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ABSTRACT
For the security of communication channels in today’s net-
works and encryption of messages therein, applications and
their users rely on cryptographic protocols. These are sup-
posed to provide confidentiality and integrity of message
contents. They are relied upon by online shopping, bank-
ing, communication, scientific applications, and many oth-
ers. Design errors in standard definition documents or in
the implementation of widespread libraries, however, allow
for the violation of these objectives by adversaries. Specifi-
cally, padding oracle attacks render the partial or complete
recovery of the underlying plaintext of encrypted messages
possible. Such attacks also affect the most common modus
operandi of most modern cryptographic protocols, the ci-
pher block chaining (CBC) mode. Thus, given a correspond-
ing design or implementation error, these attacks can affect
almost all online communication channels secured by such
protocols.
In this paper, we give an insight into the theoretical aspects
of padding oracle attacks. We will outline all necessary back-
ground and detail prerequisites for a successful attack. An
overview of resulting practical implementations in real-world
applications such as Datagram TLS, among others, will also
be provided. It is our intent to introduce the reader to com-
mon design flaws of cryptographic constructs in protocols
that make them prone to padding oracle attacks, so that
readers are able to avoid such mistakes and to assess cryp-
tographic constructs in this regard.
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1. INTRODUCTION
Nowadays, many security-critical applications are carried
out over the Internet or other networks. Financial trans-
actions, signing of legally binding contracts, connecting to
corporate networks via VPN, and many more applications
require a significant level of security to be reliable for pro-
ductive use. Usually, they demand integrity of messages and
confidentiality of message contents, among other properties.
For example, they may also ask for authentication or iden-
tification of the other communicating party. Standards that
aim to meet such requirements are, e.g., the TLS standard,
and many library and custom implementations exist. How-
ever, erroneous behavior as dictated by standards or defined
by implementations may allow for partial or full recovery

of an encrypted message’s plaintext, or even to code execu-
tion. Such attacks exploit unwanted side channels exposed
by the respective cryptographic protocols, and thus establish
an oracle to make assumptions about the underlying plain-
text using easily predictable padding bytes. Hence they are
known as padding oracle attacks.
In Chapter 2, we will explain the aforementioned terminol-
ogy and the theoretical background necessary to understand
these plaintext recovery attacks. We will also cover the
prerequisites for an adversary to carry out such an attack,
and the long history of padding oracle attacks. In Chapter
3, we will explain padding oracle attacks in detail. Chap-
ter 4 will feature a selection of such attacks which affected
widespread libraries, framework, and end-user software im-
plementations. Furthermore, we will assess the relevance for
currently used software.

2. BACKGROUND
In this chapter, we provide some historical background of
padding oracle attacks, and point out why they are still rel-
evant. Subsequently, we will introduce the reader to the
most basic cryptographic primitives and concepts required
to understand padding oracle attacks. Finally, before con-
tinuing with padding oracle attacks themselves in detail in
Chapter 3, we will explain under which circumstances these
attacks are feasible for an attacker.

2.1 History and Relevance
A padding oracle attack for symmetric cryptography has
first been proposed by Vaudenay in 2002 [19]. Similar at-
tacks, however, had already been shown theoretically fea-
sible as early as 1998 for RSA [7], though not entirely as
efficient. Thus, for now more than a decade, padding oracle
attacks are known. Still, standard and implementation er-
rors facilitating such attacks have repeatedly emerged. The
basic susceptibility to such attacks is derived from the MAC-
then-pad-then-encrypt paradigm defined by standards, and
thus cannot easily be fixed. As a consequence, relevance is
still given nowadays, as by design implementations can still
be prone to these attacks. Furthermore, as will be shown
later in this paper, all block ciphers are generally prone to
this kind of attack. Additionally, cipher strength is com-
pletely irrelevant for the probability of success.

