
Honeypot-Architectures using VMI Techniques

Stefan Floeren
Betreuer: Nadine Herold, Stephan Posselt

Seminar Future Internet SS2013
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: floeren@in.tum.de

ABSTRACT
Honeypots are an effective tool to gain information about so-
phisticated attacks and zero-day exploits. With rising pop-
ularity of virtual machines in the World Wide Web, systems
using virtual honeypots also get more interesting. After
giving an introduction into traditional honeypot systems,
this paper first describes VMScope, a VMI-IDS (virtual-ma-
chine-introspection-based intrusion detection system) which
focuses on providing a tamper-resistant but thorough hon-
eypot surveillance system. Then Collapsar is described, a
system of multiple virtual honeypots that logically resides
in different networks with the purpose of detecting attacks
that span across multiple networks. Finally, a combination
of both systems is proposed and the capabilities are dis-
cussed.

Keywords
Honeypot, VMScope, Collapsar, VMI IDS

1. INTRODUCTION
Recently, Internet users have been under attack from many
threats such as viruses, worms, and Trojan horses. But
lately the number of reports about attacks of single hack-
ers or whole groups on specific targets, for example Sony or
Facebook, has increased drastically. It is therefore desirable
to detect these attacks and at best prevent them in the first
place. To achieve this, it is essential to gather detailed data
about the course of actions of an attacker. Honeypots of
different types have emerged as a viable source for this kind
of information. However, as honeypots get more and more
popular, it is increasingly interesting for attackers to detect,
avoid or disable them to make sure their methods remain
hidden.

Another development in the World Wide Web is the conver-
sion from physical servers to virtual machines. This is no-
ticeable in the increasing number of offers of virtual server
offers by most hosting providers, for example the Elastic
Compute Cloud (EC2) from Amazon Web Services. Follow-
ing this development, honeypots running in virtual machines
are also getting more popular.

This paper gives an introduction to two honeypot systems,
VMScope and Collapsar. Therefore as a necessary prereq-
uisite an overview of intrusion detection systems and how
they work is given. The paper then introduces honeypots
and how they can be categorized depending on their interac-
tivity and behavior. The next section introduces VMScope,
a honeypot system that uses virtual machine introspection.

Then, Collapsar—a system to provide a whole honeypot
farm—is discussed. Finally, both systems are compared and
a suggestion on how they could be combined is presented.

2. INTRUSION DETECTION SYSTEMS
An Intrusion Detection System (IDS) is a system that mon-
itors computers or networks for suspicious activity or traffic
and it is a necessary part of honeypot surveillance. It can de-
tect known attack signatures, for example buffer overflows,
port scans, and operating system fingerprinting[8]. IDSs can
be separated into different categories which are described in
the following paragraphs.

2.1 Network-based
The first type is the network-based IDS (NIDS). It captures
all traffic from and to a monitored host. As capturing takes
place outside of the monitored system, a NIDS is invisible
to an attacker. Therefore, captured data is trustable even if
the host is corrupted. However, no internal activities of the
host can be captured. It is also highly ineffective if the traffic
is encrypted because no information but flow data can be
gathered out of this kind of traffic[6]. Common software used
to gather this kind of information includes Tcpdump[16] and
Wireshark[19].

2.2 Host-based
The second kind of IDS is the host-based IDS (HIDS). Using
this approach, the IDS is integrated into the host as a part
of the operating system—for example as a kernel module—
or running as an application. Because it is running on the
host itself, the IDS can collect internal data, for example
system calls. This data can be used to generate a detailed
analysis of the course of actions of an attacker. It is also
possible to check file integrity and log files automatically.
The drawback of this method is, that after an intrusion an
attacker can detect the HIDS and tamper with the logging
module which makes all further log files after the intrusion
worthless[3].

2.3 Virtual-Machine-Introspection-based
The last category is the Virtual-Machine-Introspection-based
IDS (VMI IDS). This approach is a special kind of a host-
based IDS which tries to mitigate its weaknesses.

