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ABSTRACT
TCP is the most used transport protocol today. TCP pro-
vides a congestion control mechanism that adapts the trans-
fer speed to the available bandwidth. This works remark-
ably well for long running transfers, however it is not so
good for smaller transfers. Short transfers never reach the
maximum possible speed. Especially web pages are affected
by this. Web pages consist of many small files for html, css,
javascript and images.

Google, a company highly dependent on fast web pages, is
proposing ways to increase TCP performance. Among those
are TCP Fast Open and an increased initial congestion win-
dow. Both techniques try to speed up the beginning of a
TCP connection, so primarily short transfers profit from
these changes. The page load time for an average website
decreases by between 10% and 20% with each of the tech-
niques, if both are combined, the page load time decreases
by up to 35%.

Both techniques are currently on their way of becoming an
Internet Standard and are already implemented in the Linux
Kernel.
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1. INTRODUCTION
Over the past few years the bandwidth of consumer internet
connections got bigger and bigger, leading to faster internet
access. We are now however at a point where more band-
width doesn’t lead to much faster internet experience [4].

The best way to get faster internet access is to decrease the
round-trip time (RTT). This is not always easy. A major
cause of latency are large buffers in middle boxes and in the
end the RTT is limited by the speed of light. The round-
trip time between Munich and New York, for example, can
never be faster than 65ms simply because no information
can travel faster than the speed of light1. What can be
done is to decrease the number of round-trips needed and
so decreasing the impact of a large RTT. This is especially
important for short connections.
1speed of light in fibre: 66% · 300 · 106 m

s
= 200 · 106 m

s
,

distance between Munich and New York: 6500 km, one-way
delay: 6500km/200 · 106 m

s
= 32.5ms. The round-trip time

to New York and back is 65ms.

The two techniques proposed by Google, TCP Fast Open
and increasing the congestion window do exactly that. Both
speed up the beginning of a TCP connection by reducing the
number of round-trips.

Normally it takes TCP a full round-trip before any payload
data is sent. TCP Fast Open enables TCP to send the first
payload already in the first connection establishment packet
that is sent to the server. That means the complete trans-
fer needs exactly one round-trip less than normally. For
small transfers this has a noticeable impact. However send-
ing data in the first packet that is immediately processed by
the server actually circumvents the three-way handshake of
TCP, which has some security implications. We will look at
this later on and also see how they can be dealt with.

TCP can also be improved in another area. At the begin-
ning of a transfer, TCP only sends small amounts of data,
and then waits for an acknowledgment. The exact amount
of data being is sent is determined by the initial conges-
tion window. The congestion window is increased exponen-
tially until the maximum transfer speed is reached, but for
short transfers it never reaches the maximum. That means
for short transfers TCP doesn’t use the complete available
bandwidth as it spends a lot of time waiting for acknowl-
edgments. So the limiting factor here is not bandwidth, but
the RTT, that determines how long it takes for an acknowl-
edgment to arrive. The solution to speed up the transfer
is again to reduce the number of round-trips. This can be
done by increasing the initial congestion window. Sending
more data before waiting for an acknowledgment leads to
fewer round-trips in total.

The following section gives a brief introduction to TCP with
a special focus on the three-way handshake and congestion
window, which are important to understand the following
sections. Sections 3 and 4 give a detailed view of TCP Fast
Open and increasing initial congestion window respectively.
The last section 5 shows how much TCP Fast Open and
increasing the initial congestion window affect TCP perfor-
mance, both alone and combined.
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2. TCP BASICS
A TCP stream lifetime can be split into three parts: con-
nection establishment (three-way handshake), slow start and
congestion avoidance [12].

1. The three-way handshake is used to synchronize TCP
sequence numbers and ensures that the client didn’t
send a request with a spoofed IP address.

2. Slow start is used to determine the maximum available
bandwidth without congesting the network, by expo-
nentially increasing the number of segments that are
sent without waiting for an acknowledgment.

3. When that maximum is reached, i.e. when packet loss
occurs, a new phase called congestion avoidance be-
gins. In congestion avoidance, the number of packets
sent is still increased but only linearly and when packet
loss occurs, the number of packets is reset to the max-
imum determined in slow start.