2.2 Cryptographic Basics
In the following, we introduce the reader to the very basics of
cryptographic primitives and operations related to encryp-
tion and decryption.
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We denote a plaintext message to be encrypted as m. m is
a sequence of bytes of any length (m ∈ {0, 1}8n). The cor-
responding encrypted message, known as ciphertext, will be
denoted as c, as is a sequence of bytes that is a multitude of
b, known as the block size. The following trivial equations
describe the relationship between plaintext message m and
ciphertext c, where E is the encrypting, D the decrypting
function, and k the (symmetric) encryption/decryption key:

E(m, k) = c; D(c′, k) = m′

E is executed on the sender’s side, while D is executed on
the receiver’s side. If c has not been altered during trans-
mission, then c = c′ and thus m = m′.
All of the aforementioned components describe a symmetric-
key cryptographic system.

Basic operator: XOR. The basic operation for most of
today’s symmetric cryptographic algorithm is the XOR op-
erator, which may be preceded or followed by a permutation
or substitution of any input operators, including the key k
and the plaintext message m. The reason for using the XOR
operator is that it is an involution, i.e., applying XOR to any
bit o is reversible by applying XOR with the same parameter
bit p ∈ {0, 1} once more: XOR(XOR(o, p), p) = o. XOR is
often denoted as ⊕.

Symmetric cipher types. Cryptographic algorithms are
commonly referred to as ciphers. Symmetric ciphers can be
divided into two classes: Stream ciphers and block ciphers.
The former encrypt plaintext messages by iteratively com-
bining input data with a pseudorandom keystream. The
latter take chunks of input data, known as blocks, and en-
crypt those, one block at a time. The attacks described in
this paper concern block ciphers.

2.2.1 Cipher Block Chaining
Block ciphers can operate in different modes. These modes
allow for the application of block ciphers to input data larger
than the block size. Furthermore, they offer different ser-
vices, such as encryption, integrity, and authenticity, and
vary in their susceptibility to different attacks. The trivial
mode of operation is the electronic codebook (ECB) mode,
where each block is encrypted independently using the same
key. This, however, raises security problems. For example,
two identical plaintext messages will always translate to the
same ciphertext. Also, knowing only parts of the underly-
ing plaintext message for a ciphertext allows the attacker to
directly deduce parts of the key, called a known-plaintext
attack. One of the most common modes, however, is the
cipher block chaining (CBC) mode, which is illustrated in
Figure 1. In this mode, the ciphertext block Ci generated
by the cipher does not only depend on the encryption key
and the plaintext input block Mi, but also on the cipher-
text block Ci−1 which has been encrypted previously. To
this end, each plaintext input block is XORed with the last
ciphertext block. Formally, this means:
Ci = E(Mi⊕Ci−1, k), where Ci is the ciphertext block i and
Mi is the plaintext block i. The first ciphertext block C1 is
generated using an initialization vector serving as Ci−1, i.e.,
C0. Oftentimes, the IV is predefined by the implementation
or transmitted in plain text during session initiation.

Figure 1: CBC mode encryption [12]

Figure 2: CBC mode decryption [12]

Decryption in CBC mode is done accordingly, by XORing
each ciphertext after with the previous ciphertext executing
the decryption function to obtain the correct plaintext. This
is formally described by the equation Mi = D(Ci, k)⊕Ci−1

and visualized in Figure 2. Please note that, after decryp-
tion of a ciphertext, only XOR operations are carried out
which are not dependent on any secret key or cryptographic
algorithms. In Figure 2, the parameters for these XOR op-
erations are Ci−1 and an intermediate value denoted as a.

2.2.2 Padding
As CBC mode requires blocks of fixed size as input, but
plaintext data input may come in arbitrary sizes, data needs
to be appended in order for the input blocks to be aligned
in size. This needs to be done in such a way that padding
can be distinguished from the true payload so it can be re-
liably removed after decryption. Several standards describe
different methods how padding can be performed. For ex-
ample, the Public Key Cryptography Standard (PKCS) #7
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[16] defines that each added byte should be the value of the
number of bytes to be added in padding, i.e., if there need
to be 5 bytes added, each of these bytes will have the value
0x05. Even messages being a multiple of the block size need
to be padded. In this case, one full block of padding with
bytes of value b are appended, with b being the block size.
Thus, at least the last byte of a message needs to be padding
and padding must always be present.
Standard-conforming padding, in addition to the design prin-
ciples behind most implementations of cryptographic stan-
dards, make portions of the plaintext easily guessable. One
correctly guessed byte at the end of a message tells an adver-
sary the value of a number of other bytes, with the number
of bytes determined by the guessed byte’s value. This is an
important factor in the feasibility of padding oracle attacks.

