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ABSTRACT
Anonymization of published microdata has become a very im-
portant topic nowadays. The major difficulty is to publish
data of individuals in a manner that the released table both
provides enough information to the public and prevents dis-
closure of sensitive information. Therefore, several authors
proposed definitions of privacy to get anonymous microdata.
One definition is called k-Anonymity and states that every
individual in one generalized block is indistinguishable from
at least k - 1 other individuals. `-Diversity uses a stronger
privacy definition and claims that every generalized block has
to contain at least ` different sensitive values. Another defi-
nition is called t-Closeness. It demands that the distribution
of one sensitive value of a generalized block is close to its
distribution in the entire table.
This paper mainly deals with the principle and notion of `-
Diversity. Therefore, two methods called Homogeneity and
Background-Knowledge Attack are discussed to break the pri-
vacy constraints of k-Anonymity. Then a model to reason
about privacy in microdata, namely Bayes-Optimal Privacy,
is introduced. Based on k-Anonymity and Bayes-Optimal
Privacy the principle and several instantiations of `-Diver-
sity are discussed. At the end `-Diversity is applied to a real
database gathered from several Android devices.
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1. INTRODUCTION
Many companies collect a lot of personal data of their cos-
tumers, clients or patients in huge tables. These tables often
contain sensitive information about individuals like medi-
cations and diseases, income or customer data. In many
cases it is useful to provide this in form of microdata (non-
aggregated information per individual) to certain industries
and organizations for research or analysis reasons. For that
purpose companies often use suppression of identifiers like
name and surname to provide a kind of anonymization of
these tables. As Sweeney [10] shows in her paper, adver-
saries can disclose sensitive information of people with the
aid of combining so called quasi-identifiers [10]. These are
attributes like zip code, age or gender that are auxiliary for
an adversary in combination with his background knowledge
to reveal sensitive information of an individual. If a certain
quasi-identifier (like zip code) exists both in the published
microdata (containing sensitive information of one individ-
ual) and in an external database (containing the individual’s
name), the two datasets can be combined to get the name

Non-Sensitive Sensitive
Age Zip Code Medication

1 32 75235 Tamoxifen
2 49 75392 Tamoxifen
3 67 75278 Captopril
4 70 75310 Synthroid
5 54 75298 Pepcid
6 72 75243 Synthroid
7 56 75387 Tamoxifen
8 76 75355 Pepcid
9 40 75221 Erythropoietin
10 61 75391 Pepcid
11 63 75215 Synthroid
12 34 75308 Tamoxifen

Table 1: non-anonymized table

and the sensitive information of one individual to the corre-
sponding zip code. This method is called Linking Attack
[10]. For example, connecting medical data with the records
of voter registration of Massachusetts led to a disclosure of
medical information about the governor of Massachusetts
[8]. Hence, it is inevitable to hide sensitive information from
adversaries, so that certain individuals cannot be uniquely
identified in published tables.

Sweeney [10] introduced k-Anonymity, a special definition
of privacy, to enhance the anonymization of microdata. Here
a published table is called k-anonymous, if every data tuple
is indistinguishable from at least k - 1 other data tuples
in relation to every set of quasi-identifiers. This constraint
guarantees that individuals cannot be uniquely identified by
using the earlier mentioned Linking Attacks.

Example 1: Table 1 is a non-anonymized table from an
imaginary hospital, collecting sensitive medication data of
its patients. Identifier attributes like name and surname are
removed and only age and zip code are considered to be non-
sensitive and published. If an adversary knows the exact
age and zip code of the individual, it is highly probable that
this individual can be uniquely identified and medication is
revealed.

The next chapter deals with the disadvantages of k-Anony-
mity and shows two attacks to easily reveal sensitive in-
formation of such a k-anonymous table. The third chap-
ter introduces an ideal definition of privacy, called Bayes-
Optimal Privacy on which `-Diversity is based on. Then
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Quasi-Identifier Sensitive
Age Zip Code Medication

1 <60 752** Tamoxifen
9 <60 752** Erythropoietin
5 <60 752** Pepcid

3 >=60 752** Captopril
6 >=60 752** Synthroid
11 >=60 752** Synthroid

2 <60 753** Tamoxifen
12 <60 753** Tamoxifen
7 <60 753** Tamoxifen

4 >=60 753** Synthroid
8 >=60 753** Pepcid
10 >=60 753** Pepcid

Table 2: 3-anonymous table

`-Diversity is introduced and its advantages and several in-
stantiations are explained. At the end anonymization with
`-Diversity is applied to a huge dataset containing pieces
of information (like device and model name, GPS location
data) of several Android devices.

2. ATTACKS ON K-ANONYMITY
As mentioned in the previous section, k-Anonymity is one
possible method to protect against Linking Attacks. But the
definition of privacy in k-Anonymity is vulnerable. It can be
easily shown that the condition of k indistinguishable records
per quasi-identifier group is not sufficient to hide sensitive
information from adversaries. In the following two simple
attacks on k-anonymous datasets are discussed which easily
reveal sensitive information.

