
How modern NICs speed up Packet-Processing
Performance of PC-Systems

Rainer Schönberger
Betreuer: Florian Wohlfart, Daniel G. Raumer

Seminar Future Internet SS2013
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: rainer.schoenberger@mytum.de

ABSTRACT
To ful�ll the increasing demand of higher network speeds,
ethernet standards and corresponding network adapters are
commercially available nowadays, which enable transfer rates
of up to 10Gb/s. However the technology above the ether-
net layer, especially the IP and TCP protocols, were not
changed and optimized that rapidly, hence processing pack-
ets in these upper layers represent a bottleneck. Also pop-
ular additional high level features like IPSec require even
more work to be done for packet processing. In this paper,
a set of advanced methods is described, which are currently
already implemented in the intel 82599 NIC controller, to
speed up packet processing by optimizing and maxing out
the potential of network interface cards. This includes tak-
ing over work of higher protocol levels and thus reducing the
mentioned bottleneck of network speed development.

Keywords
NIC, packet processing, intel 82599, niantic, IPsec, o�oad-
ing, RSS, multiple queues, interrupt moderation, MSI-X,
TCP Segmentation, RSC, PTP

1. INTRODUCTION
1.1 Bottlenecks of high speed networks
The current ethernet standard introduced in IEEE 802.3
speci�es a low level communication system, describing an
implementation for the ISO OSI layers 1 and 2. In this
standard, technology to enable data transfer rates as fast
as 10Gb/s (for example 10GBASE-SR) are introduced [1].
In most current applications of this standard however, the
maximum transfer rate can not be reached.
To understand why, one has to consider the main delay-
ing factors for packet transmission [4]. The �rst one is the
currently high per-packet-cost, which is dominated by large
data and protocol processing overheads resulting from up-
per layer protocols. With this overhead, computer systems
currently are almost unable to handle and process incom-
ing packets e�ciently at rates as fast as one packet per 67ns
[10, 4]. One of the most commonly used upper layer protocol
stacks, operating on top of ethernet, is TCP/IP. Processing
packets in the TCP/IP stack at these high rates is an enor-
mous challenging task and already requires a considerable
amount of cpu utilization, even at lower speeds [11].
Another cost factor is per-byte-cost. This describes the de-
lay and cpu work caused by copying and transferring data,
calculating checksums or encryption. To be able to send or
receive packets in the �rst place, they have to be transferred

from and to the CPU. Current transfer methods like Di-
rect Memory Access, which hand data over to the CPU via
shared main memory regions, are already pushed to their
limits.
Never the less numerous methods exist, to solve the prob-
lems, stated above, to a certain extent. In the following pa-
per some techniques are presented, which are implemented
in modern network interface cards (NICs), to speed up packet
processing and thus enable higher transfer rates while reduc-
ing CPU load.

The remainder of this document is organized as follows. As
an additional introduction the role of NICs in the ISO OSI
model is analyzed. In the beginning of section 2 the opera-
tion principle of modern NICs is presented at the example
of the intel 82599 controller. After that, special features im-
plemented in this NIC to speed up packet processing are de-
scribed in detail. Section 3 gives a summary of the described
features and concludes by analyzing the future development
of NICs.

1.2 Role of NICs in the ISO OSI model
As shown in �gure 1, the ethernet standard speci�es layer
1 (physical layer) and 2 (data link layer). A network in-
terface card operates exactly on these two layers, providing
a connection to a transmission medium over physical layer
dependant hardware (PHY) containing a method to do line
coding (PCS) and send signals to the medium (PMA). Also
access control to the medium (MAC) as well as a method
to send and receive ethernet packets to and from other par-
ticipants in a network, using an addressing system (LLC) is
provided [1, 2].
Traditionally the upper layers are implemented as part of
the operating system, also called host system or host in this
paper. With modern NICs however, more and more work
from layer 3 and 4 (TCP/IP) moves from the operating sys-
tem to the NIC hardware as described in this paper. Thus
the narrow and exact de�ned scope of NIC duties becomes
blurry.

2. THE INTEL 82599 NIC CONTROLLER
2.1 Overview
The Intel 82599, also nicknamed ninantic, is a 10Gb/s eth-
ernet controller IC. It supports two separate interfaces, for
driving Media Access Units (MAU) to transfer data over
optical �ber or copper wires. With this, it enables support
for various ethernet standards, including 100BASE-TX or

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

1 doi: 10.2313/NET-2013-08-1_01



Figure 1: Ethernet - ISO OSI Layers. [1]

10GBASE-SR.
The controller is designed for high end server NICs such as
the Intel Converged Network Adapter X520 [3] and provides
a number of features to speed up packet processing. This is
why in the following, this controller is considered as a ref-
erence for giving an overview of the current state of the art
NIC optimization techniques.

