
Network Simulation and its Limitations

Sebastian Rampfl
Betreuer: Florian Wohlfart, Daniel Raumer

Seminar Future Internet SS2013
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: rampfl@in.tum.de

ABSTRACT
Computer networks technology is subject to constant change
and innovation. New ideas and concepts regarding the usage
of networks and the Internet demand new network protocols
and technologies. Due to its complexity and need for back-
ward compatibility many challenges arise from developing,
implementing, testing and understanding these technologies.
This is where network simulation comes into play. Many
problems can be solved by using network simulators such as
NS3. It is a powerful tool which enables an in-depth look
on many different aspects of a computer networks technol-
ogy. Nevertheless the extensive functionality of NS3 cannot
overcome some limitations of network simulation regarding
for example credibility or scalability. This paper is offering
a close look on network simulation by describing NS3 and
its core functionality. The description forms a basis for the
following discussion of the problems which are inherent in
network simulation.

Keywords
network simulation, network emulation, NS3, discrete-event
simulation, simulation credibility, model validation

1. INTRODUCTION
Over the last decade network simulation has become increas-
ingly important. One reason for that is the rapid growth of
the Internet and networks in general. Therefore new potent
network simulators are needed to enable the development of
advanced network technologies. NS3 [2] is the result of a
long evolution of network simulation and a new generation
simulator. It offers many features for creating highly adapt-
able simulations to fulfill the needs of the growing number
of network researchers and developers. Even though NS3 is
a very advanced network simulator it fails to overcome some
limitations all network simulators have in common. These
limitations and their consequences will also be focused on
here. In the second chapter network simulation and espe-
cially NS3 is described in detail. The design and structure
of NS3 is explained first and in the following subsection the
NS3 workflow and alternatives to NS3 is addressed. The
third chapter focuses on limitations of network simulation
and in particular of NS3.

2. NETWORK SIMULATION
A network simulation is the implementation of a simula-
tion that attempts to imitate the real world behaviour of
a computer network or certain aspects of a computer net-
work to analyse the captured information and transmitted

data. This information can then be used to draw conclusion
or for example “investigate characteristics of a new routing
protocol” [18] and how a protocol reacts to certain changes.
According to the official NS3 tutorial [4] a simulation con-
sists of a description of a network and how the components
interact, basic control functions for managing the simulation
and some sort of logging functionality to capture data. The
main motivation behind network simulation is to accomplish
more reliability and less maintenance costs regarding the de-
velopment of a new technology.

2.1 Concepts and operational Scenarios
There are many diverse applications for network simulation.
They are based on either one of the following two concepts.
The first one is the pure simulation. This means that every
component and every aspect of the network is simulated and
the packets or messages, that are created within the simu-
lation, are neither transferred to a real network, nor pro-
cessed as real network traffic outside of the simulation. One
example for such a simulation is the implementation and in-
tegration of an experimental network protocol in a network
simulation. Hereby different aspects of such a protocol can

Figure 1: An example for network emulation

be investigated. One of these aspects can be the generation
of anomalies regarding the behaviour of the protocol in order
to find the cause of the anomaly. The simulation designer
can also create circumstances for its technology that might

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

57 doi: 10.2313/NET-2013-08-1_08



not be possible on a real world testbeds. One application of
this may be the creation of a simulation with connections
of higher bandwidths than today’s networks are capable of.
This makes it possible to investigate the behaviour of the
protocol under circumstances which might occur in the fu-
ture. Another application for network simulation is the new
research field of car-to-car networks, which is very costly and
even risky when implementing prototypes and testing them.
The second concept is network emulation. Simulators can
be combined with and attached to real networks to send and
receive traffic of these networks. The Figure 1 visualizes an
idea on how to use network emulation to help defend against
a Distributed-Denial-of-Service attack. A company network
is connected to the Internet and guarded by firewalls. These
firewalls are also connected to a network simulation and
are able to mirror every traffic that passes through them.
This simulation tries to copy the topology, attributes and
behaviour of the company network. In case of a DDoS at-
tack the firewalls could forward the traffic to the simulation
and a load balancing software could apply different load-
balancing strategies by reconfiguring the emulated network.
Furthermore it would use the results of its tests to make a
decision on what load-balancing strategy may be the most
effective against the ongoing attack. This strategy can then
be applied to the real company network in order to repel the
attack. This is obviously are highly complex and elaborate
way of using network emulation, but it demonstrates, that
there are more fields of application for network simulators
than research and development.