2.3 Message Authentication Codes
In short, Message Authentication Codes (MACs) are crypto-
graphic checksums ensuring the authenticity of a message.
MAC values can be generated from keyed hash functions
(HMAC), constructs based on regular hash functions such as
MD5, or some block cipher modes. They compute a check-
sum over a given input by also including a key in the cal-
culation. The MAC is added to a message and can be used
for validation of this message by its receiver. When im-
plemented correctly, this ensures not only authenticity, but
also integrity of a message. As an adversary does not know
the secret key established by the communicating parties, he
cannot alter the message contents without detection.

3. PADDING ORACLE ATTACKS
Generally, a padding oracle is an algorithm that provides an
adversary with information about the validity of the pad-
ding of the underlying plaintext, when presented with any
ciphertext [3]. If the padding is valid (cf. Section 2.2.2),
such an oracle returns 1; if it is invalid, it returns 0. This
can be used to guess all padding bytes of a message very ef-
ficiently, and ultimately serve as a stepping stone to decrypt
whole messages.
Generally, padding oracles as described in this paper try
to decrypt any ciphertext message fed to them, and return
whether or not the padding is valid. It is important to note
that they will execute the decryption function for an adver-
sary, even though they will not return the plaintext to the
adversary. They will, however, state whether the plaintext
has valid padding. By using the statements on the validity
of the output plaintext, an adversary can directly deduce the
values of the intermediary value output by the decryption
function, prior to XORing with the previous cipher block
(cf. Figure 2).

3.1 Last Byte Oracle
In general, due to the nature of decryption in CBC mode,
it is most practical to first guess the last byte of a message.
Building upon our padding oracle, we can determine if any
random ciphertext consisting of a byte sequence determined
by us has – when decrypted to plaintext – a valid padding
[19]. In the most likely case, the oracle will return 1 if our
last byte translates to a 0x01 in plaintext, meaning that only
1 byte of the message is padding.
To determine the last byte of a block Cn, one can carry out
the following operations. For this, we will construct a mes-
sage M consisting of the block of encrypted data we want

to decrypt (Cn), and a forged block prepended to the en-
crypted data we want to decrypt (C′n−1). This message is
then M ′ = C′n−1||Cn, where || denotes concatenation. We
will denote all bytes of the intermediate value returned di-
rectly by the decryption function before XORing with the
previous cipher block as a = a1..an, and the decoded plain-
text resulting from our forged message as p = p1..pn.
(1) Select a random byte string C′n−1 = c′1, ..., c

′
b, equaling

in size the block length of the cipher
(2) The last byte of this string is XORed with an integer i
. In each step, i is incremented from 0 to 255 to assume all
possible byte values.
(3) Upon each incrementation of i, the padding oracle O is
fed with our randomly chosen byte string C′n−1 prepended
to the block Cn we want to decrypt. If O(C′n−1||Cn) = 1, we
have correct padding, otherwise we continue with the next
incrementation of i. The padding is most likely to be 0x01,
given that in any other case, one or more bytes would have
to have such a value that padding is valid, i.e., the previous
byte would need to be 0x02, the two previous bytes 0x03

0x03, and so forth.

3.2 Padding Length Detection
Once the last byte has been set such that an adversary’s
composed message M ′ = C′n−1||Cn has valid padding, it has
to be determined how many bytes of valid padding exist at
the end of M ′n = D(Cn) ⊕ C′n−1. This way, at least one
byte of plaintext will be definitely discovered; if lucky, one
may even guess multiple bytes correctly. To determine the
padding length, the adversary will iterate over all bytes of
C′n−1, starting with the first, and XOR it with all possible
values ∈ [0, 255]. If any byte alteration leads to the padding
oracle returning 0, it is clear where the padding stops.
Once the length of the padding of our resulting plaintext p
has been determined, the values of the corresponding bytes
in the intermediate value a directly follow: If the padding
has length 1, ab = rb⊕ 0x01; if length 2, ab−1ab = rb−1rb⊕
0x02 0x02, and so on. The correct plaintext bytes of Cn can
be acquired by XORing with the correct, non-forged Cn−1.