Example 2. Table 2 shows a 3-anonymous table. Here
three records of each group are put into a new block contain-
ing the same quasi-identifiers ’Age’ and ’Zip Code’. These
quasi-identifiers are generalized to new values, where age is
divided into two intervals ’>=60’ and ’<60’, and the first
same three digits of the zip code are published, whereas the
last two significant digits are hidden by ’*’. It can be seen
that every record is indistinguishable from the other two data
tuples in its group. Therefore, this table satisfies the defini-
tion of 3-Anomymity and prevents Linking Attacks on this
dataset.

2.1 Homogeneity Attack
One attack is called Homogeneity Attack. Let us assume
that Eve is the adversary. Her neighbor and good friend
Alice was taken to hospital two weeks ago and she’s anxious
about what kind of disease she’s suffering from. She dis-
covers the generalized table 2 on the internet and looks at
the quasi-identifiers of the table. As Alice lives nearby her,
she knows the exact zip code ’75392’ of her town. Further-
more she remembers that Alice is younger than 60 years.
Thus, she comes to the conclusion that her medication lies
in records 2,7 and 12. Since there’s only one sensitive value
’Tamoxifen’ within this group, it is quite likely that Alice
has breast cancer, because this medication is often used to
treat this kind of disease. The example shows that the lack
of diversity of sensitive attributes in a generalized group can
lead to an unintentional disclosure. So, the aim of privacy
is not fulfilled in this case.

2.2 Background-Knowledge Attack
Often times adversaries have certain background knowledge
that can be to used to successfully eliminate possible val-
ues for sensitive attributes of a particular individual with
very high probability. Assume Eve has a friend called Mario
who was also taken to the same hospital as Alice. Hence,
Mario’s medication must be listed in the same table 2. As
she knows that Mario is older than 60 years and comes from
the neighbor town with zip code ’75355’, his sensitive value
must be contained in record 4, 8 and 10. So, Mario has to
take either ’Synthroid’ or ’Pepcid’. Because Eve knows that
Mario eats fish almost every day, it is very unlikely that he
suffers from a certain thyroid disease, and has to take the
drug ’Synthroid’. Thus, Mario takes the medication ’Pep-
cid’, which implies that he must have a certain stomach dis-
ease. Regarding this example, k-Anonymity does not take
into account the background-knowledge of adversaries. Eve
needs just one additional information to eliminate one sen-
sitive value and to reveal the medication of his friend Mario.
Therefore, another formalization of privacy is needed to avoid
both attacks and reach ”optimal privacy”.

3. BAYES-OPTIMAL PRIVACY
Before describing the principle of `-Diversity, the idea of
ideal privacy has to be discussed first on which it is based
on. This idea is called Bayes-Optimal Privacy (intro-
duced in [6]) that uses conditional probabilities to model
the background knowledge of an adversary and to reason
about privacy in a table.

3.1 Definitions
Several notations are mentioned in the following. Let the set
T = {t1, t2, ..., tn} be a simple non-anonymized table like ta-
ble 1. T is assumed to be a partial quantity of some larger
population Ω, where ti denotes the ith row of T, and its
columns are termed attributes Ai as a subset of all possible
attributes A = {A1, A2, ..., Am}. Every attribute Ai itself
has several varying values {v1, v2, ..., vn}. Then ti[Aj ] = vi
is the value vi of attribute Aj of the ith individual.

Example 3: Table 1 with T = {t1, t2, ..., t12} is a fictional
subset of the population of the United States Ω. The set
of attributes A is {′Age′,′ ZipCode′,′Medication′}. For ex-
ample, the value of t1[′Age′] is ’32’ and t2[′Medication′] =
’Tamoxifen’.

Furthermore the attributes are subdivided into non-sensitive
and sensitive attributes. Every attribute, whose values have
to be hidden from any adversary, is called sensitive at-
tribute. Then S denotes the set of all possible sensitive
attributes in a table T. Every attribute that is not called
sensitive is termed non-sensitive attribute. In table 2
for example the attributes {′Age′,′ ZipCode′} are assumed
to be non-sensitive. Attribute ’Medication’ has to be pro-
tected from revealing by some adversaries and thus consid-
ered a sensitive attribute. The set of non-sensitive attributes
are further refined in a subset Q labelled as a set of ’quasi-
identifier’, defined in section 2.1 in [6]:

Definition (Quasi-identifier) A set Q of non-sensitive at-
tributes {Q1, ..., Qw} of a table is called a quasi-identifier
if these attributes can be combined with external data to
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uniquely identify at least one individual in the general pop-
ulation Ω.

As mentioned in the introduction, publishing table 1 induces
the danger of disclosure of sensitive information of one indi-
vidual by certain adversaries. Therefore, table T has to be
anonymized. One possible method is called generalization,
where every value of a certain quasi-identifier is replaced by
a more general value (i.e. the value of attribute ’Age’ of all
persons that are younger than 50 years can be generalized
to ’< 50’). Hence, T →∗ T ∗ denotes the generalization of
table T to T ∗, and t→∗ t∗ means data tuple t is generalized
into the data tuple t∗. An anonymized table is denoted T ∗

= {t∗1, t∗2, ..., t∗n} consisting of attribute values q∗, generalized
from the set of quasi-identifiers Q.
With all these defnitions the probability of belief of one ad-
versary is modeled in the next chapter.