The three-way handshake consists of three packets. First the
client sends a connection request packet (SYN flag set) to
the server, that contains a random initial sequence number.
No application data is contained in the first packet. The
server responds with a SYN-ACK packet, that acknowledges
the client’s sequence number and contains the server’s initial
sequence number. Then the client sends an ACK packet that
acknowledges the server’s sequence number and may contain
the first real data sent to the server. If the client had sent the
first SYN packet with a spoofed IP address, it wouldn’t have
received the server’s SYN-ACK packet because that was sent
to the real owner of the IP address. So the client can’t
send the third packet because it doesn’t know the server’s
sequence number it must acknowledge, so no connection is
established.

After the handshake the roles of the server and client are
no longer distinguishable. So from now on we only speak of
sender and receiver, where client and server are both sender
and receiver. Each sender has his own congestion window.

This is when slow start begins. Now the initial congestion
window determines how many packets are sent by the sender
before waiting for an acknowledgment from the receiver.
With each ACK from the receiver, the congestion window of
the sender is increased. In total it is approximately doubled
for each RTT [3].

Slow start continues until the congestion window has either
reached a preconfigured slow start threshold (ssthresh) or
when congestion is observed, i.e. when packet loss occurs.
After slow start congestion avoidance takes over. Every
RTT the congestion window is increased by at most one
segment. When packet loss occurs, i.e. the receiver doesn’t
acknowledge the last packet, but continuously acknowledges
the previous packets, the congestion window is decreased
to the maximum determined by slow start. If no acknowl-
edgment is received after a certain timeout, the congestion
window is reset to the initial congestion window size and a
slow start is performed.

There are also other algorithms for congestion avoidance,
but as congestion avoidance isn’t important for the following
sections we will not discuss them here.

3. TCP FAST OPEN
TCP Fast Open (short TFO), as proposed by Radhakrish-
nan et al. [13], tries to reduce the latency cost of TCP con-
nection establishment.

3.1 Design
The main idea behind TFO is to send data already in the
first request packet, not only after the complete three-way
handshake. However the three-way handshake is included
in TCP for a good reason and it shouldn’t just be removed.
The TCP handshake protects the server against denial-of-
service attacks with spoofed IP addresses. Therefore TFO
introduces a so called TFO cookie. The first time a client
opens a connection to a server, a normal three-way hand-
shake is performed. During this handshake the client re-
ceives a TFO cookie that can be used for future connections.

Figure 1 shows the packets sent during TFO connection es-
tablishment. For the first connection, the following steps are
performed:

1. The client includes a Fast Open Cookie Request TCP
option in the first SYN packet.

2. If the server supports TFO, it generates a cookie based
on the client’s IP and sends it to the client in the SYN-
ACK packet.

3. The client caches the cookie and can use it for all fol-
lowing connections to this server.

4. The connection continues like a normal TCP connec-
tion.

Now the client opens a new connection to the server, using
the TFO cookie it just received:

1. The client sends the payload data in the SYN packet
and includes the TFO cookie in the TCP options.

2. The server validates the cookie and if it’s valid, im-
mediately begins processing the payload. If the cookie
is invalid, the server discards the payload and a nor-
mal three-way handshake is performed before the client
sends the payload again.

3. If the cookie was accepted the server may send data
to the client before the first ACK from the client is
received

4. From now on the connection behaves like a normal
TCP connection.

The TFO cookie is computed by the server in a way that the
client can’t guess it, e.g. by encrypting the client’s source
IP using AES with a random key. This has the advantage
that no data has to be stored per connection on the server.
AES encryption is also very fast on modern hardware, so it

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

10 doi: 10.2313/NET-2013-08-1_02



SYN + TFO cookie request

SYN + ACK

ACK

Client Server

SYN-ACK + TFO cookie

SYN + TFO cookie + data

… regular TCP connection to
request cookie for future use

… continues like regular TCP
connection

Client caches cookie
for this server IP

Data in the SYN packet
also ACKed by server

Generates cookie by
encrypting client IP

Validates client TFO cookie +
accepts connection + data is
made available to application

More data packets sent
to client while handshake
is in progress

Figure 1: TFO connection overview [13]

doesn’t expose the server to denial-of-service attacks. The
random key is changed periodically, therefore clients must
periodically request a new cookie. This prevents clients from
harvesting cookies. Instead of changing keys the server could
also include timestamps in the cookie generation.

