Measuring TCP Tail Loss Probe Performance

Andre Ryll, B.Eng.
Betreuer: Lukas Schwaighofer, M.Sc.
Seminar Future Internet WS2013
Lehrstuhl Netzarchitekturen und Netzdienste
Fakultat fir Informatik, Technische Universitat Minchen
Email: andre.ryll@tum.de

ABSTRACT

This paper analyzes the performance of the TCP Tail Loss
Probe algorithm proposed by Dukkipati et al. in February
2013 under various virtual network conditions. To provide
accurate and repeatable measurements and varying network
conditions the mininet virtual network is used. Variations
include the available bandwidth, round trip time and num-
ber of tail loss segments. The tests are done by requesting
HTTP data from an nginx web server. Results show that
TLP is able to decrease the total transfer time in high-speed
networks by 38% and the time until data is retransmitted by
81%. These improvements decrease significantly for higher
delay links.

Keywords
TCP, TLP, performance, measurements, comparison, mininet,
virtual network, HTTP, iptables, netfilter

1. INTRODUCTION

Loss of data in a network transfer is a general challenge in
all connection-oriented protocols. For internet traffic TCP
[1] is used as the transport layer for HTTP data. There
exist a number of specifications which deal with retransmis-
sion behavior of TCP (e.g. [2], [3], [4]). This list has lately
been extended by the “Tail Loss Probe” (TLP) algorithm [5].
The TLP internet draft suggests a real-world improvement
of the average response time by 7% based on measurements
on Google Web servers over several weeks. This paper aims
at precisely measuring the response time improvement un-
der various well-defined laboratory conditions to examine
benefits and drawbacks of TLP. Variations will include link
quality (bandwidth, delay) and the number of lost tail pack-
ets. The measurements are done on a single XUbuntu 13.04
Linux machine with a 3.10.6 kernel. To create a simulation
with multiple virtual hosts the mininet virtual network is
used. Simple HTTP data transfer is accomplished by an
nginx! web server and the lynx text browser. A user space
C/C++ application in conjunction with iptables and net-
filter queues allows to precisely drop a specified number of
packets at the end of a transfer.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews the TCP protocol, extensions to it which are
essential for TLP and the TLP algorithm itself. Section 3
describes the test setup for data acquisition. This includes
mininet, iptables, the user space application and the mea-
surement variations. Section 4 presents the results and the

"http://nginx.org/

Seminars FI / IITM WS 13/14,
Network Architectures and Services, March 2014

advantages of TLP. Finally section 5 sums up the insight
of the measurement results and outlines further options for
analysis.

2. TCP

The Transmission Control Protocol (TCP) is a reliable, con-
nection-oriented transport protocol (ISO OSI layer 4 [6]). As
it is stream-based it works with bytes (grouped in segments).
Higher level protocols can transmit packets over TCP (e.g.
HTTP), but TCP itself is not aware of packets. Its counter-
part is the simpler User Datagram Protocol (UDP) which
works connection-less and packet-based. This section aims
at providing an overview of TCP and explains details which
are important to understand TLP.

To implement the reliability and retransmission-capabilities
the TCP header includes, amongst others, the following im-
portant fields:

SYN flag Synchronize sequence number, set once during
connection setup to set the initial (arbitrary) sequence
number.

FIN flag No more data from the sender.

ACK flag The ACK field is valid. Indicates that this seg-
ment acknowledges received data. Always set except
in the first segment of a transmission.

ACK field The next expected sequence number of the re-
ceiver.

SEQ field segment sequence number. The sequence num-
ber in the first (SYN) segment minus the current se-
quence number indicates the packet data offset in the
current stream.

Figure 1 shows a graphical TCP flow representation cre-
ated by the network analyzer wireshark?. In this example
a client requested a web page from a server. Flags, content
length and transfer direction of a segment are indicated in
the green area. The white area shows the sequence and ac-
knowledgment numbers of every segment relative to the first
captured segment (implicitly done by wireshark to simplify
reading). The connection is established in the first three
transfers (TCP 3-way handshake). Afterwards the client
sends a HTTP GET request (in this case with a length of

2http://www.wireshark.org/

doi: 10.2313/NET-2014-03-1 01

200 bytes) with the desired resource name. The request is
acknowledged and followed by the actual data transfer from
the server. After the transfer is complete the server wishes
to terminate the connection (teardown) by issuing the FIN
flag. The client acknowledges every segment and the con-
nection teardown.