2.2 Path of a packet through NIC to OS
2.2.1 General concepts
As shown in �gure 2, the intel 82599 ethernet controller is
connected to the CPU via a PCI-Express bus. To transfer
packets, Direct Memory Access (DMA) is used to read/write
data from the individual Rx-/Tx-Queues (see chapter 2.3.5)
directly to main memory with minimum in
uence on CPU
work.
In the operating system, packets are stored in memory bu�ers
represented by descriptors often called mbufs. These de-
scriptors contain additional information for packets, used as
a method by the protocol stack to pass meta data to other
layers and pointers to the memory bu�ers containing the
packets.
The NIC uses much simpler descriptors that the OS. These
are organized in NIC rings which are circular arrays of NIC
descriptors to represent the memory bu�ers and meta data.
Figure 3 shows these di�erent descriptors and how packets
between NIC and the operating ststem are exchanged via
shared bu�ers in main memory [4]. Each Rx-/Tx-Queue can
be con�gured to point to a speci�c ring of memory bu�ers.
So data to be sent/received can be written or read from a
ring, served by a single queue.
While the packet is being processed in the NIC, various �l-
tering and CPU o�oading features are applied on the 
y
(see chapter 2.3).

2.2.2 Sending
The sending process of a packet [2] can be split into 4 basic
steps, whereas step 2 and 3 intermix to a certain extent,
because data is already processed in on the 
y while still
being received by DMA.

1. Host side preparation:
First of all the host creates a ring of NIC descriptors
and assigns one of the NIC's Tx-Queues to the ring.

Rx Rx RxTx Tx Tx

Ethernet Controller

82599

DMA

10GbE
PHY

10GbE
PHY

I/O HUB

L2 L2 L2 L2
L3

Core Core Core Core
0 1 2 3

QPI

QPIQPI

PCIe x8

L2 L2 L2 L2
L3

Core Core Core Core
0 1 2 3

Memory
Controller

Memory
Controller

CPU 0 CPU 1

Figure 2: Intel 82599 connectivity overview. [5]

NIC registers NIC ring buffers mbufs

operating system
hardware

...

...

... ... ...

base

head

tail

n descs

addr len v addr

v addr

v addr

Figure 3: Packet exchange between NIC and OS via
bu�ers in main memory. [4]

When the TCP/IP stack requests the transmission of
a packet, the descriptors are initialized to point to the
corresponding data bu�ers of the packet. After that,
the host updates the Queue Tail Pointer (TDT) of the
assigned Tx-Queue.

2. Transfer to NIC:
The DMA controller of the NIC is con�gured to sense
a change of the TDT. Once this happens, the DMA
controller sends a PCIe request to fetch the according
descriptors. As soon as the �rst descriptor is received,
it is placed in the appropriate location of the descriptor
queue and the NIC sends PCIe requests to get the
packet data from system memory.

3. Processing in the NIC:
When the packet data is being received by the DMA

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

2 doi: 10.2313/NET-2013-08-1_01



all programmed data manipulations (see chapter 2.3)
are applied on the 
y and the packet is stored in the
transmit FIFO.
Packets in this FIFO are eventually forwarded to the
MAC Part of the NIC, where the L2 checksum is ap-
plied and the packet is �nally sent over the wire.

4. Cleaning up:
After all packet data has been transfered to the NIC,
the appropriate descriptors are updated and written
back to host memory. An interrupt is generated to tell
the host, that the packet has been transmitted to the
NIC.

2.2.3 Receiving
Like in the previous chapter, one can also spilt up the re-
ceiving process of an ethernet packet [2] into 4 simple steps:

1. Host side preparation:
To be able to receive packets from the NIC the host
�rst has to con�gure and associate a new ring of de-
scriptors with one of the NIC's Rx-Queues. These de-
scriptors are initialized to point to empty data bu�ers.
After that, the Queue Tail Pointer (RDT) is updated
by the host, to let the NIC know, that it is able to
receive data.

2. Processing in the NIC:
When a packet enters the Rx MAC part of the NIC, it
is forwarded to the Rx �lter. According to this �lter,
the packet is placed into one of the 128 Rx FIFOs or
dropped (see chap. 2.3.5).

3. Transfer to the host:
The DMA controller fetches the next appropriate de-
scriptor from the according host memory ring (speci-
�ed by the Rx FIFO). As soon as the whole packet is
placed in the Rx FIFO, it is written to the memory
bu�ers, referenced by the descriptors, via the DMA
controller.

4. Handing over control to the host:
When the packet is transmitted to host memory, the
NIC updates all used descriptors and writes them back
to the host. After that, an interrupt is generated to
tell the host that a received packet is ready in host
memory. The host then hands over the packet to the
TCP/IP stack and releases associated bu�ers and de-
scriptors.