3.2 Probability of Belief
Every adversary has a different level of background knowl-
edge that can be used to reveal sensitive information. Be-
cause one company is not able to possess all different levels
of knowledge, it is necessary to describe such an adversary’s
knowledge mathematically.
It is assumed that every adversary has the maximum possi-
ble knowledge. Considering the Example 1, where Eve wants
to find the sensitive value corresponding to Alice, she knows
the complete joint frequency distribution f of sensitive at-
tribute S, conditioned on the non-sensitive quasi-identifiers
Q (for example, she knows the frequency of heart diseases
of people being older than 60 years in the United States).
Furthermore she knows all quasi-identifier values q of Alice.
So, she knows that tAlice[Q] = q, and wants to discover her
sensitive value tAlice[S] = s. Her belief of Alice’s sensitive
value being s, given that q is her non-sensitive value, is clas-
sified in [6] into prior-belief and posterior belief. The
prior-belief is just Eve’s background knowledge

α(q,s) = Pf (t[S] = S|t[Q] = q)

which denotes the probability that Alice’s sensitive value
must be s on condition that her non-sensitive value is q.
Now Eve encounters the anonymized table T* published
from the hospital. After analyzing the records of the table,
her belief changes to a posterior-belief:

β(q,s,T∗) = Pf (t[S] = s|t[Q] = q ∧ ∃t∗ ∈ T ∗, t→∗ t∗)

This posterior-belief can be put into a mathematical for-
mula, whose derivation and proof can be found in theorem
3.1 in [6] (technical report):

Theorem 3.2 Let q be a value of the non-sensitive attribute
Q in the base table T; let q∗ be the generalized value of q
in the published table T ∗; let s be a possible value of the
sensitive attribute; let n(q∗,s′) be the number of data tuples
t∗ ∈ T ∗ where t∗[Q] = q∗ and t∗[S] = s′ and let f(s′|q∗) be
the conditional probability of the sensitive value conditioned
on the fact that the non-sensitive attribute Q can be gener-
alized to q∗. Then the following relationship holds:

β(q,s,T∗) =
n(q∗,s)

f(s|q)
f(s|q∗)∑

s′∈S n(q∗,s′)
f(s′|q)
f(s′|q∗)

Theorem 3.2 takes into account both the counts of one sen-
sitive value proportional to all sensitive values in a q∗-block
and the frequency distribution f of one sensitive value com-
pared to all possible sensitive values in a certain population.
It is also useful to measure the quality of the privacy.

3.3 Privacy Principle
When talking about privacy there are two different possibil-
ities of revealing sensitive information.
Positive disclosure denotes that an adversary can cor-
rectly identify the sensitive value of one individual with
very high probability. Consider the homogeneity attack in
section 2.1 where Eve could be sure that Alice has breast
cancer. Hence, after observing the published table, her
posterior-belief has become very high (here β(q,s,T∗) → 1).
In contrast to that, the process of correctly eliminating pos-
sible sensitive values for one individual with very high prob-
ability is called negative disclosure. This takes place, if
the posterior belief becomes very small (or β(q,s,T∗) → 0).
Regarding section 2.2 again Eve could successfully eliminate
the possible sensitive value ’Thyroid’ using her very good
background-knowledge.
The ideal principle of privacy is that prior and posterior-
belief of one adversary should not differ very much from
each other after observing the published table. For exam-
ple, Eve’s prior belief that Alice has the sensitive value s, if
her non-sensitive value is q, is assumed to be about 50 per-
cent. After considering the generalized table T ∗ it raises to
nearly 100 percent, because there’s only one possible candi-
date. Then positive disclosure takes place and the sensitive
information could be correctly revealed.

One possible measurement of privacy in a certain table is
the difference between prior and posterior belief. This can
be modeled by using and defining boundaries for each of the
two beliefs. Here, the privacy of one table is violated, if the
prior belief is below its upper boundary and the posterior
belief exceeds its lower boundary, which implies that the dif-
ference of the two beliefs is too high and the adversary can
infer positive or negative disclosure (explained in section 3.2
in [6]).

Although Bayes-Optimal Privacy is a good definition to gain
optimal privacy, it has some disadvantages to overcome.
First of all it is very likely that the company which pub-
lishes a table does not know the complete distribution of all
sensitive and non-sensitive attributes over the general pop-
ulation Ω. Then it is even more unlikely that the publisher
knows the adversary’s level of knowledge. Third there are
instances of knowledge that even cannot be described math-
ematically (regarding section 2.2), when Mario told Eve that
he eats fish almost every day. And there are always more
then one adversary. Each of them has a different level of
background-knowledge, which a publisher cannot handle as
well.