The maximum size of TCP segments is determined using
the server’s maximum segment size. The server includes
its maximum segments size (MSS) in the SYN-ACK packet
so the client knows how much data it may send. However
for TCP Fast Open, data is already sent in the SYN packet
when the client doesn’t yet know the server’s MSS. Therefore
it is recommended that the client caches the MSS, received
along with the TFO cookie in the first connection, and uses
it for the SYN packet of future connections. Otherwise the
client would be restricted to the default MSS of 536 bytes [6].

3.2 Security
TFO also introduces some additional security aspects that
need to be examined carefully [13].

3.2.1 Server Resource Exhaustion
Like normal TCP, TFO is vulnerable to SYN floods. How-
ever the consequences can be much worse. A traditional
SYN flood prevents the server from receiving any more con-

nections by flooding its SYN table. A TFO SYN flood at-
tack is an amplification attack, that causes high load on the
server with small load on the client.

If the attacker doesn’t have a valid TFO cookie, a handshake
must be performed and the server can be protected by us-
ing traditional SYN cookies. Once an attacker has a valid
TFO cookie he can open many more TCP connections for
which the server processes the request before the handshake
is complete, meaning the client does not use many resources
in order to cause resource exhaustion on the server.

A way to reduce the effectiveness of this attack is to restrict
the number of pending TFO connection requests. Pending
means the client has sent a SYN packet but no ACK packet
yet. If that limit is reached, all following TFO requests will
require a normal TCP handshake, which allows normal SYN
flood defense techniques to protect the server.

3.2.2 Amplified Reflection Attack
If an attacker acquires a valid TFO cookie from another
client, it can send lots of requests with a spoofed IP address
to the server. The server sends the response data to the vic-
tim client and may congest his network. However in order
to acquire a valid SYN cookie, the attacker would have to
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be in the same network or have remote access to the vic-
tim. If the attacker has remote access he won’t need to use
an amplified reflection attack, he can generate the requests
directly on the client.

A way to mitigate that attack on the server is to not send
any data before receiving the first ACK from the client. The
server still processes the request immediately so it is still
faster than without TFO. This is not implemented yet, but
could be done if an attack is observed.

3.3 Deployment
This section examines how difficult it is to roll out TFO
to the web. For TFO to work, both client and server need
to be TFO capable. If one of them isn’t, the connection
just falls back to a normal TCP handshake, so connection
establishment is still possible. This means enabling TFO is
backwards compatible, it can be activated on any server or
client and normal TCP connections still work.

Since TFO uses a not yet standardized TCP option, servers
that don’t support TFO respond either with a normal SYN-
ACK packet or not at all to a SYN packet with a TFO cookie
request. Even if the server supports TFO, the client might
still not receive a response, if some middle box discards non
standard TCP packets. If the server doesn’t respond after
a timeout, TFO sends a normal SYN packet without the
TFO option. Some NAT gateways use different IPs for new
connections, so existing client TFO cookies are no longer
valid on the server, then a normal three-way handshake is
performed and the data in the SYN packet is rejected.

In order to support TFO, the TCP stack in the operating
system needs deep modifications. This includes creating and
validating TFO cookies on the server and requesting, as well
as caching and sending the TFO cookie on the client side.
However, on the application level only small changes are
needed to use TFO on a TFO capable operating system.
The application states that it wants to use TFO by setting
a TCP socket flag. Furthermore instead of the usually used
connect() and send() function calls, the application must
use the already existing function sendto() that combines the
connect() and send() calls. This is necessary so the operating
system has the data that will be sent in the first SYN packet
in case TFO can be used.