2.3.1 General Approach
The idea of a VMI IDS is to move the surveillance part
outside of the host by preserving the thoroughness of a host-
based IDS. This is achieved by virtualizing the surveilled

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

17 doi: 10.2313/NET-2013-08-1_03



host and putting the IDS outside of it, for example into
the virtual machine monitor. The virtual machine monitor
(VMM) is the software which provides the virtualization.
The machine the VMM runs on is called host, the operating
system running inside a VMM is called guest. The VMM
runs directly on the host’s hardware and virtualizes it to
transparently multiplex its resources to one or more VMs.
It needs to perform this abstraction in a way that a software
that would run on the original hardware will also run on
the virtualized one. VMMs can run as a simple operating
system directly on the hardware (for example Xen[20]) or
as a user process running on the host’s operating system[3],
like VMware[18]. If the VMM runs as software on the host
machine, it is necessary to convert system calls from the
guest system so that the host operating system understands
them, especially if the guest and host OS differ. This process
is called binary translation[6].

HIDS
VMI IDSOS

OS

VMM

Physical Machine Virtual Machine

Figure 1: Comparison between a HIDS and a VMI-
IDS. Based on Fig. 1 of [6]

Because the VMM keeps control of the hardware itself, it
has a complete view of the guest’s system state, including
CPU and I/O registers, volatile memory and stable storage.
With this information, a detailed observation and analysis of
the guest system is possible. This method is called Virtual
Machine Introspection (VMI)[10]. An IDS using VMI to
surveil a host is called VMI IDS.

Additionally to the advantage of invisible and detailed data
collection, VMMs offer further capabilities that can help in
analyzing an attack. As the state of a VM is completely
visible from the VMM, it is possible to save the current
state of the virtual machine. By comparing such a snapshot
of a known good state with a corrupted system, it is possible
to perform deep forensics of corrupted files or memory areas
off-line or to replay an attack step by step[3].

2.3.2 Virtual Machine Monitor properties
In order to be useful for VMI purposes, a VMM needs to
fulfill some properties[3]:

Isolation: A software running inside of a VM cannot change
anything outside the VM itself, regardless of its internal ex-
ecution level. This ensures that the VMM and therefore
the IDS cannot be tampered with even if an attacker has
complete control over the VM.

Inspection: In order to achieve the same logging capabili-
ties as a host-based IDS, the VMM needs to access all states
of a virtual machine: CPU states and registers, whole mem-
ory and all I/O device states and content. Therefore, it
is very difficult for an attacker to evade an IDS inside the
VMM.

Interposition: On specific operations inside of the VM, like

privileged instructions, the VMM needs to interrupt because
of its design. Because of this, a VMI IDS can hook into
these instructions for logging purposes with only minimal
modifications to the code of the VMM.

2.3.3 Challenges
On integrating the logging functionality into the VMM some
design trade-offs should be considered.

The first challenge is the integration of the IDS. As the
VMM needs to be modified to add the logging behavior, the
source code of the virtualization software needs to be avail-
able. Therefore proprietary software like VMware can only
be supported with the help of the developing company. A
VMM’s source code is relatively small, but as its correct be-
havior is critical for the security of the host system, it must
be tested and validated thoroughly[3]. On integrating the
logging functionality into the VMM it is important to con-
sider how much code is integrated, because it should provide
the same level of reliability as the VMM itself. It therefore
should be the goal to integrate as less code as necessary.
This needs to be traded off with the wish to add as much
functionality as possible[3].

The next challenge to solve is performance. Virtualiza-
tion always has an overhead in comparison to a hardware
PC because all privileged calls or hardware accesses need
to be trapped by the VMM, modified and then sent to the
host. The introduction of additional logging into the VMM
further expands this overhead; the introduced increase de-
pends on how many and which system events should be
monitored. While some features—like accessing hardware
states—normally do not cost any performance, trapping in-
terrupts or memory access can affect the performance in a
quite worse way because of their frequency of occurrence[3].

Another challenge is VM environment detection. It is
possible to detect if a program is running inside of a virtual
machine or on a physical environment and there already
exists malware that shows different behavior inside a VM.
Although there are opportunities to prevent some VM detec-
tion methods from succeeding, this is not strictly necessary,
as virtualization gains popularity[6] and is not the exception
any longer in the World Wide Web (for example virtual root
servers).