4. L-DIVERSITY
In order to eliminate the above-mentionend disadvantages of
Bayes-Optimal Privacy, the principle and basic notion of `-
Diversity is described. Then, two definitions of this principle
for realization in practice are introduced and at last the
advantages and disadvantages of `-Diversity are discussed.
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Non-Sensitive Sensitive
Age Zip Code Medication

1 <60 75*** Tamoxifen
7 <60 75*** Tamoxifen
5 <60 75*** Pepcid
2 <60 75*** Tamoxifen
12 <60 75*** Tamoxifen
9 <60 75*** Erythropoietin

3 >=60 75*** Captopril
6 >=60 75*** Synthroid
11 >=60 75*** Synthroid
4 >=60 75*** Synthroid
8 >=60 75*** Pepcid
10 >=60 75*** Pepcid

Table 3: 3-diverse table

4.1 Principle of l-Diversity
The principle of `-Diversity is based on the theorem 3.2 for
posterior-belief. For that reason, observe table 2 marked by
T ∗. This table is subdivided into several q∗-blocks, whose
non-sensitive attributes q are generalized to q∗. Regarding
the dataset of T ∗, data tuples 1, 2 and 6 are one q∗-block,
where attributes ’Age’ and ’Zip Code’ are generalized to
’<60’ and ’75***’.
In order to infer positive disclosure the number of occur-
rences of the sensitive value s must be much higher than
the counts of all other sensitive values. Or the frequency
distribution of all other sensitive values not including s in a
certain population is very small. Thus, the theorem 3.2 can
be rearranged as follows:

∃s, ∀s′ 6= s : n(q∗,s′)
f(s′|q)
f(s′|q∗) � n(q∗,s)

f(s|q)
f(s|q∗)

This means that the probability of every other sensitive
value s′ is much lower than the likelihood of Alice’s proba-
ble sensitive value candidate s. Thus, it is very unlikely that
Alice’s sensitive value must be s′. So, Eve can successfully
determine the correct sensitive value s of Alice with high
probability. This event takes place in two cases: lack of di-
versity and very good background knowledge.
Lack of diversity occurs when there’s nearly one sensitive
value s in this block. This means the number n(q∗,s) of data
tuples for s in the q∗-block is much higher than the counts
n(q∗,s′) of all the block’s other sensitive values s′.
With Strong Background Knowledge an adversary can
often eliminate possible sensitive value of one individual with
very high probability by knowing the frequency distribution
f(s′|q) of sensitive values s′ in a certain population Ω. For
example, the frequency distribution f of ’breast cancer’ for
men is low in general, as it is very improbable that men have
this disease.
In order to avoid these two privacy-destroying cases, every
q∗-block should have at least ` different sensitive attributes,
so that an adversary must have at least `−1 different amount
of information to eliminate the other possible values with
high probability. Thus, the following principle is used to de-
fine `-Diversity in [6]:

`-Diversity Principle A q∗-block is `-diverse if contains
at least ` ”well-represented” values for the sensitive attribute
S. A table is `-diverse if every q∗-block is `-diverse.

Example 4: Consider the table 3. Here, the records are
grouped into two q∗-blocks whose non-sensitive attributes are
generalized. Every block contains 6 indistinguishable indi-
viduals and three different values for the sensitive attribute
’Medication’ (e.g. the first q∗-block contains ’Tamoxifen’,
’Pepcid’ and ’Erythropoietin’). Such a table is called 3-
diverse, as every adversary who wants to reveal sensitive
information of one individual needs to have at least `−1 = 2
pieces of information to eliminate the ”wrong” sensitive val-
ues and to identify the ”correct” one. Regarding the example
of the background-knowledge attack (section 2.2), Eve can
successfully determine that Marco cannot take the medica-
tion ’Synthroid’, but she still has to find out if Marco takes
’Captopril’ or ’Pepcid’. Hence, she needs one additional in-
formation to gain a positive disclosure.

This example shows that `-Diversity takes into account every
level of background-knowledge of any adversary. Therefore,
the publisher can control the amount of protection that is
given by an `-diverse table only by modifying the parame-
ter ` to the desired level without knowing the background-
knowledge level of all adversaries.
Several instantiations are introduced in the next section that
can be used to define the ”well-representation” of sensitive
attributes in a practical manner.

4.2 Realization of l-Diversity
One realization of `-Diversity is called Entropy `-Diversity.
It uses the definition of entropy in information theory to
quantify the uncertainty of possible sensitive values [7]. The
following condition states that every q∗-block has not less
than ` different and nearly ”well-represented” sensitive val-
ues:

Entropy `-Diversity: [6]
A table is Entropy `-diverse if for every q∗-block

H` = −
∑

s∈S
p(q∗,s)log(p(q∗,s)) ≥ log(`)

where p(q∗,s) =
n(q∗,s)∑

s′∈S n(q∗,s′)
is the fraction of tuples in the

q∗-block with sensitive attribute value equal to s.

Using the notion of entropy, the higher the value of H` is,
the more pieces of information are needed to infer positive
disclosure. For example, consider the case that there’s only
one possible sensitive value s in a certain q∗-block. Then
p(q∗,s) = 1 and p(q∗,s′) = 0, ∀s′ ∈ S, s′ 6= s. This yields
H` = 0, which means there’s no information needed to de-
termine the possible sensitive value, as there is only one
given in the q∗-block. Because the maximal value of en-
tropy H` = log(`) is only achieved if p(q∗,s′) is equal for at
least ` existing sensitive values s′ in the block, the entropy
of the whole table must be greater or equal log(`).