-:31'43:%{5{.; Seq=10
ey e—YNACK o Seq="0Ack=1

ay——BCK e Seq=1Ack=1
PSH, ACK - Len: 200 Seq=1Ack=1
.:33.:&3:1L.:5_:,: Seq=1Ack=201

Seq=1Ack=201

Seq = 1449 Ack = 201
Seq= 2897 Ack =201
Seq = 4345 Ack = 201
Seq=15793 Ack=201
Seq=7241 Ack=201
Seq=201 Ack= 1449
Seq=201 Ack = 2897
Seq=201 Ack = 4345
Seq=201 Ack = 5793
Seq=201 Ack=7241
Seq =201 Ack = B0G6
Seq=B066 Ack =202

Figure 1: TCP Flow. Green area: Client (left, port 33043)
requesting web page via HT'TP from server (right, port 80).
White area: relative sequence and acknowledgment numbers
of the respective segment.

It is important to note, that the client acknowledges every
segment in this example. This is not required by the TCP
specification. It is sufficient to acknowledge every second
segment, given that the segments come in within a short
time (RFC1122 section 4.2.3.2. specifies 500ms [7], Linux
uses a dynamic approach with a maximum of 200ms [8]).
The example transfer is also loss-free. To handle data loss
several methods exist, which will be outlined in the follow-

ing.

The original specification only retransmits segments if they
have not been acknowledged after a specified time. This is
called RETRANSMISSION TIMEOUT (RTO). Several extensions
have been made since TCP was initially specified to improve
the retransmission behavior. This includes, amongst others:
duplicate ACKs, originally specified in [9], later obsoleted by
[2], selective ACKs, specified in [3] and early retransmission,
specified in [4].

2.1 Duplicate ACK (DACK)

Duplicate ACKs are acknowledgments from a receiver with
the same ACK number, which is not equal to the last ex-
pected one of the sender. That means as long as the sender
has unacknowledged (but sent) data he expects the ACK
number of the receiver to increase with every segment. This
explanation is slightly simplified but sufficient for under-
standing the paper, for a full description see [2].There exist
a number of cases which may lead to duplicate ACKs. First
of all, a segment may be lost and more data follows. As the
receiver does not receive the segment it expects, he sends an

Seminars FI / IITM WS 13/14,
Network Architectures and Services, March 2014

ACK with the sequence number he actually expects. This is
done for every segment received after the missing segment.
Secondly, segments can arrive at the receiver in a different
order than they were send due to different paths of the seg-
ments through the network. Although all data arrives at the
receiver this is an error condition as TCP has to be in-order.
Lastly duplicate ACKs may indeed acknowledge duplicate
segments. This might for example be caused by a sudden
increase in network delay. The transmitters RTO fires and
resends a segment which then arrives twice at the receiver.
To differentiate between duplicate ACKs from spurious re-
transmission, out-of-order reception and loss the transmitter
waits for three duplicate ACKs before retransmitting data.
This mechanism is known as FAST RETRANSMIT as the trans-
mitter does not wait for the retransmission timeout to fire
but immediately resends the data. Fast retransmit is de-
scribed in [2].

2.2 Selective ACK (SACK)

Duplicate ACKs can only inform the transmitter of the next
expected sequence. Although more segments after the lost
one might have arrived at the receiver the transmitter will
need to retransmit data from the point where the first data
was lost. To overcome this limitation the SELECTIVE ACK
(SACK) option was added to the TCP header [3]. To use
SACK both communication partners need to support it. Ev-
ery SACK-enabled host sets the SACK-permitted option in
the SYN packet of the TCP-Handshake. If both hosts sup-
port this option it can be used in further communication.
If a segment is lost and SACK is allowed the receiver still
replies with duplicate ACKs but the ACKs will now have
more information about which following segment was suc-
cessfully received. The SACK option specifies up to three
continuous blocks of data, that have been received after one
ore more missing blocks (holes). Each block uses a left edge
(SLE) of data received and a right edge (SRE) one past the
last byte received in that block, both of them are sequence
numbers. The transmitter can use the SACK information
to precisely resend only data that has been lost and avoids
resending data which has been successfully received after a
lost segment.