3.3 Block Decryption Oracle
Constructing an oracle for guessing the bytes of a whole
block, and thus being able to decrypt it by XORing all
guessed intermediate bytes a1..ab with the unforged previ-
ous cipher block is trivial when implemented iteratively. The
adversary already knows the value of one or more bytes at
the end. He can easily construct a valid padding extending
one byte further to the beginning of the cipher block to be
decrypted. For this, the adversary needs to increase all en-
coded bytes by 1 so they form a valid padding which is “off
by 1”. E.g., if the last three bytes have already been de-
coded, a valid padding would be 0x03 0x03 0x03. Setting
these bytes now to 0x04 0x04 0x04 allows for the breaking
of the byte right in front in an identical fashion to the Last
Byte Oracle described above.

This methodology can be generalized not only to blocks,
but to whole messages, enabling an adversary to decrypt
whole encrypted conversations between two communicating
parties. This approach is extremely efficient: To guess each
byte, an adversary will require 27 steps on average. Thus, a
block of 8 bytes takes only 1024 guesses on average; blocks
of 16 bytes take 2048 tries, accordingly.
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3.4 Cipher Independence
All operations we can directly influence with our forged pa-
rameter r in m = r||Cn are XOR operations. They are
not dependent on a secret key or any other cryptographic
operations that are cipher-specific. A cipher, in our case,
operates as a black box that supplies the adversary with the
intermediate values a = a1..ab; its implementation is irrele-
vant. The only cipher parameter of importance is the block
length. Consequently, cipher strength does not matter in
this attack: No matter how strong a cipher, it can still be
broken in linear time.

3.5 Padding Scheme Independence
As all padding schemes follow some system where padding
needs to be distinguishable from plaintext payload, padding
oracle attacks apply for all padding schemes and not only
for the one mentioned above. An adversary, however, needs
to know which padding scheme is used to be able to guess
padding bytes.

3.6 Prerequisites for a Successful Attack
To mount a padding oracle attack successfully, an adversary
must have access to (a) the packets he wants to decrypt,
and (b) the padding oracle. Such a scenario is given when
he can not only read packets between the two communicat-
ing parties, but also impersonate at least one of them to
send packets to the oracle. For example, this is the case
when an adversary assumes control of a hop en route of the
communication packets, or if he can successfully conduct
a man-in-the-middle attack in the local network of one of
the two parties. He can then both intercept packets and
also send forged packets on behalf of the party whose local
network he is in while carrying out the man-in-the-middle
attack.

3.7 Implementation and Practical Aspects
To implement a padding oracle, an adversary needs to have
access to an entity that leaks one bit of information: Whether
padding is valid, or not. Most commonly, this will be the
case when an adversary has direct access to the communi-
cation between parties A and B which he aims to decrypt.
Not only needs he to be able to read packets, but also to
send them on behalf of at least one of the communicating
parties: This way, by assuming the other party’s identity, he
can send them to the remote site and record the response.
For example, in the case of TLS, an adversary will send
packets on behalf of party A to party B. Party B will reply
with error messages if the padding of the forged message
was invalid. In the case of DTLS, there are slight timing
differences in the handling of packets depending on the va-
lidity of padding. These differences have to be observed by
an attacker, and also the packets to trigger these responses
need to be sent by him. In practice, this can be achieved by
man-in-the-middle attacks in the local network of one of the
communicating parties. [3]
Effectively, padding oracle attacks are side channel attacks.
Depending on the implementation an adversary wants to at-
tack, he needs to interpret side channel information that he
himself can provoke by assuming a position in between the
communication parties. The type of information that will
be leaked is implementation-dependent.