Example 5: Applying this definition to table 3, the two en-
tropies of the two blocks are calculated. The first block yields
an entropy H1 = −( 4

6
· log( 4

6
) + 2 · 1

6
· log( 1

6
)) ≈ 0.378, and

the second block results in H2 = −( 3
6
· log( 3

6
) + 2

6
· log( 2

6
) +

1
6
· log( 1

6
)) ≈ 0.439. In order to fulfill the condition every en-

tropy of each q∗-block has to be at least log(`). So, the mini-
mum entropy H1 of the table has to be chosen to quantify `.
In this case H1 ≥ log(`)⇔ 10H1 ≈ 2.387 = `. Thus, table 3

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

52 doi: 10.2313/NET-2013-08-1_07



q∗ s1
q∗ s3
q∗ s2
q∗ s1
q∗ s1
q∗ s3
q∗ s4

=⇒

q∗ s1
q∗ s2
q∗ s1
q∗ s1
q∗ s4

=⇒
q∗ s1
q∗ s1
q∗ s1
q∗ s4

Table 4: q∗-block of a fictional anonymization table

is at least 2.3-diverse, which states that every block contains
at least two different ”well-represented” sensitive values.

It can be easily seen that Entropy `-Diversity is very re-
strictive and hard to achieve. Consider the first q∗-block of
a fictional table with the same sensitive attribute as table 3.
Is it assumed that the medication value ’none’ is listed as
well, which indicates that the patient is good in health again.
Furthermore let the number of records ’none’ be much more
higher than the counts of all other sensitive values. Then
Entropy `-Diversity cannot be satisfied by such a table, as
the probability of value ’none’ is too high compared to the
likelihood of all other sensitive values.
Because most of the patients are already healthy again, the
hospital does not need to bother about positive disclosure of
the medication value ’none’, as this information cannot be
misused by an adversary.
Therefore, another definition definition is used to resolve this
problem, which is called Recursive (c,`)-Diversity. Here one
q∗-block of an anonymized table contains {s1, s2, ..., sm} ∈ S
possible sensitive values. Their frequencies n(q∗,si) (number
of data tuples within the block) are put into the set of the
overall frequencies {n1, n2, ..., nm} sorted in descending or-
der. So n1 means the frequency of the most frequent sen-
sitive value in the q∗-block, n2 the second most frequent
value and so on. It is assumed that the adversary needs to
eliminate `− 1 different sensitive values to gain positive dis-
closure (with some sensitive values being allowed to reveal
or ` ≤ m − 1). So, in order to prevent positive disclosure,
the most frequent sensitive value should not exist too often
in a table. This is satisfied, if the following definition (in-
troduced in [6]) holds:

Recursive (c, `)-Diversity: In a given q∗-block, let ni

denote the number of times the ith most frequent sensitive
value appears in that q∗-block. Given a constant c, the q∗-
block satisfies Recursive (c, `)-Diversity if n1 < c(n`+n`+1+
...+nm). A table T ∗ satisfies Recursive (c, `)-diversity if ev-
ery q∗-block satisfies Recursive (c, `)-Diversity. 1-Diversity
is assumed to be always fulfilled.

The constant c is defined manually by the user and can
be used to determine, how often the most frequent sensi-
tive value may occur in relation to the total amount of the
other sensitive attribute values. Recursive in this definition
states that, if any sensitive value s′ within a (c, `)-diverse
q∗-block is eliminated by an adversary, the remaining block
(not regarding the tuples containing s′) has to be at least
(c, `− 1)-diverse.

Example 6: Table 4 shows one q∗-block of a fictional ta-
ble. Here the set of all possible sensitive values S is {s1,
s2, s3, s4}, where every non-sensitive attribute is general-

ized to q∗. Then the set of all the sensitive value frequencies
is {n1 = 3, n2 = 2, n3 = 1, n4 = 1}. It is assumed that
the adversary has to eliminate at least ` = 3 − 1 = 2 dif-
ferent sensitive values to infer positive disclosure. Applying
the previous definition, let the constant c be 2. Then this
block is (2,3)-diverse, if n1 < c(n3 +n4). It can be seen that
this equation holds for c = 2, as 3 < 2 · 2 = 4. Now the
second most frequent sensitive value s3 is eliminated by the
adversary. Then the resulting block has to be (2,2)-diverse,
or more respectively the equation n1 < 2(n2 + n3) has to be
satisfied. Regarding the table in the middle of table 4, this
is also fulfilled, as n1 = 3 < 2 · (1 + 1) = 4. It can be easily
recalculated that (2,2)-diversity holds, if any other sensitive
value is eliminated first instead of s3. After removing a sec-
ond sensitive value (compare the right of table 4), it has to be
examined, if this remaining block is (2,1)-diversity. As this
is always satisfied by definition, this q∗-block can be consid-
ered Recursive (2,3)-diverse.

In some cases a company wants to release not only one but
multiple sensitive attributes when publishing an anonymized
table which provides a certain level of `-Diversity. Like [6]
shows, if multiple sensitive attributes are treated and tested
separately against `-Diversity, it is not guaranteed that this
table satisfies `-Diversity for all sensitive attributes as well.
Using the other (non-generalized) sensitive attributes the
privacy definition of one single sensitive attribute can be
broken and Linking Attacks are possible. Therefore, for ev-
ery sensitive attribute all other sensitive attributes have to
be treated as quasi-identifiers, as well.