Figure 2: The cycle of network simulation [16]

The development of a technology or a product with the help
of network simulation is an iterative process. As drafted in
figure 2 a simulation is modelled on the ideas and concepts
of the simulation designer. The results and measurements
of the simulation are used to alter it, in order to create
different simulation behaviour and results, until the desired
outcome can be accomplished. In comparison to implement-
ing a protocol on a real testbed simulation is in most cases
more flexible and less cost-intensive. Even though creating
a simulation may also become elaborate and costly.

2.2 NS3
NS3 is a discrete-event network simulator. It is open source
and licensed under the GNU GPLv2 license. Since its re-
lease in 2008 it is one of the most important and widely
used network simulation tools. Even though it does not
offer any graphical user interface it has proven to be com-
prehensible and easy to handle. NS3 is intended to be used
with Linux, although it is possible to run it on Windows by
using cygwin or MiniGW. It was developed to replace its
predecessor NS2, which was released in the mid-90s. The

reason for redesigning the simulator was the “limited scal-
ability regarding memory usage and runtime” as described
in [18] . NS2 was designed to reduce compilation time by
using C++ in combination with the scripting language oTcl.
While the simulation components, their behaviour and the
topologies are described by C++ code, oTcl scripts model
the overall simulation behaviour and are used for binding.
Today’s simulation designers are not focused on compilation
time, but on scalability and performance. This led to the
development of NS3. The following subsections describes
the functionality NS3 offers and explains how to work with
it.

2.2.1 Design and Structure
As stated before NS3 is based on the concept of discrete
simulation. This means that a point in simulation time is
assigned to every event, events are initiated and triggered
consecutively and “simulation time moves in discrete jumps
from event to event”[8]. Computing these events in real-
time is an option as long as the system running NS3 offers
enough computing power and the attributes set for the sim-
ulated network do not exceed the laws of physics. Especially
in network emulation this may become necessary when send-
ing or receiving packets from real world hosts. In most cases
however realtime is not an issue and the focus is more on the
order of events and their consequences regarding captured
data.
The NS3 project uses Mercurial [10] for source code manage-
ment. Documentation of this code can be accessed via Doxy-
gen [17], a tool for creating documentation. The Python-
based build system waf [7] is recommended by the NS3 de-
velopment team. Their NS3-tutorial [4] gives all necessary
information for getting started with NS3. This document
is also a step-by-step documentation of a couple of useful
implementation examples for some network simulations.
Creating a NS3 simulation consists of four basic steps. Be-
fore describing them in detail the key abstractions of a NS3
simulation have to be explained. These basic component
types of a network are nodes, applications, net devices, chan-
nels and topology helpers. They are all represented by sets
of C++ classes and their functions and properties, including
examples, are explained in the ns3-tutorial [4]. A node in a
NS3 simulation stands for a communication point, such as
an end system or a router. It is the base for any events and
interaction. Functionality and properties are added to these
nodes. The nodes are interconnected by channels, which
represent the different forms and media of data transmis-
sion. Two of the C++ classes in NS3 that describe chan-
nels are the PointToPointChannel and the WifiChannel. As
the name indicates the PointToPointChannel implements a
simple wired connection from one endpoint to another end-
point. The WifiChannel represents a Wifi connection and
is designed to behave like such a connection. The third key
abstraction are net devices. They are attached to nodes and
channels and form what in real world would be considered
network interfaces. There are different types of net devices
due to the diversity of channels. As in a real network a node
can be attached to multiple net devices. The application is
another key abstraction of every NS3 simulation. It forms
the actual functionality of the nodes and is supposed to be
implemented by the simulation designer. NS3 offers many
different applications for all kinds of network functionality.
Configuration and adaptation of these applications is the key

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

58 doi: 10.2313/NET-2013-08-1_08



to creating the intended network behaviour. The main func-
tionality of the applications is the creation, processing and
transmission of data. The simulation designer can create
and configure nodes, channels, net devices and applications
separately or this can be done by using the extensive and
powerful Helper-API of NS3. These helper classes make it
possible to configure a network simulation with relatively
low effort. Adding a protocol stack and addresses to a set of
nodes are one of the many options the helper classes offer.
They also make it much easier to read and understand the
code of an NS3 simulation. As mentioned before all code
is documented and can be accessed via Doxygen. Having a
closer look on what the NS3 helper have to offer is recom-
mend before starting to program a simulation.