2.3 Early Retransmit (ER)

Selective ACKs provide additional information to the trans-
mitter of data in case of a lost segment. Nevertheless they do
not speed up the time until a segment is resend. They help
to inform the sender which segments need to be resend. To
resend a segment the RTO or three duplicate ACKs (fast re-
transmit) are still used. The aim of the EARLY RETRANSMIT
(ER) algorithm [4] is to lower the number of duplicate ACKs
which are needed to retransmit a segment. To achieve this
the ER algorithm tries to estimate the remaining number
of segments which can be sent. This depends on how much
data is available for sending and how much data is allowed
to be transmitted before being acknowledged (so called win-
dow size). The ER algorithm does not depend on SACK
although it can be used with SACK to calculate a more pre-
cise estimate of the remaining number of segments. If the
window size or the data left is too small to achieve at least
three segments in flight, then fast retransmit will never oc-
cur as there is no way to generate three duplicate ACKs. In
this situation ER reduces the number of required duplicate
ACKs to trigger fast retransmit to one or two segments.

doi: 10.2313/NET-2014-03-1 01

2.4 Forward ACK (FACK)

If the window size is large enough and there is enough data to
send the retransmission of data still requires at least three
duplicate ACKs. To improve this behavior the FORWARD
ACK (FACK) algorithm has been proposed [10]. FACK re-
quires SACK in order to work. The FACK algorithm mon-
itors the difference between the first unacknowledged seg-
ment and the largest SACKed block (the forward-most byte,
hence its name). If the difference is larger than three times
the maximum segment size of a TCP segment, then the first
unacknowledged segment is retransmitted. If exactly one
segment is lost this will happen after receiving three dupli-
cate ACKs. So for only one lost segment FACK and fast re-
transmission based recovery trigger at the same time. The
main advantage of FACK is a situation with multiple lost
segments. In these situations it requires only one duplicate
ACK when three or more segments are lost to start a recov-
ery.

2.5 Tail Loss Probe (TLP)

All previous solutions to recover lost data are based on the
reception of duplicate ACKs to retransmit data before the
retransmission timeout (RTO) expires. In situations where
the last segments of a transfer (the tail) are lost, there will
be no duplicate ACK. So far the only option to recover from
such a loss is the RT'O. The TaiL Loss ProBe (TLP) al-
gorithm [5] proposes an improvement to such situations by
issuing a “probe segment” before the RTO expires. If mul-
tiple segments are unacknowledged and the TLP timer ex-
pires the last sent segment is retransmitted. This is the basic
idea of the TLP algorithm. Further actions in response to
the probe segment are handled by the previously described
mechanisms. If exactly one segment at the tail is lost, the
probe segment itself repairs the loss, a normal ACK is re-
ceived. If two or three segment are outstanding ER will
lower the threshold for fast retransmit and the duplicate
ACK of the probe segment triggers early retransmission. If
four or more packets are lost the difference between the last
unacknowledged segment and the SRE in the SACK of the
probe segment will be large enough to trigger FACK fast
recovery. In theory the TLP improves response time to loss
in all cases. Table 1 sums up the different options.

| losses | after TLP | mechanism |
AAAL AAAA TLP LOSS DETECTION
AALL AALS ER
ALLL ALLS ER
LLLL LLLS FACK
>=5 L ..LS FACK

Table 1: TLP recovery options. A: ACKed segment, L: lost
segment, S: SACKed segment [5]

3. TEST ENVIRONMENT

To evaluate the performance of TLP a network environment
and a possibility to drop tail segments is required. As a
physical test setup is hard to reconfigure and inflexible with
respect to e.g. bandwidth limitation a network simulation
tool has been chosen. All tools are compatible with the
Linux operating system, thus a XUbuntu 13.04 32-Bit ma-
chine with a 3.10.6 kernel is used for the tests.