4.3 Discussion
The principle of `-Diversity avoids the disadvantages that
arise with Bayes-Optimal Privacy. When using the defini-
tion of `-Diversity, a publisher does not require knowledge of
the full distribution of sensitive and non-sensitive attributes
in any population. Furthermore, the publisher does not have
to know the level of any adversary’s knowledge, as he can
decide with the parameter ` how many pieces of knowledge
the adversary needs to gain full positive disclosure.
But Li et al. [5] show that the principle of `-Diversity is not
sufficient to avoid sensitive attribute disclosure. He men-
tions two attacks that can break the privacy definition of
this principle and reveal sensitive information of individu-
als. Imagine that a sensitive value in the `-diverse table is
extremely frequent, whereas the sensitive value is very un-
likely in the whole population. Then Skewness Attack is
possible and implies that it is very likely for a certain person
which is associated to this table to have this sensitive value,
because most of the individuals have this same and seldom
sensitive value, as well. Another attack is called Similarity
Attack. Consider a q∗-block that contains ` diverse possible
sensitive values that all depict a special kind of heart dis-
ease. Then the adversary can infer positive disclosure if he
can assign an individual to this q∗-block. In order to avoid
such attacks Li [5] introduces the principle of t-Closeness,
where the distribution of a sensitive value in any q∗-block
should be close to the distribution of the value in the entire
table.
After all this theory and privacy definitions, it is interesting
to know, how the principle of `-Diversity can be applied to
real existent databases.
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device model version network latitude
leo HTC HD2 10 Vodafone.de 49.265111

lgp970 LG-P970 8 movistar 40.475134
crespo Nexus S 10 Swisscom 47.430045
vision HTC Vision 8 vodafone UK 50.872790
vision HTC Vision 8 vodafone UK 50.872688

Table 5: Excerpt from the dataset of the Android geodata

5. ANONYMIZATION IN PRACTICE
Several algorithms (like [9], [4]) have been introduced so far
to realize k-Anonymity, `-Diversity or t-Closeness [5] in an
efficient manner. Hence, it is useful to develop toolboxes
that provide these algorithms, and that can be applied to
any arbitrary published dataset. Therefore, two universities
developed such toolboxes which are briefly introduced in the
following section.

5.1 Anonymization Toolboxes
One toolbox is called Cornell Anonymization Toolkit
(CAT) [12] and was developed by the Department of Sci-
ence at Cornell University. It is a Windows-based software
containing an interactive GUI for visualization and analyz-
ing of (anonymous) databases. For anonymization it uses the
definitions of Recursive (c, `)-Diversity and t-Closeness [5].
Another toolbox was created by the University of Dallas
(UTD) and is called UTD Anonymization Toolbox [1].
It is a platform-independent software for anonymization of
random datasets. Here nearly every privacy method (in-
cluding k-Anonymity, `-Diversity and t-Closeness) is imple-
mented using algorithms like Datafly [9] and Incognito [5].
Both tools require databases in form of text files as input and
certain hierarchy trees like value generalization trees ([10])
of non-sensitive attributes or quasi-identifiers to apply the
implemented algorithms.

5.2 Android Geodata
In the context of the Bachelor Thesis of Wagner [11], several
kinds of data from Android-based devices (like smart-phones
and tablets) is gathered via an Android application in or-
der to analyze the user’s behavior and the general network
structure. Information like name of model, name of device,
Android sdk version, network provider and exact GPS lo-
cations (in latitude and longitude angles) are collected and
stored in json-files each device with different datasets per
timestamp. Every device gets its own unique ’device id’
within the whole dataset. The entire dataset has overall
166060 records composed of 989 distinct devices with aver-
aged 169 different datasets per device. The dataset itself
is transformed into a sqlite database consisting of the at-
tributes {’device id’, ’model’, ’device’, ’version’, ’network’,
’longitude’, ’latitude’}.
Table 5 shows an excerpt from the sqlite database generated
from the Android datasets. Imagine that Eve is an adver-
sary and has one friend Tom that takes part in Wagner’s
study. It is assumed that she knows the name of Tom’s de-
vice called ’lpg970’. As this device name is unique in the
whole dataset, she can correctly determine her friend’s lon-
gitude and latitude angles. With this information Eve is
able to look up, where her friend is located currently or was
situated in the past. Hence, this table must not be released
in its raw form.
In order to publish such a table to any research group or the

public, it has to be anonymized to make it difficult for any
adversary to disclose sensitive information.

5.3 Generalization Process
The method of generalization is used for anonymization.
First it has to be figured out which set of quasi-identifier
attributes Q are auxiliary for an adversary to reveal sensi-
tive information of an individual, and which published at-
tributes have to be considered sensitive. As [3] shows, an
adversary can easily identify individuals by knowing only
one attribute value q of Q = {’model’, ’device’, ’version’,
’network’}. For example, 56 individuals can be identified by
their unique ’device’ value. All the worse, sensitive infor-
mation of 214 individuals can be revealed by the knowledge
of all four attributes in Q. For that reason, every attribute
q ∈ Q has to be taken as quasi-identifiers for generalization.
Furthermore, it is interesting to know, where the users come
from and which path route they took within a certain time
interval. So, the values of their exact world position should
be published as well and regarded sensitive, as GPS location
data linked to an unique individual can be misused by an
adversary.