2.2.2 NS3 Workflow
The helper classes are a main aspect of the NS3 workflow. As
mentioned in chapter 2.2.1 there are four main steps when
working with NS3. The first one is the programming of the
actual network with its topology, the used protocols and its
applications. This is done by the abovementioned helpers
and can be illustrated with the following example. In order
to create a group of hosts a NodeContainer class is initi-
ated with the corresponding attributes such as the number
of hosts. Furthermore the InternetStackHelper class is used
to add the network protocol stack to the nodes in order to
enable Internet communication. The first step also includes
setting up all addresses, such as MAC and IP addresses, and
adding and writing the application classes. This is where
most of the logic is implemented. Another important part
is the configuration of the class attributes. NS3 offers an
attribute system, which enables a more convenient way of
dealing with properties, variable values and other simula-
tion related information. As described in [8] namespaces

Figure 3: Tracing Sources and Sinks

and paths can be used to access and edit the values and in-
formation the attributes offer. A list and description of all
attributes can be found in the official attributes manual [3].
The second step is the description of the simulation be-
haviour. A set of methods for initiating and stopping the
simulation, as well as other control methods such as debug
logging needs to be included in the implementation of the
simulation. Tracing has be configured too. As depicted in

Figure 3 the simulator offers trace sources and the simulation
designer implements the trace sinks. These trace sinks spec-
ify what information to capture an what to ignore. Tracing
can be used on different levels of abstraction. The designer
can either use preconfigured sets of trace sinks with less ad-
justment capabilities or specify trace sinks in detail. Too
little or too much information can destroy the benefit of im-
plementing a simulation and therefore much consideration
should be given to tracing in NS3. Filtering information is
one key for success, because insufficient information leads to
wrong conclusions regarding the simulated network.

Figure 4: GUI of NetAnim visualization tool [14]

After programming the simulation in step one and two the
next stage is the execution of the simulation.
The fourth step is the output analysis. This not a part of
NS3, but an important aspect of network simulation. NS3
offers no tools for analyzing, visualizing or processing the
data gained through network simulation. Nevertheless there
are many free tools offering a broad range of features for this
purpose. One of them is NetAnim [14]. It is a tool to an-
imate data gained from tracing. Figure 4 is a screenshot
of the GUI of NetAnim. Another tool for visualization is

Figure 5: Gnuplot graph visualizing simulator out-
put [18]

Gnuplot [19]. With Gnuplot static, highly customizable 2D
and 3D graphs can be created to visualize large amounts of
data. Figure 5 displays a Gnuplot graph. This 3D graph

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

59 doi: 10.2313/NET-2013-08-1_08



visualizes the amount of packet-loss observed in a network
simulator performance comparison carried out in the refer-
ence [18]. Wireshark is also a useful tool in this context. Its
purpose is filtering and displaying transmitted information
by listing packets and its content. All these tools for output
analysis offer a broad range of options and customizability
and this is a necessity in the field of network simulation.
where every output analysis needs to focus on very specific
information and goals.

2.2.3 Models
Models are a key element of NS3. In the NS3 model library
[5] models are defined as “abstract representations of real
world objects, protocols, devices, etc.” [5] or as stated in
[4] “an abstraction of reality” . Models are written in C++
and are aggregated into modules, which are all individual
software libraries. NS3 relies on an active community. It
designs, implements, documents, tests and validates these
models. The models are meant to form the base for simula-
tion designers to create the functionality they have in mind.
The behaviour of these models can be modified by chang-
ing the code, adding new attributes or just reconfiguring
the attributes. The abovementioned helper classes provide
easy access to the models. The NS3 model library [5] lists
a large variety of models. Some of them implement rela-
tively simple functionality such as the Point-to-Point model
and others offer more complex functionality such as local or
global routing protocols. A model needs to be validated in
order to know whether and to what extent the model differs
from the behaviour of real world object it is trying to simu-
late. This topic will be discussed in a chapter 3.1.
NS3 frameworks are groups of models, which focus on model-
ing coherent functionality. A framework is intended to offer
a simulation of an environment, which simulation designers
can build upon. An example for this is the UAN Frame-
work[5]. It offers a variety of underwater network scenarios.
The NS3 predecessor NS2 also relies on the concept of
community-based model development, but NS2 models are
not compatible to NS3. This means that, even though NS2
models also written in C++, integrating them into a NS3
simulation is not possible without extensive adjustments.
With the amount of available models constantly growing
this concept has proven to be quite powerful.