Seminars FI / IITM WS 13/14,
Network Architectures and Services, March 2014

3.1 Tool Overview

Two network simulation tools have been investigated. The
ns-3 network simulator® and the mininet virtual network?.
ns-3 provides a lot of features for automated testing and data
acquisition, although it requires some effort to write a test
program. As ns-3 is a simulator the complete network runs
in an isolated application. All test programs and algorithms
need to be implemented in C/C++ to make them available
for measuring. The major drawback of ns-3 is, that it cannot
easily interface a recent Linux kernel that supports TLP.
Thus ns-3 could not be used for testing TLP performance.

Mininet provides a lightweight virtual network by using func-
tions build into the Linux kernel. Unlike ns-3 it is not a
single application but a virtualization technique that allows
to create separate network spaces on a single host machine.
They share the same file system but processes are executed
in their isolated space with specific network configurations.
It allows to create everything from simple networks (e.g. 2
hosts, 1 switch) up to very complex topologies, only limited
by available processing power. Furthermore it is easily re-
configurable, uses the underlying Linux kernel and can run
any Linux program in a virtual host. The Linux traffic con-
trol interface can be used to specify delay, bandwidth and
loss on a virtual connection. All properties make it ideally
suited for TLP performance analysis.

The Linux traffic control interface is not able to precisely
drop segments at the end of a transfer. There are two op-
tions to achieve this. Mininet switches can be used together
with an OpenFlow® controller which usually tells the switch
how to forward packets by installing rules based on e.g. the
MAC addresses in a packet. If a packet does not match a
rule it is forwarded to the OpenFlow controller, which inves-
tigates the packet and afterwards installs an appropriate rule
in the virtual switch. By not installing any rule this can be
used to forward all packets passing the switch to the Open-
Flow controller which then determines if the packet is at the
tail of a transfer and if so drops it. This mechanism has a
poor performance, because usually only very few packets are
forwarded to the controller for learning and installing appro-
priate rules afterwards. So although this option works, it is
not adequate for rapid tail loss. Another option to drop seg-
ments is the use of Linux iptables®. As iptables are primarily
used for firewall purposes there is no build in option to drop
a configurable amount of tail segments. Nevertheless ipta-
bles can forward packets to a user space application which
then decides to accept or to drop a packet. This is done by
using the netfilter queue (NFQUEUE) as a target. Using the
libnetfilter library a user space application can process these
packets and also access the complete packet content. This
option works locally on a (virtual) machine and uses kernel
interfaces, thus this approach is quite fast compared to the
OpenFlow solution. The user space application is written in
C/C++ and provides a good performance.

3http://www.nsnam.org/
“http://mininet.org/
®http://www.opennetworking.org/
Shttp://www.netfilter.org/projects/iptables/

doi: 10.2313/NET-2014-03-1 01

3.2 Setup

The final test setup uses mininet with two hosts and one
switch on a XUbuntu 13.04 machine with kernel 3.10.6 and
a netfilter user space application using iptables. The setup
is depicted in figure 2. To configure this setup the following
steps are necessary.

‘/ hi Ch2
‘(@ver) | (client) /J
A sl
mininet
A
\ 4
\ 4

N
| iptables

Linux kernel

Figure 2: Virtual network setup with mininet

First of all mininet must be started with a configuration of
two hosts and one switch. This is done by the command:

mn --topo single,2
--link tc,bw=100,delay=2.5ms

This configures mininet with a link bandwidth of 100MBit /s
and a delay of 2.5ms per link. Thus the round trip time is
10ms. This setup reflects a common high-speed ethernet en-
vironment. The two hosts are named h1l and h2. A terminal
to the two hosts can be opened via (entered in the mininet
console):

xterm hl h2

h1 serves as a web server which is started by typing “nginx”
in its command window. Furthermore iptables needs to be
configured to pass outbound HTTP traffic (TCP port 80)
on interface hl-ethO to a netfilter queue.

iptables -A OUTPUT -o hl-ethO
-p tcp --sport 80
-j NFQUEUE --queue-num O

This forwards all TCP traffic leaving hl to NFQUEUE 0.
The iptables and filter setup on virtual host one (hl) is de-
picted in figure 3. The inbound traffic is passed directly to
nginx, whereas the outbound traffic is either accepted di-
rectly (non-TCP) or forwarded to the NFQUEUE. The user
space application is named “tcpfilter” and can be configured
by command line arguments to drop a specified number of
packets at the end of an HT'TP transfer (e.g. two packets).