The Linux kernel already supports TFO since version 3.7.
However it must be first enabled system-wide before applica-
tions can use it2. Google is currently working on an Internet
Draft to make TFO an Internet Standard [6].

4. INCREASE INITIAL CONGESTION WIN-
DOW

The initial congestion window specifies the number of pack-
ets that are sent before waiting for an ACK packet from
the receiver. The now obsolete RFC 2581 specifies the ini-
tial congestion window to be at most 2 segments, it was
replaced by RFC 5681 in 2009 which specifies a maximum
of 2 to 4 segments, depending on the sender maximum seg-
ment size [3, 2, 1].

2sysctl -w net.ipv4.tcp_fastopen=3

4.1 Design
The initial congestion window is largely responsible for the
throughput at the beginning of a new TCP connection. Be-
cause bandwidth has increased considerably over the past
years the first segments of the congestion window are sent
quickly. Then however the sender must wait for a full round-
trip time before sending the next segment. As previously
mentioned, the round-trip time (RTT) has only marginally
decreased over the past years. This means that during slow
start the TCP connection spends a lot of time waiting while
only gradually sending more packets. So, in order to speed
up short transfers, the RTT must be decreased. Decreas-
ing the RTT is rather hard, as previously mentioned, this is
caused by large buffers in middle boxes. Instead we can try
to reduce the number of round-trips it takes a connection to
finish. This way we also speed up the connection.

One proposal to decrease the number of round-trips is to
increase the initial congestion window, sending more data
before waiting for an acknowledgment. As mentioned in
section 2, the congestion window is usually doubled for each
round-trip, so a larger initial congestion window results in
fewer round-trips and the transfer finishes sooner [8]. For
large transfers we don’t see much improvement, the slow
start is only a small fraction of the transfer time, most of the
life time is spent in congestion avoidance. However, small
transfers only rarely reach congestion avoidance and spend
most of their life time in slow start. Those transfers finish
much faster.

Increasing start up performance also reduces the need for
browsers to open multiple parallel connections. This is done
to decrease page load times, but circumvents slow start by
opening up to 6 connections per server [15].

4.2 Deployment
Implementing an increased initial congestion window is fairly
straight-forward. Only a constant has to be changed on
the sender side. All receivers that have a large enough re-
ceive window of at least 10 segments get the benefit of the
increased initial congestion window. This is the case for
Linux3, Windows and OS X.

However you should be aware that this violates the currently
valid RFC 5681, which specifies the initial congestion win-
dow MUST NOT be more than 4 segments. The IETF is
working on an Internet Draft that will allow initial conges-
tion windows with up to 10 segments, but until this becomes
a standard, servers with larger initial congestion windows
are not standard compliant [7].

5. EVALUATION
Dukkipati et al. tested the performance improvement of
an increased initial congestion window, by performing var-
ious experiments with a congestion window of 10 segments
compared to a congestion window of 3 segments [8]. For
high RTT networks they observed approximately 10% la-
tency improvements of HTTP responses. TCP Fast Open
was tested by Radhakrishnan et al. [13]. They used an early
implementation in the Linux kernel to determine the latency
improvement. They observed an improvement of 10% for the

3since kernel version 2.6.39
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latency of a single HTTP request and 4% to 40% for overall
page load time.

In order to reproduce these results I set up a mininet VM [11]
that allows simulating arbitrarily complex network setups
using a simple command-line interface or a python API.
Mininet allows to simulate different network properties, like
setting the latency and bandwidth on links. For my ex-
periments I used a simple setup with two hosts connected
through a switch. In order to test TCP Fast Open I had to
update the Linux kernel to 3.8.3 because the mininet VM
comes with a kernel 3.5 that doesn’t support TFO.

The first experiment tests the duration of a file transfer using
different initial congestion windows. The value for the initial
congestion window is increased from 1 to 20. In figure 2 you
can see the duration of the transfer of three different files
as a function of the initial congestion window (ICWND) in
a high latency network (RTT 200ms). For an ICWND of
4, which is the current standard, transferring a 60KiB file
takes 1.3 seconds. With a ICWND of 10 it only takes 1.1
seconds, this is a improvement of 15%. In a lower latency
network the improvement a bit less. But, as figure 3 shows,
I still observed 13% improvement for the 60KiB file with
40ms RTT.