2.3 Alternatives to NS3
There are several network simulators with slightly differ-
ent approaches regarding modeling of simulations, revenue
model and support. One of them is OPNet. In contrast
to NS3 OPNet [12] is a commercial network simulator. It
offers a graphical GUI for the design of the simulation and
the visualization of captured data for output analysis. Like
NS3 OPNet simulations are based on discrete events. One
disadvantage of OPNet is the fact that it is proprietary soft-
ware and therefore limited in terms of customizability. Like
NS3 an open source system can be modified in every aspect
and the OPNet simulator lacks that feature. Another dis-
advantage is the lack of support and collaboration an active
community of an open source project provides. Nevertheless
OPNet has gained a big market share. Two reason for this
are the fact that it has the resources to offer customer sup-
port and validation of their models. Another aspect is the
graphical user interface. Figure 6 displays different levels of
the OPNet GUI. Such a bundle of features increases the un-

derstandability regarding the complexity of a network simu-
lation. These two aspects are very important for companies
when choosing a network simulator for the development of
their network technologies.

Figure 6: Different levels of the OPNET graphical
user interface [12]

A second alternative is SimPy [11], a Python based open
source network simulator. It is licensed under the GNU
Lesser GPL, which means it is free for non-commercial use.
SimPy is a “object-oriented, process-based discrete-event”
simulator [11] and written in Python. It offers a GUI and
even plotting for output data. The developers claim SimPy
to be and very easy to use network simulator. SimPy seems
to be a good alternative for those who want to work with
a GUI when designing a simulation and are not willing to
invest in a proprietary software system.

3. LIMITATIONS OF NS3
As stated and described in chapter two network simulation
is a powerful tool for a range of possible applications. Nev-
ertheless there are limitations to it. The history of net-
work simulation is long and there has been many obstacles
in its evolution. Although constantly increasing comput-
ing power and more powerful programming languages man-
aged to overcome many obstacles, some of them still remain.
The different network simulators use different approaches
on dealing with these limitations and therefore their per-
formance and reliability vary. This chapter focuses on the
limitations of NS3, as well as its consequences.

3.1 Credibility and Validation
Simulation credibility is a challenge not only in the field of
network simulation. All aspects of reality can never be im-
plemented in a simulation and therefore compromises have

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

60 doi: 10.2313/NET-2013-08-1_08



to be made. Such compromise can be a lower level of simula-
tion detail or the absence of certain aspects of the network.
A network simulation can only be useful if the behaviour it
shows and the results it delivers are comparable to a real
network. The simulation designer can never be one-hundred
percent sure if this is the case. Hence a certain level of trust
is need when working with simulation.
The authors of reference [8] name three strategies to increase
trust in a simulation. The first two are the rather simple con-
cepts of regression tests and reuse of code. These methods
are useful in case of fault prevention and quality of code and
therefore have an indirect impact on the increase in credi-
bility. The third strategy is the validation of models, in
this case the NS3 models described in the last main chap-
ter, by using testbeds. The main purpose of a validation is
to proof, that the behaviour of a network simulation model
is comparable to the behaviour of a testbed with the same
configuration as the simulated network. This is needed by
simulation designers who want to use these models to create
new simulations, because they are relying on the correctness
of these models. The Reference [1] is such a validation. The
authors of [1] are comparing the performance and behaviour
of the IEEE 802.11 MAC model of NS3 to a testbed provid-
ing the same functionality. Furthermore they draw conclu-
sion from their results. Therefore they use different scenarios
with different focuses and objectives and then compare their
measurements. They come to the conclusion that the IEEE
802.11 MAC model is a rather good representation of reality,
although the authors observed some“noticeable quantitative
differences” [1] regarding the measurements. In their opin-
ion this is not necessarily the fault of the model but may
also be a flaw in the implementation of the testbed. The
conclusion of the authors demonstrates another problem re-
garding the credibility of network simulation models. Even
if the model someone is trying to validate is flawless in terms
of behaviour and attributes, the testbed with its real world
hardware and implementations is probably not. Thereby the
results of measurements may differ significantly. Simulation
designer always have to consider that they are creating a
simulation to estimate the real world behaviour of the net-
work technology and do not want to create a perfect simula-
tion implementation. In summary it can be said, therefore,
that validation is a potent method to build up credibility, if
the fact, that real world devices not always behave like they
should be, is considered.