./tcpfilter 2

Implementation details of the tcpfilter are explained in sec-
tion 3.3. To request a web page from hl the lynx web
browser with the dump option is used on h2. It just re-
quests the web page and dumps it to /dev/null.

lynx -dump 10.0.0.1/pk100.html > /dev/null

This is repeated several times in a shell script to automati-
cally acquire a set of data. This finalizes the test setup.

Seminars FI / IITM WS 13/14,
Network Architectures and Services, March 2014

nginx ‘
| non-TCP
—)» OUTPUT >
TCP
tcpfilter <€——»{ NFQUEUE >
iptables

\ v

Figure 3: hl packet flow in detail

3.3 Tail Loss application

The tail loss application tcpfilter is a custom application
written in C/C++. It accesses the netfilter queue 0 and
processes its packets. For this purpose the complete packet is
copied to user space. After packet processing is done it issues
a verdict on every packet which can either be ACCEPT or
DROP. If drop is selected the kernel silently discards this
packet. As this application works on the OUTPUT chain of
iptables the packet then never leaves the network interface.
This is a simulated packet loss. The number of dropped
segments ngrop is specified as command line argument to
tepfilter. The algorithm used to generate tail loss is shown
in algorithm 1.

As TCP is stream based there is no way of determining the
last segment. Thus HTTP is used in the application layer to
find the last segment of a transfer. The filter is initially in
the idle state. Assoon as a HT'TP segment (TCP on port 80)
is going to be sent it checks the contents of that segment for
the string “Content-Length”. This indicates that this is the
header of a new HTTP transfer. Wireshark analysis show
that the content length is always set by nginx for HTML
data transfer. It is thus safe to use this field as header
indication. The content length is extracted from the header
and saved to further track the incoming data. Furthermore
the HTTP data length is of this segment is saved to know
the maximum data size of a segment.

The filter is now in the transfer state. It is locked on to
one transfer by saving its source and destination (IP and
port) and the TCP identification. Data that is not belong-
ing to this transfer is accepted, and not processed further.
Data for the current transfer is tracked and accepted until it
reaches the end of the transfer. As soon as the total transfer
size minus the size of the transferred data is smaller than
the number of segments to lose at the end times the maxi-
mum HTTP size of a segment, the segments are saved in a
linked list and no verdict is issued. After a TCP segment
for this transfer arrives which has the FIN flag set the saved
segments are processed. If the segment with the FIN flag
also has HTTP data ngrop segments at the tail of the list
are dropped, otherwise ngrop + 1 segments at the tail are
dropped. The tcpfilter application thus always drop ndrop
packets with HT'TP data. After the FIN segment the filter
enters idle state again and is ready to track the next transfer.

doi: 10.2313/NET-2014-03-1 01

While the drop candidates are in the list, no verdict is issued
which may lead to a delay in sending packets. An analysis
of the traffic shows that the window size for this transfer
is large enough so that the sender transmits more than 20
segments before waiting for an acknowledgment. The time
between the first segment in the drop candidate list and the
processing due to receiving the FIN flag is thus very short
and should not affect the measurements.

Algorithm 1 Creating tail loss

Packet p

TransferState s
List candidates
List droppedOnce

if lisHTTP(p) then accept(p)

if exist(p.seq, droppedOnce)
remove(p.seq, droppedOnce)

accept(p)
if state = idle and exist(p, "Content—Length”) then
state = xfer

s.maxHttpSize = p. httpSize
s.src_dst = p.src_dst

s.totalLength = extract(p, "Content—Length”)
s.transferred = 0

if state = xfer and p.src_dst = s.src_dst
bytesRemaining = s.totallLength — s.transferred
bytesToDrop = n_drop*s.maxHttpSize
if bytesRemaining < bytesToDrop then
enqueue(p, candidates)

else
accept(p)
if s.totalLength = s.transferred then
state = fin
if state = fin and p.fin then
if p.httpSize = 0 then
n_drop++