The diagrams also show that the improvement is more no-
ticeable for short transfers. The 1MiB transfer in this ex-
periment profits only very little from the increased initial
congestion window.
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Figure 2: 10Mbit/s RTT: 200ms

The next experiment simulates an average website request.
We want to determine how much a increased initial con-
gestion window (ICWND) and TCP Fast Open improve the
load time of this test website. A client requests one main file
with about 30KiB. Then several other transfers are started
simultaneously for files like css, javascript and images with
sizes between 10 and 60KiB.
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Figure 3: 10Mbit/s RTT: 40ms

This scenario is performed for different RTTs between 10ms
and 200ms and with all combinations of the previously dis-
cussed techniques, TFO disabled and enabled and with an
initial congestion window of 4 and 10.

To simulate that the client connects to the server for the first
time, the server’s TFO cookie key must be reset for each
test4. So even with TFO enabled, the first connection uses
a three way handshake and only the following connections
send their data in the SYN packet.

In figure 4 we can see the absolute duration of the complete
download as a function of the RTT. As expected, the transfer
takes the longest, without TFO and with a normal initial
congestion window. That’s the line at the top, the line at
the bottom is with TFO and an increased ICWND. Those
transfers are the fastest. If TFO and increased ICWND
are used individually they both take about the same time
somewhere between the two outer lines.

Figure 5 shows the improvement of TFO and an increased
ICWND relative to the current standard. The first thing we
can see is that when we have a larger RTT the improvement
is larger. For RTTs above 50ms the improvement of TFO
and increased ICWND individually is between 5% and 20%.
Both techniques improve the load time approximately the
same. For other websites this doesn’t have to be the case,
if there are files of several hundred kilo bytes the increased
ICWND should have a larger effect than TFO.

The most interesting thing is the column where both tech-
niques are used. The combination of both techniques yields
an improvement between 15% and 35%, that’s almost the
sum of the individual improvements.

4sysctl -w net.ipv4.tcp_fastopen_key=RAN-DOM-VAL-
UE
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6. RELATED WORK
Roan Kattouw and Max Meyers [10] reproduced the TFO
performance analysis done by Radhakrishnan et al. [13] for
loading web pages by replaying page loads for four popular
web sites. They also found that TFO improves the download
speed of popular websites by at least 10%.

In addition to the TCP enhancements mentioned in this
text, Google is also working on a complete TCP replace-
ment called QUIC [14]. QUIC is supposed to be faster than
TCP, by using multiple streams in one connection. It also
offers encryption, congestion control and forward error cor-
rection. This technology is not yet officially announced and
only exists as source code in the chromium repository.

SPDY [9] is another new protocol developed by Google,
that works one layer above TCP and is supposed to re-
place HTTP. SPDY offers default encryption, header com-
pression and multiplexing several streams in one connection.
Many browsers already support SPDY and also various web
servers. The new HTTP/2.0 standard [5], that is currently
developed is mainly based on SPDY.

7. CONCLUSION
As shown in section 5, TCP Fast Open and an increased ini-
tial congestion window bring large performance benefits for
short transfers. Especially the increased initial congestion
window is a small change that has a significant impact on
transfer performance. The deployment is easy and it comes
at little cost in today’s networks. A proposal to increase
the initial congestion window by default is in the process of
becoming an Internet Standard. TCP Fast Open consider-
ably improves TCP start-up time. It requires more changes
in the networking layer than increasing the initial conges-
tion window, but that is doable. The TFO cookie provides
acceptable protection against possible denial of service at-
tacks on the server. TFO is already implemented in the
Linux kernel, showing that TFO brings at least 10% perfor-
mance improvements for short transfers. TFO is on its way
of becoming an Internet Standard, the first step to become
widely adopted and enabled by default. Combining both
techniques results in an even larger performance improve-
ment. The whole web would become a bit faster if all hosts
implement these changes.
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