2.3 Special Features
As previously mentioned, the intel 82599 controller has a
variety of advanced functions to speed up packet processing
by either unburden the cpu from tasks, which easily can
be achieved in hardware (o�oading) or providing advanced
interfaces and �ltering options to enable better scaling in
multicore and multiprocessor systems. In the following some
of these techniques are described in detail.

2.3.1 Checksum offloading
For faster packet processing, the intel 82599 controller sup-
ports calculation of layer 3 (IPv4 only) and layer 4 (TCP or
UDP) checksums in hardware for both receive and transmit

functionality.
In the transmission process checksum o�oading can be en-
abled for speci�c packets by con�guring the corresponding
Tx descriptor (see chap. 2.2.2). Thereby the packet type,
size information of headers and payload must be provided.
The hardware then adds the calculated checksums to the
correct locations.
On the receive side, checksum calculation is also possible
in hardware. But before this is done the packet is passed
through a variety of �lters, to check if checksum calcula-
tion makes sense. These include MAC destination address
veri�cation, IP header validation and TCP/UDP header val-
idation. After a packet passes all the �lters, the checksum
is calculated and compared to the included checksum in the
packet. A checksum error is then communicated to the host
by setting the according Checksum Error bit in the ERROR
�eld of the receive descriptor [2].
Checksum o�oading tremendously reduces cost for prepar-
ing packets to be sent in software.

2.3.2 IPsec offloading
Ipsec describes a set of protocols, which enable authentica-
tion and encryption on the IP layer. There are two main
protocols speci�ed:

� Authentication Header (AH) is a method which pro-
vides authentication of IP packets. This is done by
appending a special header to the packet, containing a
cryptographic hash from the whole IP packet (includ-
ing parts of the header).

� Encapsulating Security Payload (ESP) enables encryp-
tion of the IP payload and optionally authentication
via an appended authentication hash block after the
encrypted payload.

A speci�c communication secured with IPSec (called IPSec

ow) shares encryption parameters, like an algorithm type
and secret keys (security association). These parameters
have to be exchanged before the secured communication
takes place.
The intel 82599 chip supports o�oading encryption and au-
thentication work for up to 1024 established1 IPSec 
ows
to hardware. Therefore the controller implements the AES-
128-GMAC algorithm for authentication (AH or ESP with-
out encryption) and the AES-128-GCM algorithm for en-
cryption plus authentication (ESP) [2]. O�oading IPSec
work for 
ows with other encryption types is not possible
with the intel 82599.
Figure 4 shows a simpli�ed example of three established

IPSec 
ows, whereas two of them are o�oaded to the NIC
hardware and one still beeing handled in software.
On the transmission path the hardware only encrypts the
packet, creates a authentication hash and places the cal-
culated data in the appropriate location within the IPSec
packet. Hence a complete IP packet with a valid IPSec
header must be provided by software with the unencrypted
data as a payload. The NIC is then ordered via the packet

1Security association exchange has to be done by software
and the corresponding parameters and keys have to be pro-
vided to the NIC. Also the software has to specify which

ows should be o�oaded.

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

3 doi: 10.2313/NET-2013-08-1_01



Hardware

IPSec

security
association

security
association

security
association

security
association

security
association

Software
IPSec

NIC Host

IPSec Flow

IPSec Flow

IPSec Flow

Figure 4: IPSec o�oading principle of operation.

descriptor to do the IPSec o�oading. On the receiving side
the 82599 decrypts the payload and checks the packet for
authenticity, again maintaining the IPSec packet structure.
The host is then noti�ed about a authentication success or
failure via the packet descriptors [2].

2.3.3 TCP segmentation offloading (TSO)
Big TCP packets exceeding the size of the maximum trans-
mission unit (MTU) have to be split into multiple packets.
Normally this is done by the TCP/IP Stack on the host side,
but with modern NICs, the host is able to o�oad this task
to the networking hardware. With that, TCP packets, big-
ger than the maximum MTU, can be handed over to the
NIC. The host only has to calculate the number of packets,
the data has to be split in and provide header information
to the device driver.
After the NIC has split the TCP payload of the packet into
multiple parts, the packet header is parsed and adjusted for
the individual packets. Thereby only the MAC header can
be copied without changing. The IP and TCP headers have
to be adjusted for each packet. Now the corresponding Eth-
ernet CRC, IP and TCP checksums have to be calculated
in hardware (see chap. 2.3.1). The new packets are then
formed with updated headers and checksums and sent over
the wire [2, 7].
Table 1 shows a typical TCP packet sent to the NIC, as
well as multiple TCP segments leaving the NIC. Thereby an
individual header and �eld checksum (FCS) was calculated
in hardware for each packet using information from the so
called Pseudo Header provided from the TCP/IP Stack.
This feature has a number of positive e�ects on performance:

� CPU workload is reduced, because the host does not
need to do segmentation and only needs to calculate
one header instead of several headers for all the seg-
mented packets

� Overhead due to data transmission between TCP/IP
Stack and device driver or device driver and NIC is
reduced, because larger blocks of data are transmitted
instead of many small pieces.