while size(candidates) > n_drop do
accept(front(candidates))

while size(candidates) > 0 do
enqueue(front(candidates).seq, droppedOnce)
drop(front(candidates))

state = idle

During transfer processing several nanosecond-accurate
timestamps are taken. The first one tstqr+ during the tran-
sition from idle to transfer. The next are recorded for ev-
ery drop candidate. The timestamp of the first segment
that is finally selected to be dropped is saved to t4rop. The
next timestamp tretransmit 1S taken when the first dropped
segment is sent again by the Linux kernel. By using tarop
and tretransmait the time until a retransmission is started
(trecover = tretransmit — tarop) can be accurately measured.
Finally the time when the segment with the FIN flag is re-
transmitted teynq is recorded. trecover and the total transfer
time tiotai = tend — tstart are used to measure the improve-
ments of the TLP algorithm. The tcpfilter applications out-
puts a row of the following format to the standard output
for every transfer:

<transfer size >, <transfer segments>,
<dropped segments>, <t_total >,
<t_recover >, <isTLP>

Experiments show that TLP is not always selected for re-
transmissions. To remove these transfers from the results
tepfilter outputs the isTLP flag. This flag indicates if a re-

Seminars FI / IITM WS 13/14,
Network Architectures and Services, March 2014

transmission occurred based on TLP or not. TLP retrans-
missions can easily be detected be checking the first retrans-
mitted segment. If this segment is the last sent segment TLP
is used. All other recovery mechanisms retransmit the first
lost segment first. The isTLP flag is not valid for zero or one
dropped segment, as the distinction cannot be made in this
case.

3.4 Measurement description

The following section outlines the measurements taken with
the test setup to investigate the advantage of TLP in tail
loss recovery time and total transfer time. For this purpose
all tests are done with a constant transfer size of 100 seg-
ments, which equals approximately 144kB in the test setup.
The transfer size roughly represents a single web page el-
ement, e.g. a graphic or an advertisement. The tcpfilter
always drops tail segments, thus the number of segments
has no effect on the result. 100 segments are chosen to allow
the transmitter to calculate a precise value for the round
trip time (RTT) which is used to calculate retransmission
timeouts and probe timeouts.

There are in total three different options for the recovery
algorithm. One is the new TLP. The previous one working
with Early Retransmit is denoted with ER. To further com-
pare the results a dataset is acquired with all TCP exten-
sions (SACK/ER/FACK/TLP) disabled, further denoted
‘plain’. These extensions can configured at runtime in the
system kernel by using the sysctl interface. All options re-
garding the tests are found in "net.ipv4”. For example, the
following command disables TLP.

sysctl —w net.ipv4.tcp_early_retrans=2

The changes take effect immediately, so there is no need
to restart mininet or the whole system. Table 2 shows the
configuration for the different algorithms used.

| Option | plain | ER [TLP |
tcp_early_retrans 0 2 3
tep_fack 0 1 1
tep_sack 0 1 1

Table 2: TCP configuration in /proc/sys/net/ipv4

To evaluate the performance under various network condi-
tions three exemplary types are selected as shown in table
3. They do not necessarily reflect real networks but cover
a broad range of different conditions. To acquire the mea-
surement dataset all TCP configurations are tested with all
network configurations. The tests increase the number of
lost tail segments from 0 to 20 and record the time t,ecover
until the first segment is resend and the total transfer time
tiotal- Due to the usage of the mininet virtual network there
is no “natural” tail loss during the measurements.

[Type | Bandwidth [RTT |
high-speed | 100MBit/s | 10ms
mobile 7.2MBit/s | 100ms
satellite 1MBit/s | 800ms