5.3.1 Building Up Generalization Hierarchies
The major challenge is to disguise the quasi-identifiers Q in
such a manner that the resulting anonymous table both pro-
vides enough information to an observer and satisfies the pri-
vacy definition to prevent sensitive information disclosure.
For example, the concealment ’GT-I*’ of value ’GT-I9100’
means to an expert that this user uses a smart-phone created
by the producer SAMSUNG, but does not disclose which ex-
act type of the smart-phone’s family he actually uses.
For that purpose a hierarchy of generalization has to be cre-
ated for Q with different levels of disguise. This is useful, as
various generalization hierarchies can be combined to divide
the table into different generalized q∗-blocks, and to achieve
the desired privacy definition. Such an hierarchy is imple-
mented as a tree, where the root denotes the highest level
of generalization and every parent node denotes the gener-
alization of all its child nodes.
One possible generalization of the device names is classifying
the value alphabetically. For example, all values with first
letter ’G’ are generalized to the alphabetical range ’A-G’.
Such an hierarchy does not make sense when providing this
data to researcher groups. For statistical analysis no infor-
mation can be acquired and gathered from such a hierarchy,
as the value ’A-G’ does not specify, what kind of device the
participant has used.

SELECT COUNT(∗ ) as cnt , dev i ce
FROM andro id data
GROUP BY dev i ce ORDER BY cnt ;

Listing 1: Show all occurrences of the device values

So, first the SQL-query in listing 1 is executed on the database
to show all distinct values of device names and their counts
in the full dataset in descending order, which can be seen in
listing 2. It shows that the devices with sub-strings ’GT-*’,
’GT-S’ and ’GT-P’ are very frequent in the database. So,
’GT-I*’ belongs to the first generalization level G1 of at-
tribute ’device’, and contains values with sub-string ’GT-I’.
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Figure 1: Generalization hierarchy tree of the non-sensitive
attributes ’device’

The same is done for the values ’GT-S*’ and ’GT-P*’. These
generalizations can be generalized further to all devices with
sub-string ’GT-’ as part of the second generalization level
G2.

’Count ’ | ’device ’
128 | g l a c i e r
108 | GT−P1000
103 | v i s i o n
102 | GT−P1000L
57 | saga
38 | GT−I9000
36 | umts sho le s
24 | GT−S5570

Listing 2: List of some distinct device names with their
counts in the android dataset

Furthermore the device values ’glacier’, ’vision’ and ’saga’
are generalized to ’glacier/vision/saga’ as these are all de-
vices from the vendor HTC. Every other device which does
not belong to the earlier mentioned generalizations is put
into the category ’Other’. As the sub-string ’umts *’ is very
common in the dataset as well, ’Other’ is further divided
into ’umts *’ and ’Other’.
The third and highest generalization level G3 is ’All devices’
and involves all the second generalization levels and thus all
the device values in the entire dataset. This is the same as
saying the attribute ’device’ is completely suppressed.
Now the generalization hierarchy of ’device’, which can be
seen in figure 1, consists of three different levels: G3 ={’All
devices’}, G2 ={’GT-*’, ’glacier/vision/saga’, ’Other’} and
G1 ={’GT-I*’, ’GT-S*’, ’GT-P*’, ’glacier’, ’vision’, ’saga’,
’umts *’, ’Other’,}. In this context G0 is composed of all
distinct, not generalized values of ’device’.
The hierarchies for the remaining quasi-identifiers are cre-
ated in the same manner. For example, the hierarchy for at-
tribute ’model’ looks very similar to the one in figure 1. Here
the branch ’glacier/vision/saga’ is replaced by the general-
ization of all ’HTC models’, as these models are produced by
the vendor HTC. This generalization is further divided into
the set {’HTC Desire*’, ’HTC Glacier’, ’HTC Vision’, ’other
HTC models’}. As many participants use Android sdk ’ver-
sion’ 8 (Android version 2.2.x), ’All versions’ is further re-
fined into the set {’<=8’, ’>8’}, which is shown in figure 2.
Last but not least, the attribute ’network’ is generalized into
the first generalization level G1 = {’T-Mobile’, ’Vodafone*’,
’Telefonica’, ’No network’, ’Other network’} and the highest
level G2 = {’All networks’}.

5.3.2 Suppression
It is possible that a chosen generalization hierarchy in rela-
tion to an attribute is not good enough to satisfy a certain

1) ’***’ (All versions)

’≤ 8’ ’> 8’

2) [0:13]

[0:8] [9:13]

Figure 2: Generalization tree of attribute ’version’ in 1)
and its value generalization hierarchy in 2)

privacy definition. Therefore, suppression [9] is a method to
overcome this problem. Here, all values of one attribute are
not published at all. Instead, they are disguised by a simple
string like ’***’. So, the suppression is the same as applying
the highest generalization level of the quasi-identifier (com-
pare the top of the root in figure 1).

5.3.3 Diversity of Sensitive Attributes
In order to generate an `-diverse table from the evaluated
Android data set, diversity of the sensitive attributes longi-
tude and latitude has to be defined. When regarding table 5,
the pure degree of latitude itself is not well suited for diver-
sity. There are sparsely populated regions, where villages or
even houses are more than one kilometers apart from each
other. For example, two latitude angles that differ in the
fourth decimal place (the second of angle) can be assigned
by an adversary to the same village or house, as the result-
ing positions are very close to each other
Therefore, the minute of angle is used to determine diversity.
Two points that differ in one minute of latitude angle, are
≈ 1.83km away from each other and assumed to be diverse.
As the angles have to be compared mathematically, they are
transformed into the float format ’xxx.yy’, where ’xxx’ is the
angle and ’yy’ depicts the minute of angle (’21.45’ means an
angle of 21◦45′).
Now all requirements are fulfilled to start the anonymization
of the Android database.