4. SAMPLE ATTACKS
It has been shown that various very widespread implemen-
tations of cryptographic protocols are or were prone to pad-
ding oracle attacks. Among them are the TLS and DTLS
implementations of OpenSSL and GnuTLS [19, 3] and var-
ious software frameworks such as ASP.NET [10] and Ruby
on Rails [17]. Of those, we will provide some detail on the
attacks against TLS, which was the attack originally envi-
sioned in [19]; against DTLS, which is a rather recent one;
and one against ASP.NET, which gained some fame as it
affected many websites, was easily exploitable, and could
even lead to code execution [10]. All of these attacks have
in common that they concerned widely used implementa-
tions to be found on many systems and in a lot of end-user
software. However, the implementation of the padding ora-
cle itself varied in significant aspects.

4.1 SSL/TLS
The first padding oracle attack on a symmetric cipher was
published by Vaudenay in 2002 [19], though it is somewhat
similar in concept to earlier attacks on RSA [7, 13]. While
TLS implementations, abiding to standard, send out error
messages directly indicating that padding of a forged mes-
sage injected by an adversary is incorrect, this instantly ter-
minates the connection. Standard dictates that any crypto-
graphic error ought to be fatal. Thus, an SSL/TLS oracle,
as proposed in [19], is a bomb oracle. It either returns 1 for
correctly padded messages, or in the other case, explodes,
thus terminating the session. A reestablished session will
have new key material, and thus lead to different intermedi-
ate results (formerly in this paper referred to as a = a1..ab).
Consequently, an attacker can only decrypt the last byte of
a block with probability 1

256
, the last two bytes with a prob-

ability of 1
512

, and so on. Provided an adversary has knowl-
edge about the underlying plaintext messages and their re-
occurence, this may still be used for a successful attack to
incrementally decrypt such messages. A multisession attack
was developed in [8] to recover passwords (or other plaintext
snippets) from a TLS-secured connection. The attack is ex-
tended even to non-distinguishable error messages by means
of timing measurements. Error messages may be uniform in
content, but not in the time it takes to generate them. This
is exploited by this attack.

4.2 DTLS
Datagram TLS is a variant of TLS to be operated on top
of an unreliable, connectionless protocol, i.e., in virtually all
cases UDP. DTLS was standardized much later than 2002,
hence the original padding oracle attack affecting SSL/TLS
had already been known and countered by sending back
uniform error messages for errors in cryptographic opera-
tions in TLS 1.11, on which the initial DTLS version was
based. As there is no distinctive message indicating a pad-
ding error anymore, this side channel option is eliminated.
However, at the time of the discovery of this attack, there
were slight to significant timing differences in the handling
of packets with invalid padding as compared to those with
valid padding. Most interesting about this attack is that
DTLS, unlike SSL/TLS, does not terminate the connection

1“Handling of padding errors is changed to use the
bad record mac alert rather than the decryption failed alert
to protect against CBC attacks.” [15]
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on cryptographic errors, as the underlying transport proto-
col is considered unreliable and might have bit errors. A
padding oracle for DTLS is thus not a bomb oracle. On the
other hand, the oracle cannot rely on captured error mes-
sages.
Two notable implementations of DTLS exist, one being part
of GnuTLS and the other of OpenSSL. While the former
followed TLS 1.1 very closely, thus also implementing time-
uniform error reporting against timing side channel attacks,
the latter did not adhere to the standard as closely when
the padding oracle attack on DTLS was discovered. In ei-
ther case, however, plaintext recovery was possible; with
OpenSSL full, with GnuTLS partial recovery.