Table 3: Network configurations

doi: 10.2313/NET-2014-03-1 01

4. RESULTS

The results are acquired by repeating the measurements for
the high-speed and mobile network configuration 100 times
and 20 times for the satellite network. The reason for only
acquiring 20 samples per number of tail losses in the satellite
network is the high round trip time. It takes approximately
one hour to obtain a dataset with 420 samples. Table 4
sums up the measurements in the different networks with a
loss count of five segments. The previously default option
of ER in the linux kernel is the baseline for comparisons.
Tail Loss Probe performs best when the round trip time is
low. The total transfer time is decreased by 38% in the high-
speed network. On a mobile network the time is still 11%
lower. The satellite network does not benefit significantly
from TLP. Early Retransmit does not improve the transfer
time very much compared to plain TCP configuration. This
is expected, as ER requires partial information of the re-
ceived data and duplicate ACKs. Both conditions are not
available at a tail drop. When comparing the time to the
first retransmission trecover TLP reduces the value signifi-
cantly by 81% (high-speed network). In the mobile network
this reduction drops to 19%. A noticable anomaly is the in-
crease of the recovery time in the plain configuration in the
mobile network. As this paper mainly deals with TLP, the
evaluation of this anomaly is out of scope.

| TCP cfg. | plain | ER | TLP |

100MBit/s, 10ms RTT

tiotar | 0.3595 [+0.6% [0.3574 | 0.2214 | -38%

trecover | 0.2396 | +1.3% | 0.2365 | 0.0447 | -81%
7.2MBit/s, 100ms RTT

totar | 1.2091 [-1.7% [1.2300 | 1.0944 | -11%

trecover | 0.4392 | +7.8% | 0.4073 | 0.3310 | -19%
1MBit/s, 800ms RTT

tiotar | 8.2145 [-0.1% [8.2248 | 8.1948 | -0.4%

trecover | 24792 [+0.3% | 2.4720 | 2.4331 | -1.6%

Table 4: Recovery algorithm comparison (transfer size: 100
packets, losses: 5). ER configuration serves as baseline.

0.351

0.3F

= I

% 02
I3
>
8
£ 015F
0.1t

S RRRRERRRSRRRERRERRES:

0
0 5 10 15 20

loss

Figure 4: Number of tail losses and time until the first seg-
ment is retransmitted. Plain (green), ER (blue), TLP (red).
Transfer size 100 segments. High-speed network.

Seminars FI / IITM WS 13/14,
Network Architectures and Services, March 2014

I

0.1]

0.05
0 5 10 15 20

loss

(a) high-speed network

15
14

ﬂﬁﬁﬂ&ﬂﬂﬂﬂﬂﬂﬂ%%%%%
I

13
12

RERRERE!

11

ttmaLI [S]
i

0.9
0.8
0.7+

O.GH
0

0.5

5 10 15 20
loss

(b) mobile network

11p

10

| mmmmmﬂ?

Jonl

— 8r
2,
ket
2
= L
1
6F
5l
e:x
4
0 5 10 15 20

loss

(c) satellite network
Figure 5: Number of losses and total transfer time. Plain
(green), ER (blue), TLP (red). Transfer size 100 packets.

doi: 10.2313/NET-2014-03-1 01

Figure 4 plots the recovery time versus the number of lost
tail segments. The standard deviation is plotted along for
each measurement. For a better reading the samples have
been slightly shifted on the plot, but the number of losses
is always an integer. The results show that the plain imple-
mentation and ER perform almost equally. TLP is faster
with a factor of approximately 4.5.

Of special interest is the behavior of TLP with a loss of
exactly one segment. In this case TLP increases the re-
transmission timer to accommodate for an eventually de-
layed ACK. TCP can concatenate two ACKs into a single
one if data comes in within short time. To make this con-
catenation possible the TCP implementation in the Linux
kernel waits up to 200ms [8]. This is also the value the TLP
retransmission timer is increased when only a single segment
is in flight (cf. WCDelAckT in [5], sec. 2.1). Although the
data loss is repaired by the tail loss probe segment, it takes
approximately twice the time until the transfer is complete
(compared to multiple segments in flight).

Figure 5 compares the total transfer time in the three net-
work configurations. In the case of no loss all implementa-
tions are equally fast. This also shows that the additional
TLP code has no impact on lossless transfers. As noted pre-
viously TLP performs bad with a single lost segment. An
interesting trend in the mobile and in the satellite network
is the slightly increasing transfer time in dependence of the
number of lost segments. The tcpfilter drops all segments at
once and after the duplicate ACK from the tail loss probe
segment ER should immediately resend all segments. Thus
the number of tail loss segments should not have such a sig-
nificant impact. Furthermore the increase in transfer time
is not linear. The time increases after 1, 2, 4, 8 and proba-
bly 16 packets, which are all exponentials of 2. The reason
for the increasing time is most likely the congestion control
algorithm used, but this topic is out of the scope of this
paper.