5.4 Anonymization with UTD Toolbox
The toolbox of the University of Dallas is used to perform
anonymization of the Android database, applying the cre-
ated hierarchies. This tool uses a Value Generalization
Hierarchy (VGH, [9]) per quasi-identifier for its anonymiza-
tion process. Here, every value of the quasi-identifier at-
tribute is mapped onto a distinct integer number. Then,
every next generalization level compromises a certain range
of specified integer numbers (e.g. the range [x:y] covers the
numbers from x to y). Consequently, the highest generaliza-
tion level covers the entire number range.

Example 7: Consider figure 2. Let the values of version
be {none, 8, 9, 10, 11, 12, 13} and mapped onto the values
{0, 8, 9, 10, 11, 12, 13}. Then the first generalization ’≤ 8’
covers the range [0:8] and ’>8’ contains the values in range
[9:13]. Consequently ’All versions’ compromises the entire
range [0:13].

Then, the anonymization process of the UTD toolbox is
started to gain Entropy `-Diversity using the efficient al-
gorithm Incognito [4]. So, first the VGHs of all attributes
in Q are generated. Then, every generalization level of one
quasi-identifier is combined with every generalization level
of all the other quasi-identifiers. For each of the different
combinations the resulting table is checked against the de-
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Figure 3: Number of possible generalizations, left: with
different `-Levels of Entropy `-Diversity, right: with various
constants c of Recursive (c, 5)-Diversity

sired privacy definition. When the anonymization process is
finished all possible generalizations are listed and the best
one is selected by the Incognito algorithm [4].
The toolbox is applied on the Android database to create
an anonymous table containing the attributes {’model’, ’de-
vice’, ’version’, ’network’, ’latitude’, ’longitude’}. It uses the
privacy definitions Entropy `-Diversity and Recursive (c, `)-
Diversity with different values for ` and c. Figure 3 shows
the number of possible generalizations suggested by the tool-
box for the set of ` values {5, 10, 20, 50, 100, 150, 200} on
the left and different c values {0.1, 0.2, 0.4, 0.6, 0.8, 1.0} on
the right. Listing 3 shows an Entropy 5-diverse table excerpt
of the anonymous Android database, using the generaliza-
tion levels {G3, G2, G2, G1} (suggested by the toolbox) of
Q = {’model’, ’device’, ’version’, ’network’}. Here, the at-
tributes ’model’ and ’version’ are completely suppressed to
satisfy the privacy definition.

(model, device, version, network, latitude, longitude)
(’*’, ’GT-*’, ’*’, ’No network’, -15.45, -47.53)
(’*’, ’GT-*’, ’*’, ’Other networks’, 28.39, 77.11)
(’*’, ’GT-*’, ’*’, ’T-Mobile’, 52.21, 5.37)
(’*’, ’GT-*’, ’*’, ’Telefonica’, -15.45, -47.53)
(’*’, ’GT-*’, ’*’, ’Vodafone***’, 51.24, 8.35)
(’*’, ’Other devices’, ’*’, ’Other networks’, 51.39, -0.05)
(’*’, ’saga/vision/glacier’, ’*’, ’No network’, 50.52, -1.17)
(’*’, ’saga/vision/glacier’, ’*’, ’Telefonica’, 50.06, 14.28)

Listing 3: Excerpt of Entropy 5-diverse anonymized table
generated by the UTD toolbox

6. RELATED WORK
Greschbach [2] utilizes the `-Diversity definition to gain lo-
cation privacy. When using Location Based Services (LBS)
a provider may obtain GPS location data per time from a
user’s device, and is able to reconstruct a movement profile
and by association the behavior of the user. This can be
avoided if several dummies simulate the same device of the
user and use the same LBS at the same time as the user’s
device. These dummies then fake different path routes to
disguise the real path route of the user.
Zhou [13] extends the privacy definition of k-Anonymity and
`-Diversity from relational data to social network data in or-
der to reach privacy in social networks.

7. CONCLUSION
This paper has presented reasons why a publisher should
never publish microdata to researcher groups in its raw form,
as adversaries can use their background knowledge or link
quasi-identifier attributes with external databases to reveal

sensitive information of certain individuals. K-Anonymity,
`-Diversity and t-Closeness are principles to gain a certain
anonymity level, and to preserve privacy of individuals listed
in the published microdata. Every principle has its own
advantages and disadvantages that have to be considered
when applying such principles to microdata. Chapter 5
shows that generalization in combination with the above-
mentioned principles can be used to anonymize microdata.
But this process is not trivial and has to be well thought out.
It has to be considered which generalization makes sense, so
that researcher groups or statistical analysts can work with
the published tables. In this context, anonymization tool-
boxes like UTD Anonymization Toolbox can help to discover
the most suitable anonymization for arbitrary datasets.
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