The last challenge is the semantic gap. The virtual ma-
chine monitor and therefore the IDS sees the guest environ-
ment in a strictly binary form. To generate useful log files or
check the integrity of a specific file on the guest’s file system,
the intrusion detection system needs to know the on-disk
structure or the memory management of the guest’s operat-
ing system. To provide services that rely on this higher-level
information, the lost information has to be reconstructed
in some way. To gain full semantic information, all the
guest system’s abstractions need to be reimplemented. As
these abstractions are specific for each OS, they cannot be
reused and therefore this approach does not scale. How-
ever, some basic abstractions are shared across many oper-
ating systems. This includes virtual address spaces, network
protocols and file system formats. Therefore those generic
abstractions can be implemented and reused for many oper-
ating systems[1, 10].

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

18 doi: 10.2313/NET-2013-08-1_03



3. HONEYPOTS
A honeypot is a system inside of a network which is used
to detect previously unknown attacks and vulnerabilities.
Its sole purpose is to get broken into and every connection
to it is considered suspicious[11]. Honeypots generally can
be divided into three categories depending on the level of
interaction they support[7].

3.1 Honeypot Types
High-interaction: First, there are high-interaction honey-
pots. They allow an attacker to control a whole system with
almost no restrictions. Of course it is necessary to prevent
an attacker from infecting other computers than the honey-
pot, therefore some kind of network filtering or controlling
is needed. These honeypots are most effective in detecting
new vulnerabilities, but they also introduce high risks and
need to be supervised tightly.

Medium-interaction: The next category is the medium-
interaction honeypot. It imposes more restrictions to the
system than a high-interaction honeypot and therefore may
not gather as much information, but is is also less risky than
a high-interaction honeypot[7]. For example chroot can be
used to set up this kind of honeypots.

Low-interaction: The last category is the low-interaction
honeypot. Here, only some part of an operating system is
simulated, like the network stack[11]. This provides the low-
est risk in trade off for much less detection capabilities. They
are also the easiest ones to set up[7].

3.2 Honeypot Tools
In this section the standard tools for high-interaction
and low-interaction honeypots, Sebek and Honeyd, are
presented.

3.2.1 Sebek
Sebek [13] is the de-facto standard tool for monitoring high-
interaction honeypots. It is a host-based intrusion detec-
tion system and installs itself as a kernel module. It wraps
a number of system calls to its own implementations that
record context information—for example the process ID of
the calling process—and the arguments before calling the
kernel function. The captured data is then sent to a remote
server which logs the received information.

3.2.2 Honeyd
Honeyd [4] is a low-interaction honeypot tool. It runs as a
daemon and simulates the TCP/IP stack of a target operat-
ing system, supporting TCP, UDP and ICMP. It listens for
packets destined for the configured virtual hosts. It is also
capable of simulating whole network topologies with routers,
end hosts and link characteristics (latency, packet loss). Its
goal is to fool tools like Nmap[9] or traceroute to believe in
the presented network topology and to fake the fingerprints
of the simulated machines. It therefore adjusts fields in the
TCP, UDP and IP header and the closed port behavior to
match the operating system’s which should be simulated[11].

3.2.3 Comparison
Honeyd is effective in detecting network scans as the dae-
mon can manage whole virtual networks. However, as it
only implements the network stack, it is easily detectable

by trying to use default services that run on most machines,
like ssh on Linux, as these protocols are not implemented in
honeyd[8].

Sebek can detect attacks on the host it is running on. It is
capable of gathering detailed information about the course
of actions until it is detected. After detection, captured data
cannot be trusted anymore because the attacker can tamper
with it. Detection of Sebek can be done with relatively little
effort as described in [2].

4. VMSCOPE
The first honeypot monitoring system described in this pa-
per is VMScope. It is a VMI-based intrusion detection sys-
tem.