4.2.1 OpenSSL Padding Oracle
Prior to the fix which prevents the padding oracle attack de-
scribed in [3], OpenSSL did not comply to the TLS 1.1 stan-
dard which DTLS is based upon in most parts. While TLS
1.1 dictates that processing time for all messages should be
equal whether or not a messages is malformed, the OpenSSL
DTLS implementation only conducted MAC verification of
a message if the padding of the decrypted message is valid.
This leads to significant timing differences in DTLS packet
handling.
However, as DTLS implementations are not required to send
out error messages, this difference in the time required to
process packets had to be measured in another way. In [3],
the authors chose to exploit heartbeat messages – periodic
messages ensuring that the remote host of a DTLS connec-
tion is still up and reachable. For this, an adversary will
send a sequence of packets to the oracle, directly followed
by a heartbeat message. If padding of the packet sequence is
valid, then MAC verification will be performed, leading to a
higher delay of the heartbeat response. On the other hand,
if the padding was invalid, then no MAC verification will be
performed and the heartbeat response will return quicker.
However, noise such as network congestion or routing choos-
ing different paths may be introduced into measurements.
Furthermore, in general the timing differences will be very
small. To increase the reliability of his measurements, an
adversary may carry them out repeatedly. Also, to gather
typical response times, an adversary can carry out system
profiling prior to utilizing the oracle. This is achieved by
sending multiple packet sequences of different lengths to the
oracle and record the response time.

4.2.2 GnuTLS Padding Oracle
As the GnuTLS implementation adhered closely to the TLS
1.1 standard, the above approach for OpenSSL does not
hold. However, sanity checks in the implementation limit
validation of a message’s MAC to its header fields if pad-
ding is found to be incorrect, setting the message’s effective
payload length for MAC computation to 0. In either case,
whether or not padding is valid, MAC computation is per-
formed – however, in case of invalid padding, the processing
time is shorter. These processing time differences, however,
are very small on modern machines. As a consequence, vari-
ation in packet transit time introduces significant noise into
this method.
As with the OpenSSL padding oracle implementation, an
adversary may choose large messages to cause a maximum
timing difference or carefully timed packet sequences. Us-
ing these methods only a partial plaintext recovery is pos-

sible. Using statistical analysis methods and increasing the
number of guesses drastically, single bytes could be recov-
ered with probabilities up to 0.99. However, the amount of
network traffic necessary for this partial plaintext recovery
makes the attack rather unpractical.

4.3 ASP.NET
In 2010, it was found out that the whole ASP.NET frame-
work was vulnerable against a padding oracle attack in such
a way that any data on a webserver running ASP.NET was
publicly accessible. The resulting vulnerability was identi-
fied as MS10-070 [14] and CVE-2010-3332 [2]. It affected ev-
ery installation of ASP.NET, as the error was inherent to the
framework itself, and not to specific web applications on top
of ASP.NET. The attack is based on an adversary being able
to turn a decryption oracle into an encryption oracle [10],
which will not be covered in detail here. ASP.NET allows
a developer to make the navigation of a website encrypted,
meaning that the actual web resource location identifiers of
a request are encrypted. This can aid in hiding the under-
lying structure of a web application. Resources are served
to a user by WebResource.axd and Script
Resource.axd. The format for a request is as follows:
WebResource.axd?d =encrypted_id&t=timestamp, with d be-
ing the identifier of a web resource, specified by its relative
path in a web application. If an adversary is capable of
transmitting a self-chosen valid d parameter, he may access
any resource of the web application. d is supplied to a client
as part of web resources the client already accessed to allow
for navigation, and is computed by the ASP.NET server us-
ing a private key known only to the server. The oracle is
implemented by distinguishable error messages returned by
the server: a 404 error code implies valid padding, and 500
is returned otherwise. [10]
Now, using the encryption oracle mentioned above, the at-
tacker constructs a d parameter such that it points to re-
sources storing crucial information crucial to the security of
the web application and server. This includes, for exam-
ple, the keys used for encrypting and decrypting data on
the server, including valid d parameters. With the help of
this oracle, d parameters can be constructed for any path of
the web application. In the case of ASP.NET, the web.config
resource contains cryptographic keys and sometimes even lo-
gin credentials. Using cryptographic keys, an adversary may
obtain validated sessions with the web application. Further-
more, the App_Code directory in ASP.NET applications con-
tains source code files. [10]
As can be seen, when an application trusts encrypted data
supplied by a client for serving resources, and if a padding
oracle can be constructed, then an oracle attack may not
be used only to decrypt ciphertexts, but to assume control
over the application and gain access to otherwise protected
crucial resources.