3.2 Simulation of upper Layer Functionality
As described in chapter 2.2.3 simulation designers do not
build up all functionality from scratch. They rely heavily
on the usage of models. Every model, even if validated,
are a possible source of wrong behaviour and failure. Val-
idation is an improvement, but it does not guarantees the
absence of malfunction or the presence of all expected fea-
tures. The designer always has to consider what a model
does not implement. It may be written for one context in
which it functions flawlessly, but, if used in a different con-
text, malfunctions completely. The problem of overrating
the capabilities of models is described in [4]. Some mod-
els implement every component of a network protocol, but
this does not mean that every aspect of its behaviour does
not differ from how the protocol would behave in the real
world given the same preconditions and circumstances. The
higher in the protocol stack the designer operates the more

likely the occurrence of these problems becomes. None of
the sources describes any solution to this problem.

3.3 Scalability Limits
One of the benefits of simulating a network is the fact that
adding or removing components, devices and channels is
easy and fast in comparison to a testbed where devices have
to be installed and connected. A simulation is in theory
not limited by the amount of devices or transmitted data.
In reference [6] the topic of network simulation scalability
is covered by “quantitatively [characterizing] the capability
of parallel simulation tools to simulate large-scale networks”.
The authors identify two main limiting factors for scalability
of network simulators: the memory usage and the required
computation time. Every node, channel and the other com-
ponents require memory space and therefore their number is
limited by the available memory. As in a discrete event sim-
ulator, such as NS3, events are processed in a certain time
and the amount of events that can be processed is limited
assuming that the simulation designer defines a maximum
time for the computation of the simulation.
The authors of [6] explain how to improve simulation scala-
bility. Their approach is the usage of parallel computing for
processing events. Although this paper is ten years old and
hence references to NS2, the main concept of parallel com-
putation of network simulations is applicable to NS3. The
NS3 model library [5] describes how to integrate the Message
Passing Interface [9] in a NS3 simulation. MPI is a standard
which formulates rules for the parallelization of programs re-
garding the exchange of information. Its purpose is to enable
high performance computing on large clusters of processors.
In addition to parallelization the use of distributed network
simulation can improve simulation performance and there-
fore alleviate scalability problems. This concept describes
the usage of multiple network simulators deployed on geo-
graphically distributed machines. In contrast to the parallel
execution of one network simulation on a high performance
computation center a distributed simulation needs to focus
more on reducing the amount of information sent between
the distributed network simulators in order to increase sim-
ulation performance. The authors of [15] describe two dif-
ferent methods to split up the functionality of simulated
devices.

Figure 7: Cross-protocol stack method [15]

The first one is the cross-protocol stack method. The main
concept behind it is the computation of complete devices
or groups of devices of the simulated network on only one
network simulator. This means that the network stack of

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

61 doi: 10.2313/NET-2013-08-1_08



one simulated device is located at only one network sim-
ulator. Therefore only messages sent from devices within
the simulation are exchanged between the distributed net-
work simulators. Figure 7 visualizes this concept. Contrary
to the cross-protocol stack method the split-protocol stack
method distributes the different layers of the protocol stack
to different network simulators. In this case the informa-
tion exchanged between the network simulators are not the
messages sent between the simulated devices but the infor-
mation passed through the different layers of the protocol
stack. One simple example for this is shown in figure 8.
The effect of both methods on the amount of message sent
between the distributed network simulators highly depends
on the topology and the functionality implemented in the
simulation [15].

Figure 8: Split-protocol stack method [15]

Reference [13] is a performance analysis of a NS3 network
simulation using the abovementioned MPI model to estab-
lish distributed and parallel computation. Their results lead
the authors to the conclusion that “nearly optimal linear
speedup is achievable”[13]. Parallelization and the distri-
bution of network simulation are effective approaches for in-
creasing scalability, but fail to overcome the following aspect
of scalability. Often simulation designers want to test their
network technology in an Internet-like environment. This is
barely possible due to its size and complexity. As claimed
in [6] the reason for this is the fact that the Internet is not
understood very well and therefore hard to simulate. This
is not exclusively a scalability problem but it is a limitation
to network simulation.