4.1 Description
VMScope’s purpose is to replace host-based IDSs like Sebek.
Its main goal is to provide logging functionality that is more
resistant to attackers while keeping the same level of detail
of logging. Therefore, it should not be possible to tamper
with the generated log even if the attacker has full control
over the attacked PC. To achieve this, VMScope captures
not just some specific system calls like Sebek but all. This
is necessary because it is possible to substitute different calls
with each other and therefore avoid detection if only some
system calls are surveilled[2]. Additionally, it is capable of
capturing all system events from the first moment of booting
while host-based IDS cannot start capturing until they are
started—and maybe already circumvented.[6].

4.2 Implementation
This section describes the details of the proof-of-concept im-
plementation, based on QEMU[12], a software-based virtual
machine monitor, described in [6].

4.2.1 System calls
To capture all system calls, one of QEMU’s key features, bi-
nary translation, gets extended. VMScope wraps the QEMU
handling of system events, like interrupts, so that before
(pre-syscall) and after (post-syscall) executing the system
call a VMScope function is called (Figure 2). The callback
function before executing the system call collects context in-
formation, the callback behind tracks the return value. To
correctly interpret the gathered information, the exact call-
ing conventions from the system that invoked the system call
needs to be known. It is especially important to know where
parameters are passed to the system call and where the re-
turn value is stored—on Linux for example, this is mainly
done via registers. The numeric parameters are interpreted
with run-time information to identify the semantic meaning.
Therefore it is possible to log the call with detailed informa-
tion like the path given to sys open instead of just printing
the content of the register which contains a virtual memory
address.

4.2.2 Challenge - Multitasking
In a single task environment, it is sufficient to use a variable
to pass data from the pre-syscall function to the post-syscall
function. However with multitasking it is possible that two
concurrent system calls occur and in between those two calls
a context switch occurs. It is therefore necessary to keep
track of the state and lifetime of a process running inside

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

19 doi: 10.2313/NET-2013-08-1_03



VM: System call

System call gets 

trapped

VMScope

callback function 

is called

(pre-syscall)

Execute system 

call

VMScope

callback function 

is called

(post-syscall)

Result is sent 

back to VM

VM continues 

operation

Figure 2: System call handling of VMScope

the VM. If the VM is running Linux it would be possible to
include this information inside the VM in the thread union
struct which contains information about each thread. This
would made tracking of process lifetime inside the VMM un-
necessary and accessing the data from the post-syscall func-
tion would be very efficient, although this would introduce
a possibility to tamper with the data from inside the virtual
machine. Therefore, the current VMScope implementation
maintains this information inside the VMM itself.

4.3 Evaluation
In [6] the efficiency and effectiveness of VMScope has been
evaluated.

4.3.1 Detected attacks
First, some tests with real world attacks were performed.

The first test was a comparison of VMScope with Sebek on a
system which was affected by NoSEBrEaK, a tool to circum-
vent Sebek[2]. After activating NoSEBrEaK an encrypted
network connection was initiated, a rootkit was installed and
two shell commands were executed. While Sebek could not
detect any actions, VMScope could capture and interpret all
commands. The VMScope log file, starting directly at the
boot of the system, also shows how Sebek is hiding itself as
iptables-nat.ko.

The second task was a test with a Slapper worm with well-
known behavior. The log files generated by VMScope shows
that the infection occurs in three steps: (1) Exploit a buffer
overflow to gain a remote shell. (2) Upload and compile the
worm source code. (3) Launch the newly generated binary
and start a new round of infection. These steps could be

verified by an internal system call tracker and a Slapper
worm analysis tool.

A third test was the actual usage of VMScope honeypots
to monitor real-world attacks. One of this attacks, an
OpenSSL vulnerability exploit in Apache, was described
further. Through the VMScope log files, the behavior of
the attacker could be investigated in detail: After open-
ing a remote console through a specially prepared HTTP
request, a ptrace vulnerability was exploited to gain root
privileges. Then, two rootkits, a ssh daemon and an IRC
bot, got installed. With the help of the log files generated
by VMScope, every keystroke could be reconstructed.