5. ANALYSIS
In this section, we will detail which common mistakes in
cryptographic constructs and protocol designs lead to pad-
ding oracles. These can, as mentioned before, not only be
used to decrypt messages, but also be leveraged to obtain
encryption oracles as well to inject arbitrary encrypted data
[17]. After presenting potential remedies to these problems,
we will give an assessment of the relevance of such attacks
for end-users.
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5.1 Common Design Flaws and Fixes
Three prominent mistakes in the design of cryptographic
constructs can be identified:

1. Unauthenticated, encrypted messages: Attackers may
inject arbitrary messages into a communication chan-
nel and the remote side will treat them as if they were
from the legitimate communication partner.

2. If messages are authenticated and their integrity pro-
tected, this only applies to the plaintext and not to
the full ciphertext messages (including padding). This
allows adversaries to tamper with the ciphertext and
mount chosen-ciphertext attacks which padding oracle
attacks are. This has been referred to as the “MAC-
then-encrypt” or “MAC-then-pad-then-encrypt” para-
digm by other researchers.

3. Fixed or plaintext IV. While the IV only directly af-
fects the first block of ciphertext in an encrypted mes-
sage, the IV being unknown to an adversary in any
attack on CBC mode has significant positive effects:
An adversary may reconstruct all blocks except for
the first plaintext block. The first plaintext block of-
ten contains crucial protocol parameters in a header.
If those parameters are unknown, any attacks that re-
quire knowledge about these parameters are prevented.
Also, if sanity checks are performed on a header, e.g.,
the sequence number of a message being within a cer-
tain range for replay attack protection, an attacker
cannot circumvent such measures. Furthermore, at-
tacks allowing for recovery of arbitrary plaintext can
be mounted by attackers who are able to predict the
IV [5]. Thus, we conclude that the IV is a resource
which is not well enough protected.

These three issues can be easily addressed in theory.
Issue 1 can be resolved by making authentication of mes-
sages compulsory, which usually also protects integrity. This
case is also supported by other publications [6]. As noted
in by Black and Urtubia [6], authenticity and privacy are
often regarded as different objectives. However, given the
nature of ciphertext processing, they are in fact strongly
correlated. Using MACs on every message would prevent
tampering with ciphertext, and injection of arbitrary forged
messages into conversations.
If authentication is already used, it needs to be done on the
full payload that leaves a host, and not only on the under-
lying plaintext, as also demanded by [19]. This addresses
Issue 2.
In fact, Issues 1 and 2 can be resolved effectively and effi-
ciently by using authenticated encryption, a paradigm for ci-
pher modes which provides confidentiality, authenticity and
integrity in a single mode of operation [6]. By providing
these services out of the box, developers no longer need to
combine them themselves, reducing the potential for mis-
takes. Some of these modes are the Offset Codebook Mode
(OCB), the Counter with CBC-MAC (CCM) mode, and the
EAX mode.
To resolve Issue 3, the IV should be agreed upon by the com-
municating parties during session establishment, instead of
the IV being fixed or transmitted in plaintext. However, the
IV must not be encrypted using the same key as all other
payload data, as an attacker knowing the IV can otherwise

use it to decrypt other messages. This is a consequence of
the way many cipher modes combine message blocks using
XOR. Thus, the IV must be encrypted using a different key.

5.2 Relevance for End Users
As of June 2013, widely used software such as Mozilla Firefox
and Thunderbird [1], Oracle and Internet Explorer are still
using TLS 1.0. Though TLS 1.1 and 1.2 are implemented,
some bugs remain and many servers fail at handshake, pre-
venting it from being enabled by default. However, TLS 1.0
is still susceptible to padding oracle attacks. Hence in the-
ory, users of all major browsers are prone to padding oracle
attacks, though a padding oracle for TLS 1.0 is a bomb ora-
cle. Generally, many client and server applications often do
not feature the latest TLS version 1.2 or even 1.1, depending
on their implementation, or in the case of libraries, against
which library version they were linked. If the server does not
feature TLS > 1.0, the client also will not be able to use it.
In general, the protocol mostly used today is TLS 1.0, which
is prone to the attacks presented in this paper. The most
widely used SSL/TLS library OpenSSL, on the other hand,
received fixes of these issues in releases 0.9.8s and 1.0.0f [3].