The measurements in the satellite network also show that
TLP has no substantial benefit for high-delay lines. The
recovery time of 2.4s is also higher than expected by the
TLP paper. If the flight size is greater than one segment
TLP calculates the retransmission timer by multiplying the
smoothed RTT by two. This would be 1.6s for the satel-
lite network. For the mobile network this is 0.2s, the mea-
surements show an average of 0.33s. In the high-speed net-
work it should be 0.01s, measured is 0.045s. So the Linux
TLP implementation always calculates a higher retransmis-
sion timer than specified in the paper. This does not have
to be an error in the TLP code but can also be the con-
sequence of the RT'T measurement implementation in the
Linux kernel.

5. CONCLUSION

The results show that the Tail Loss Probe is an improve-
ment to TCP communication in all tested cases. There is
no situation where a non-TLP test result is better. The
largest improvement in the time until the first segment is
retransmitted (-81%) is recorded in the high-speed network.
Total transfer time in such a network with a tail loss is de-
creased by 38%. The TLP draft reports real-world values
from a test with the Google web servers of up to 10% im-

Seminars FI / IITM WS 13/14,
Network Architectures and Services, March 2014

provement in response time. The values presented in this
paper are not comparable to the TLP draft values because
in the TLP draft the values are calculated from all trans-
missions, including those without any tail loss. To compare
them one needs to know how many of the transmissions en-
countered tail loss. It is important to note that TLP has no
benefit for a single lost tail segment. Furthermore in high
RTT networks TLP does not improve the transfer time. Al-
though especially in these networks a decrease in transfer
time would be a great advantage.

The tests included only a small variation of possible mea-
surements. Further options are the transfer size, although
this should have no effect with a constant number of tail
drops, a generally lossy line or variations in the transfer
window size. Furthermore this paper intentionally left out
aspects of congestion control and TLP’s interference with
it. Measurements in this domain require a much complexer
user-space application.

6. REFERENCES

[1] J. Postel. Transmission Control Protocol. RFC 793
(Standard), September 1981. Updated by RFCs 1122,
3168.

[2] M. Allman, V. Paxson, and E. Blanton. TCP
Congestion Control. RFC 5681 (Draft Standard),
September 2009.

[3] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow.
TCP Selective Acknowledgment Options. RFC 2018
(Standards Track), October 1996.

[4] M. Allman, K. Avrachenkov, U. Ayesta, J. Blanton,
and P. Hurtig. Early Retransmit for TCP and Stream
Control Transmission Protocol (SCTP). RFC 5827
(Experimental), April 2010.

[5] N. Dukkipati, N. Cardwell, Y. Cheng, M. Mathis, and
Google Inc. Tail Loss Probe (TLP): An Algorithm for
Fast Recovery of Tail Losses. TCP Maintenance
Working Group (Internet-Draft), February 2013.

[6] J. D. Day and H. Zimmermann. The OSI reference
model. Proceedings of the IEEE, 71(12):1334-1340,
1983.

[7] R. Braden. Requirements for Internet Hosts -
Communication Layers. RFC 1122 (Standard),
October 1989. Updated by RFCs 1349, 4379.

[8] Pasi Sarolahti and Alexey Kuznetsov. Congestion
Control in Linux TCP. In Proceedings of the
FREENIX Track: 2002 USENIX Annual Technical
Conference, pages 49-62, Berkeley, CA, USA, 2002.
USENIX Association.

[9] M. Allman, V. Paxson, and W. Stevens. TCP
Congestion Control. RFC 2581 (Proposed Standard),
April 1999. Obsoleted by RFC 5681, updated by RFC
3390.

[10] Matthew Mathis and Jamshid Mahdavi. Forward
Acknowledgement: Refining TCP Congestion Control.
In SIGCOMM, pages 281-291, 1996.

doi: 10.2313/NET-2014-03-1 01