4.3.2 Performance
To evaluate the relevant performance, some system tasks
(compressing files with gzip and compiling the Linux kernel
with make) and some benchmarks (ApacheBench, Nbench
and Unixbench) were done on an unmodified QEMU-VM
and a VM with VMScope running. Those benchmarks were
selected to give a good overview of the whole system’s per-
formance on different common tasks. The different bench-
marks spaced from 96.4 % of the base system’s performance
for Apache to 85.6 % for Unixbench. The results indicate
that the overall performance loss is at most 15 % and there-
fore the loss is reasonable.

4.3.3 Limitations
As the VMScope code runs inside the VMM, it needs to be
as trustworthy as the VMM’s code itself. This is essential to
prevent compromisation of the VMM or the host computer.

To interpret system call events, knowledge of system calls
and their calling conventions is essential. It might be possi-
ble to remap those system calls in a non-standard way and
therefore mislead or corrupt VMScope. In how far this is
possible depends on the VMM itself, as security-enhanced
ones could detect and prevent such remapping. Also, ac-
curate identification of dynamic kernel objects remains a
challenge. [6]

5. COLLAPSAR
The second system described in this paper is Collapsar. It
is based on high-interaction honeypots running in virtual
machines, although it does not use VMI. Physically, all vir-
tual machines reside in the same computing center, logically,
they are distributed between different networks. The goal of
Collapsar is to provide centralized management, convenient
data mining and attack correlation[7].

5.1 Architecture
Collapsar consists of three main parts: the redirector, the
front-end and the honeypot itself (Figure 3). It also contains
assurance modules to analyze and control the actions of an
attacker[7].

5.1.1 Redirector
The redirector is located inside of the network the honeypot
pretends to be part of. It captures all traffic which is des-
ignated for the honeypot, filters those packets to strip out
sensitive information, depending on policies imposed by the
administrator of the network, and finally encapsulates and
dispatches them to the Collapsar Center.

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

20 doi: 10.2313/NET-2013-08-1_03



Network 1

Redirector

Frontend

VM1 VM2

...

Collapsar Center

Network 2

Redirector

Figure 3: Architecture of the Collapsar network

5.1.2 Front-end
The front-end is the gateway of the Collapsar Center. It
receives and processes the packets it receives from the redi-
rectors and dispatches them to the corresponding virtual
machine. It also ensures that packets from the honeypots
are sent to the right redirector to make communication with
the outside possible. It also provides functions of a firewall
to prevent an infection from spreading through a honeypot.

5.1.3 Virtual honeypot
The virtual honeypot is a virtual machine running inside
the Collapsar Center. Although the traffic is redirected, an
attacker should think he is talking directly to a machine
inside the corresponding logical network.

5.1.4 Assurance modules
Assurance modules provide necessary function for attack
analysis and minimization of risks. There are several de-
fault modules. First, there is the logging module which col-
lects data through sensors inside of the VM. This data is
stored outside the VM to prevent tampering with the log
files. Second, the tarpitting module is used to mitigate risks
from the honeypot. It throttles outgoing traffic and crip-
ples packets matching a known attack signature. The last
module is the correlation module. It compares the log of the
different honeypots and therefore can detect network-based
attacks like network scans or the propagation of a worm
inside the network.

5.2 Implementation
This section describes the Collapsar implementation as pre-
sented in [7].

5.2.1 Traffic redirection
Traffic redirection is the process of redirecting the packets
from the network the honeypot logically resides into the
Collapsar Center. It can be implemented in two different
ways: router-based and end-system-based. In the router-
based approach a router inside of or at the border of the
network gets configured to tunnel the traffic to the Collapsar
front-end. The advantage of this method is that it is highly
efficient. On the other hand it requires to configure a router
which may conflict with policies for network administra-
tion. In the end-system-based approach an application on
one host inside the network redirects the traffic to the front-
end. This approach results in easier deployment of the whole
system. In the proof-of-concept implementation the applica-
tion level redirector itself is a virtual machine. This allows
further packet filtering regarding policies and rewriting of
packets before forwarding. It can also be extended easily
to provide functions of a network-based intrusion detection
system.