5.3 Lessons Learned
Apart from the design flaws addressed in Section 5.1, there
is another lesson to be learned. Even one single bit leaked
to an attacker can lead to the compromise of information.
This also holds for web applications. Side channels should be
avoided at all costs to prevent oracles of any kind. In prac-
tice, this would mean disabling distinguishable error mes-
sages in deployment stage that are not necessarily required
for protocols to function properly. There are many other ex-
amples where an attacker can gain access to a system only
though 1 bit of information leaked per request, e.g., in blind
SQL injection attacks. Thus, we consider it to be crucial to
generally disable distinguishable error messages after devel-
opment phase wherever possible.

6. RELATED WORK
Much research has been done in the area of padding oracle
attacks. Very notable and with the highest relevance for
practice is the work by J. Rizzo and T. Duong. Their pub-
lications include papers on practical plaintext recovery at-
tacks against SSL/TLS such as the BEAST [11] and CRIME
[18] attacks, and a tool capable of conducting such attacks
dubbed Padding Oracle Exploit Tool (POET) [9]. They also
discovered the ASP.NET attack covered in Section 4.3.
AlFardan and Paterson, authors of the attacks against DTLS
presented in Section 4.2, also recently developed another at-
tack on (D)TLS nicknamed Lucky Thirteen after the thir-
teen byte TLS header [4]. In the case of TLS, it is currently
not very efficient as it requires multiple sessions and is very
susceptible to packet transit time differences, but may be en-
hanced by man-in-the-browser attacks like BEAST or other
means. This attack is, again, a timing side channel-based
oracle attack.

7. SUMMARY AND CONCLUSION
In this paper, we reviewed the theory behind padding oracle
attacks and introduced the reader to three practical imple-
mentations. Two of those can be considered classical, as
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they aim to recover plaintext of live communication, target-
ing DTLS. The third attack showed how unauthenticated
encrypted data can be used to manipulate applications and
compromise them completely. Following the attacks, we pro-
vided the reader with an assessment of typical design errors
that lead to such attacks and present approaches at fixing
those. Finally, we pointed out the relevance for end users
based on the prevalence of TLS versions in end user soft-
ware.
Padding oracle attacks are an example of the importance
of correct implementation of cryptography. They demon-
strate how the strongest cryptosystems can be broken in
linear time if an attacker can tamper with intermediate re-
sults in algorithms. This stresses the importance of cipher-
text integrity protection as well. Furthermore, even one bit
of leaked information – in this case whether a message is
correctly padded or not – is sufficient to conduct full plain-
text recovery attacks. Side channels can be exploited to
gather such leaked information remotely. In general, any
cryptographic processing behavior should be perfectly indis-
tinguishable from the outside and completely independent of
input.
As CBC mode is generally prone to such attacks, we en-
courage the use of secure block cipher modes such as Offset
Codebook Mode (OCB), Counter with CBC-MAC (CCM)
mode, or EAX mode. These modes provide integrity and
authentication of ciphertext by default. This way they also
prohibit attackers from injecting arbitrary ciphertext mes-
sages, as authentication would fail.
Currently, users of popular browsers are in theory still at
risk of padding oracle attacks. An example is the recent
Lucky Thirteen Attack. Passwords or other crucial infor-
mation may be recovered from encrypted communication,
but not larger parts of plaintext. While this may be fixed
by browser developers in the foreseeable future by enabling
the most recent TLS version by default, servers are also re-
quired to implement this version correctly. As of now, this
is often not the case. Nevertheless, the most recent pad-
ding oracle attacks are not trivial to conduct and require
the attacker to be en route or in the local network of one
of the two communicating parties. Thus, though generally
feasible, such attacks will not become a widespread threat.
Targeted intrusions and advanced persistent threats (APT)
might apply them however, as APTs usually act locally and
over an extended period of time.
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