that this approach works
surprisingly well with an increasing peer number and with
low workload on the DDNS provider (IP address changes).
The drawback of this approach is that there always has to
be one peer providing the only entry point for the network
and thus getting more traffic than the other peers. Further-
more the password for the web interface has to be some kind
of well-known which would become a problem if a malicious
peer changes this password in the web interface.

6. CONCLUSION
This seminar paper observed the bootstrapping problem and
possible solutions. When evaluating existing implementa-
tions, not one could fulfill every requirement specified in
Section 3.1, although in many cases this was not because it
is not technically viable.

In terms of NAT traversal no purely decentralized mech-
anism existed that worked with all NAT implementations.
Nevertheless high success rates can be achieved when using
a combination of them, although a third party is often indis-
pensable. Because of the migration to the Internet Protocol
version 6 the problem of being globally accessible via end-
to-end can simplify middlebox traversal in a significant way.
Because of that research is still needed in this area.

But since P2P is becoming more important every day, I cher-
ish great expectations for the developement of decentralized
secure peer-to-peer network applications.

7. REFERENCES
[1] J. Buford, H. Yu, and E. K. Lua. P2P Networking and

Applications. Morgan Kaufmann, 2008.

[2] M. Conrad and H.-J. Hof. A generic, self-organizing,
and distributed bootstrap service for peer-to-peer
networks. Self-Organizing Systems, pages 59–72, 2007.

[3] C. Cramer, K. Kutzner, and T. Fuhrmann.
Bootstrapping locality-aware P2P networks. In
Networks, 2004.(ICON 2004). Proceedings. 12th IEEE
International Conference on, volume 1, pages 357–361.
IEEE, 2004.

[4] B. Ford, P. Srisuresh, and D. Kegel. Peer-to-peer
communication across network address translators. In
USENIX Annual Technical Conference, General
Track, pages 179–192, 2005.

[5] C. GauthierDickey and C. Grothoff. Bootstrapping of
peer-to-peer networks. In Applications and the
Internet, 2008. SAINT 2008. International
Symposium on, pages 205–208. IEEE, 2008.

[6] W. Ginolas. Aufbau eines virtuellen privaten Netzes
mit Peer-to-Peer Technologie. Master’s thesis,
Fachhochschule Wendel,
http://p2pvpn.org/thesis.pdf, 2009.

[7] P. Karbhari, M. Ammar, A. Dhamdhere, H. Raj,
G. F. Riley, and E. Zegura. Bootstrapping in Gnutella:
A measurement study. Passive and active network
measurement, pages 22–32, 2004.

[8] M. Knoll, A. Wacker, G. Schiele, and T. Weis.
Bootstrapping in peer-to-peer systems. In Parallel and
Distributed Systems, 2008. ICPADS’08. 14th IEEE
International Conference on, pages 271–278. IEEE,

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

6 doi: 10.2313/NET-2014-08-1_01



2008.

[9] M. Knoll, M. Helling, A. Wacker, S. Holzapfel, and
T. Weis. Bootstrapping peer-to-peer systems using
IRC. In Enabling Technologies: Infrastructures for
Collaborative Enterprises, 2009. WETICE’09. 18th
IEEE International Workshops on, pages 122–127.
IEEE, 2009.

[10] R. Mahy, P. Matthews, and J. Rosenberg. Traversal
Using Relays around NAT (TURN): Relay Extensions
to Session Traversal Utilities for NAT (STUN).
Technical report, RFC 5766 (Proposed Standard),
2010.

[11] A. Müller, N. Evans, C. Grothoff, and S. Kamkar.
Autonomous NAT traversal. In 10th IEEE
International Conference on Peer-to-Peer Computing
(IEEE P2P 2010), IEEE, 2010.

[12] A. Müller. Analysis and Control of Middleboxes in the
Internet. Techn. Univ. München, Lehrstuhl
Netzarchitekturen und Netzdienste, 2013.

[13] n2n: a Layer Two Peer-to-Peer VPN.
http://luca.ntop.org/n2n.pdf.
http://www.ntop.org/products/n2n.

[14] J. Oikarinen and D. Reed. RFC 1459: Internet relay
chat protocol. 1993.

[15] OpenVPN. http://openvpn.net/.

[16] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing.
Session traversal utilities for NAT (STUN). Technical
report, RFC 5389 (Proposed Standard), 2008.

[17] P. Saint-Andre. RFC 3920: Extensible messaging and
presence protocol (XMPP). Instant Messaging and
Presence, IETFproposed Standard, 2004.

[18] X. Shen Handbook of peer-to-peer networking.
Springer, New York, 2010.

[19] I. Timmermans and G. Sliepen tinc Manual.
http://tinc-vpn.org/documentation-1.1/tinc.pdf.

[20] A. Wacker, G. Schiele, S. Holzapfel, and T. Weis. A
NAT traversal mechanism for peer-to-peer networks.
In Peer-to-Peer Computing, pages 81–83, 2008.

[21] D. I. Wolinsky, P. St Juste, P. O. Boykin, and
R. Figueiredo. Addressing the P2P bootstrap problem
for small overlay networks. In 10th IEEE International
Conference on Peer-to-Peer Computing (IEEE P2P
2010), IEEE, 2010.

[22] D. I. Wolinsky, K. Lee, P. O. Boykin, and
R. Figueiredo. On the design of autonomic,
decentralized VPNs. In Collaborative Computing:
Networking, Applications and Worksharing
(CollaborateCom), 2010 6th International Conference
on, pages 1–10. IEEE, 2010.

[23] D. I. Wolinsky, L. Abraham, K. Lee, Y. Liu, J. Xu,
P. O. Boykin, and R. Figueiredo. On the design and
implementation of structured P2P VPNs. arXiv
preprint arXiv:1001.2575, 2010.

Seminars FI / IITM SS 2014,
Network Architectures and Services, August 2014

7 doi: 10.2313/NET-2014-08-1_01