5.2.2 Traffic dispatching
Traffic dispatching happens in the front-end and describes
the process of inserting the packets received from the redi-
rectors into the correct virtual machine. In fact the front-
end is similar to a transparent firewall. If the front-end is
also implemented as a virtual machine, it can be used as an-
other point of logging. Ideally, packets should get forwarded
directly to the intended honeypot. To support multiple VM
systems, the packets are injected into an internal Collapsar
network and from there they are picked by the honeypots.
The advantage of this method is that no changes to the VM
provider’s code have to be done and therefore proprietary
solutions can be used. But this method induces additional
overhead and it causes cross-talk. This means that two hon-
eypots which reside in two different logical networks get the
packets destined for the other honeypot on the same inter-
nal network which can be exploited by an attacker to detect
that he is inside the Collapsar network. A solution for this
problem is to directly inject the packets into the VM’s net-
work interface. This eliminates the problem of cross-talk but
it requires to modify the source code of the VM provider.
Therefore, this method cannot be implemented on propri-
etary software, like VMware, without much effort.

5.2.3 Virtual honeypot
The honeypots used by Collapsar are virtual machines, the
current implementation supports either VMware or User-
Mode Linux (UML)[17]. Depending on the virtualization
solution, either direct injection (UML) or an internal net-
work (VMware; vmnet) is used.

5.2.4 Assurance Modules
Assurance modules are deployed in different locations.
Logging modules like network sniffers are deployed in both
redirectors and front-ends. Inside of the honeypot, sensors
to capture all actions are deployed. For network sniffers,
Tcpdump[16] and Snort[14] are used; inside the virtual
machine Sebek[13] or a kernelized snort are deployed.

Tarpitting modules are deployed in the front-end and
the redirectors. In the presented implementation, snort-
inline[15], a open source modification of snort which accepts
packets from iptables instead of libpcap, is used. Its purpose

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

21 doi: 10.2313/NET-2013-08-1_03



is to rate limit out-going connections and defuse malicious
packets matching known attack signatures.

5.3 Evaluation
In [7], Collapsar has been evaluated in regards to real world
incidents and performance.

5.3.1 Detected attacks
To show the effectiveness of Collapsar, a testbed containing
five production networks with honeypots running different
operating systems has been used. Several attacks are de-
scribed in [7]. They show the detection capability of attacks
against single honeypots. As this functionality is provided
by Sebek this is the expected behavior. An interesting fact
is, that one of the attacks the exploit originated from a dif-
ferent IP address than the connection to the installed SSH
server. This could be a hint for the usage of a stepping
stone, a machine already controlled by an attacker to per-
form further attacks. One attack, that shows the capabilities
of Collapsar is the detection of a whole network scan origi-
nating from one IP address, as honeypots in different logical
networks received the same ICMP packet.

5.3.2 Performance
The performance has been tested in respect to two aspects
in regards to the main bottle neck of Collapsar—the network
performance. First, the overhead of the virtualization alone
and second the overhead of the whole Collapsar System in-
cluding traffic redirection is measured.

The impact of virtualization was compared between UML,
VMware and an unvirtualized machine. In case of ICMP
performance, tested with different payload sizes, both vir-
tualization mechanisms show similar latency degradation.
However in TCP throughput, tested by transmitting a 100
MB file with different buffer sizes, VMware shows almost no
difference to the unvirtualized machine. UML in contrast
has a worse performance than VMware. The reason for this
is the different virtualization techniques. VMware imple-
ments binary rewriting, which uses breakpoints to catch sen-
sitive instructions but executes the other instructions faster.
UML virtualizes all system calls and therefore fully emulates
a x86 machine.

With the whole Collapsar system in place, both tests were
repeated. The latency for ICMP packets raised significantly
for both virtualization systems. This is caused by the
Collapsar design and usage of a end-system-based redirec-
tor. While this is detectable for a nearby attacker, remote
attackers may not be able to distinguish this delay from
normal delay through the internet. This performance could
be improved by using router-based redirection or hardware-
based virtualization. In contrast to the results without the
traffic redirector, UML now has better performance than
VMware in both TCP throughput and ICMP latency. This
could be caused by the direct traffic injection when using
UML.