4. CONCLUSION
With being easily accessible and at the same time highly cus-
tomizable NS3 has proven to be a potent network simulator.
The combination of helper classes and the option to config-
ure the classes individually turned out to be a very useful
concept. The community-based model concept of NS3 is a
strong point and a disadvantage at the same time. The fact
that NS3 is a non-commercial software results in a larger and
therefore more active community, which constantly helps to
improve, extend and upgrade NS3. On the other hand this
makes it impossible to guarantee reliable customer support
and bug fixes. This gap is successfully filled by competitors
such as OPNet.
There are of course some limitations to network simulation
that even NS3 cannot overcome. One of them is credibility.
This will always be an issue, because it is clearly impossible
to guarantee flawless real world behaviour of a simulation.
One approach to partially solve this problem could be a far
more detailed formalization of the validation process.
The limitation regarding upper layer functionality is in com-
parison to validation rather simple. It is more of a limitation

of the human mind in terms of the ability to deal with high
complexity results than a limitation for network simulation.
Some measures regarding structured planning of simulations
and a more formalized documentation of models may help
reduce this problem
Scalability also remains to be an obstacle. However in con-
trast to credibility this problem is alleviated to some degree.
Real world networks do not grow as fast as the networks that
can be simulated. The Internet may be highly complex and
not well understood, but progress is being made and there-
fore scalability may become less of a limitation than it used
to be.

5. REFERENCES
[1] Nicola Baldo, Manuel Requena, Jose Nunez, Marc

Portoles, Jaume Nin, Paolo Dini, and Josep Mangues.
Validation of the ns-3 ieee 802.11 model using the
extreme testbed. In Proceedings of SIMUTools
Conference, 2010, March 2010.

[2] NS-3 development team. Ns-3 network simulator.
http://www.nsnam.org/.

[3] NS-3 development team. Ns-3 network simulator, ns-3
attributes. http://www.nsnam.org/docs/release/3.
10/manual/html/attributes.html.

[4] NS-3 development team. Ns-3 network simulator, ns-3
tutorial, Decenmber 2012. http://www.nsnam.org/
docs/release/3.16/tutorial/ns-3-tutorial.pdf.

[5] NS-3 development team. Ns-3 network simulator, ns-3
model library, March 2013. http://www.nsnam.org/
docs/models/ns-3-model-library.pdf.

[6] Richard M. Fujimoto, Kalyan Perumalla, Alfred Park,
Hao Wu, Mostafa H. Ammar, and George F. Riley.
Large-scale network simulation: how big? how fast. In
In Symposium on Modeling, Analysis and Simulation
of Computer Telecommunication Systems
(MASCOTS), 2003.

[7] Google. Waf build tool.
https://code.google.com/p/waf/.

[8] Tom Henderson, George Riley, Felipe Perrone, and
Mathieu Lacage. ns-3 tutorial. http://www.nsnam.
org/tutorials/geni-tutorial-part1.pdf.

[9] Argonne National Laboratory. Mpi message passing
interface.
http://www.mcs.anl.gov/research/projects/mpi/.

[10] Matt Mackall. Mercurial source code management
tool. http://mercurial.selenic.com/.

[11] Klaus Mueller and Tony Vignaux. Simpy network
simulator. http://simpy.sourceforge.net/.

[12] Inc. OPNET Technologies. Opnet network simulator.
http://www.opnet.com/solutions/network_rd/

modeler.html.

[13] Joshua Pelkey and George Riley. Distributed
simulation with mpi in ns-3. In Proceedings of the 4th
International ICST Conference on Simulation Tools
and Techniques, SIMUTools ’11, pages 410–414, ICST,
Brussels, Belgium, Belgium, 2011. ICST (Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering).

[14] George F Riley and John Abraham. Netanim.
http://www.nsnam.org/wiki/index.php/NetAnim.

[15] George F. Riley, Mostafa H. Ammar, Richard M.
Fujimoto, Alfred Park, Kalyan Perumalla, and

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

62 doi: 10.2313/NET-2013-08-1_08



Donghua Xu. A federated approach to distributed
network simulation. ACM Trans. Model. Comput.
Simul., 14(2):116–148, April 2004.

[16] I. Stojmenovic. Simulations in wireless sensor and ad
hoc networks: matching and advancing models,
metrics, and solutions. Communications Magazine,
IEEE, 46(12):102–107, December.

[17] Dimitri van Heesch. Doxygen tool for creation of
documentation.
http://www.stack.nl/~dimitri/doxygen/.

[18] Elias Weingärtner, Hendrik vom Lehn, and Klaus
Wehrle. A performance comparison of recent network
simulators. In Proceedings of the IEEE International
Conference on Communications 2009 (ICC 2009),
Dresden, Germany, 2009. IEEE.

[19] Thomas Williams and Colin Kelley. Gnuplot.
http://www.gnuplot.info/.

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

63 doi: 10.2313/NET-2013-08-1_08