5.3.3 Limitations
Although Collapsar is very powerful in detecting attacks it
has some limitations. First, to really be able to benefit from
the honeyfarm and its cross-network detection abilities, it
is necessary to build a very large network. As described in

[7], 40 virtual machines are far too less. A bigger project
to gather information from over 2000 sensors exists with
the name Internet Storm Center[5], but it is not capable of
stopping or slowing the attack in real time.

Another problem yields with the used software. As the sen-
sors are deployed inside of the VM, it is possible for an
attacker to tamper with the sensors, generating false data,
or shutting them down completely as already described.

6. COMPARISON
On comparing those two systems, it is important to recog-
nize that VMScope and Collapsar focus on different aspects
of honeypots. On the one hand, VMScope aims to provide a
tamper-resistant and invisible method to surveil honeypots
while keeping a detailed view of the system. This is achieved
by moving the logging component out of the host into the
virtual machine monitor. On the other hand, Collapsar fo-
cuses on detecting similar attacks on multiple machines at
different logical locations. It could therefore be a useful tool
to evaluate the spreading of a worm over the World Wide
Web or to follow the way of an attacker through a corporate
network.

As the goals of both projects are disjoint and do not
interfere with each other, both systems could be com-
bined. To do this, either a Collapsar implementation
for QEMU or a VMScope implementation for UML is
needed. As Collapsar’s changes are not as comprehensive as
VMScope’s, adopting Collapsar to use QEMU may be the
easier task. After combining both, the Collapsar network
still keeps the capability of surveilling multiple networks.
But now the logging cannot be tampered with any longer,
like with Sebek. This means that the combined solution is
also capable of detecting attacks against single hosts. Be-
cause the virtual machine monitor needs to be modified to
integrate VMScope, the source code needs to be available.
Therefore the previously mentioned problem of cross-talk
can be eliminated by implementing direct injection into the
network interface of the virtual machine.

Although most problems of the single systems can be elimi-
nated by combining them, one problem cannot be reduced.
The performance of the combined system is most likely worse
than the performance of each system on its own. Addition-
ally to the delay introduced by Collapsar for redirecting and
filtering traffic, the slowing of the virtual machine through
the logging module inside of the VMM affects the combined
system. As the delay between request and answer further
increases, it can be even harder than for Collapsar alone to
hide the fact that it is not a physical machine answering but
a virtual honeypot.

As already told before, Collapsar needs a very big network
to work effectively. This is also true for the combined so-
lution. Although Collapsar is capable of detecting network
scans, this should not be the main detection goal because
these kinds of anomalies can be detected much more resource
friendly by using the low-interaction honeypot tool honeyd.
It therefore would be desirable to use Collapsar or the de-
scribed combined system just for attacks, where interaction
beyond the TCP/IP-stack is needed and save computation
power otherwise.

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

22 doi: 10.2313/NET-2013-08-1_03



To solve this, honeyd could also be integrated into the sys-
tem. For the interactivity, multiple virtual machines with
different operating systems are created. Hoenyd then simu-
lates end-hosts or even sub-networks inside the network the
redirectors reside. The simulated machines should be fin-
gerprinted as the same OSs the VMs are running. If now a
simple connection initialization appears this is handled by
honeyd. If further interaction is needed, the connection is
then handed over to a matching virtual machine. This saves
computation power because simple network or port scans are
handled by honeyd. This approach can lead to problems if
a fixed number of virtual machines with a specific operating
system is used as all of them could be in use when another
one is needed. This could be handled by dynamic creation of
virtual machines from snapshots, if the data center supports
this fast enough. Another challenge is the detection of still
in use VMs in contrast to ones that can be reseted and be
put back into the pool of available VMs.

To sum it up, both systems described above should be ca-
pable of detecting many different attacks, either on whole
networks or on single hosts. Additionally the logging itself
is invisible from inside the honeypots and the delay induced
by the system is not detectable if the attacker is far enough
away in terms of network latency. But because of legal re-
sponsibilities that operators of honeypots have to consider,
it is still detectable from the outside if someone is inside of a
honeypot or not. There are several methods to achieve this
detection. They all include some kind of sensor—a server
that is already controlled by the attacker. After intrusion
into a machine, the attacker—this can be a human attacker
or an automated process—sends obviously malicious traffic
to remote hosts including the sensor. This can be for ex-
ample another attack wave, spam mails or massive HTTP
requests that look like being part of a Denial of Service at-
tack. If the sensor receives all traffic unmodified and with
the same rate the client used, the attacker can be relatively
sure that he is not inside a honeypot. A honeypot operator
needs to block or modify this kind of traffic because he does
not know which remote machine is the sensor and if the ma-
licious traffic is allowed to pass, the operator can be hold
liable for possible damage caused by this attack[21].

7. CONCLUSION
To sum it up, both discussed systems make use of virtual ma-
chines to achieve a better logging capability than traditional
honeypots. VMScope tackles the problem of circumventing
or disabling conventional host-based intrusion detection sys-
tems and to provide trustable log files even if the machine
itself is completely corrupted. Collapsar focuses on detect-
ing wide-range attacks on different networks by trying to
keep the single honeypot still useful to detect intrusions on
single hosts.

As described in the previous section, combining both
VMScope and Collapsar leads to a system which is very
hard to fool as the logging does not take place inside of
the virtual machines but from the outside. This system is
in theory also capable of detecting distributed attacks, but
this ability is dependent on how many virtual honeypots
are available and where they are positioned. Currently, it
is impossible to set up a honeypot that cannot be detected
if the operator does not want to risk getting in conflict
with applicable law. If and how this problem can be solved

requires further research.

References
[1] P. M. Chen and B. D. Noble. When Virtual Is Better

Than Real. In Proceedings of the Eighth Workshop on
Hot Topics in Operating Systems, pages 133–138, May
2001.

[2] M. Dornseif, T. Holz, and C. N. Klein. NoSEBrEaK
- Attacking Honeynets. In Proceedings from the Fifth
Annual IEEE SMC Information Assurance Workshop,
pages 123–129, June 2004.

[3] T. Garfinkel and M. Rosenblum. A Virtual Machine In-
trospection Based Architecture for Intrusion Detection.
In Proceedings of the Network and Distributed System
Security Symposium, pages 191–206, February 2003.

[4] Honeyd. http://www.honeyd.org/.

[5] Internet Storm Center. https://isc.sans.edu/.

[6] X. Jiang and X. Wang. “Out-of-the-box” Monitoring of
VM-based High-Interaction Honeypots. In Proceedings
of the 10th international conference on Recent advances
in intrusion detection, pages 198–218, September 2007.

[7] X. Jiang and D. Xu. Collapsar: A VM-Based Architec-
ture for Network Attack Detention Center. In Proceed-
ings of the 13th USENIX Security Symposium, pages
15–28, August 2004.

[8] I. Kuwatly, M. Sraj, Z. Al Masri, and H. Artail. A
Dynamic Honeypot Design for Intrusion Detection. In
Proceedings of IEEE/ACS International Conference on
Pervasive Services (ICPS), pages 95–104, July 2004.

[9] Nmap. http://nmap.org/.

[10] J. Pfoh, C. Schneider, and C. Eckert. A Formal Model
for Virtual Machine Introspection. In Proceedings of
the 2nd ACM workshop on Virtual Machine Security,
VMSec ’09, pages 1–10, November 2009.

[11] N. Provos. Honeyd: A Virtual Honeypot Daemon
(Extended Abstract). In 10th DFN-CERT Workshop,
February 2003.

[12] QEMU. http://www.qemu.org/.

[13] Sebek. http://projects.honeynet.org/sebek/.

[14] Snort. http://www.snort.org/.

[15] Snort-inline. http://sourceforge.net/projects/
snort-inline/.

[16] Tcpdump. http://www.tcpdump.org/.

[17] User-Mode Linux. http://user-mode-linux.
sourceforge.net/.

[18] Vmware. https://www.vmware.com/.

[19] Wireshark. http://www.wireshark.org/.

[20] Xen. http://www.xen.org/.

[21] C. C. Zou and R. Cunningham. Honeypot-Aware Ad-
vanced Botnet Construction and Maintenance. In Pro-
ceedings of the International Conference on Dependable
Systems and Networks, DSN ’06, June 2006.

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

23 doi: 10.2313/NET-2013-08-1_03