� Only one interrupt per transmitted TCP packet is gen-
erated instead of one per segment.

2.3.4 Receive side coalescing (RSC)
RSC is motivated by the same reasons as TCP segmentation,
described in the previous chapter, but operates on the re-
ceiving side of the NIC. The goal is to identify TCP packets

Table 1: TCP segmentation [2]
Packet sent from host:

Pseudo Header Data

Ethernet IP TCP DATA (TCP payload)

Packets sent from NIC:

Head
Data
�rst
MSS

FCS ... Head
Data
next
MSS

FCS ...

from the same connection (
ow) and coalesce them into one
large packet with a single header, which then is transmitted
to the host [11].
The intel 82599 has bu�ers to coalesce packets from several
TCP connections at the same time. Each of these bu�ers
is associated with a RSC context, which stores exact infor-
mation and a hash value for identifying the connection and
header information, as well as o�set values for new data
to be placed into the bu�er. To identify packets from a

context context context

TCP header
check

Incoming
TCP packets

Host

RSC
bu�ers

coalesced
packets

Figure 5: RSC principle of operation.

speci�c connection, the source plus destination IP addresses
and source plus destination TCP port numbers are extracted
from the TCP header and a hash value of this data is cal-
culated. This hash is then compared with the hash in each
RSC context. If no match is found, a new bu�er and context
is created. If a match was found, the connection identifying
data is compared again with the data in the context, this
time for an exact match. After passing this test, the packet
data is coalesced to the bu�er and the corresponding con-
text is updated with new o�sets [2, 11].
To �nish a coalescing process and forward the packet to the
host, besides other reasons, one of the following conditions
have to be met [2]:

� The corresponding RSC bu�er is full.

� A packet from an existing connection (RSC context
match) with the wrong sequence number arrives, mean-
ing packet loss has occurred, or the order of packets
was not maintained during transmission.

� A interrupt assertion timeout occurs. This is, when
collected events should generate an interrupt using the

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

4 doi: 10.2313/NET-2013-08-1_01



ITR interrupt moderation technique as described in
section 2.3.6

� An LLI-
agged packet arrives (also see chap. 2.3.6)

Figure 5 shows a simpli�ed functional diagram of the RSC
process. In this example three RSC contexts already exist
and a forth context might be opened when a packet arrives
which does not match any of the existing contexts.

2.3.5 Multiple Rx-/Tx-Queues
The support of multiple receive and transmit queues is a
key feature of 82599 based NICs. A variety of secondary
features is achieved by the use of these queues. Two of
them are mentioned here:

Programmable L3/4 filtering. For faster processing of pa-
ckets on the host, the intel 82599 controller supports 128
programmable �lters, operating on Layer 3 and 4, which are
applied on incoming packets to determine the destination
Rx queue.
Each �lter is described by a so called 5-tuple consisting of

� IP-Protocol type (TCP/UDP/SCTP/other)

� IP Source address, IP destination address

� Source port, destination port.

To specify which parts of the 5-tuple are required to match,
a bitmask has to be supplied for each �lter. After a packet
matches one or more �lters the matching �lter with the high-
est priority is selected and the packet is forwarded to the Rx
queue speci�ed by the �lter [2].
This feature is especially useful for software routers or �re-
walls, as it o�oads work for basic packet �ltering into the
NIC hardware, reducing both CPU utilization and routing
latency.

Receive Side Scaling (RSS). This is a technique to enable
scaling with increasing number of CPUs. Thereby the re-
ceived packets are distributed to several queues, which then
are bound to speci�c CPUs or cores [2, 6]. But with this
some problems occur. For example when ethernet packets
from the same TCP connection are distributed to several
CPUs they have to be merged and ordered again by the
TCP stack. So the distribution of these packets causes over-
head.
To solve problems of this kind, a hash function is utilized
to determine the destination Rx queue (see �gure 6). As
seen in table 2, the hash function therefore uses di�erent
parts of the packet as input data depending on the packet
type, to ensure a meaningful distribution to CPUs. This
allows packets from one TCP or UDP connection depend-
ing on their parameters in the header to be handled in the
same queue to enable independent processing of the queues
by multiple processors or cores. As a hashing algorithm, the
intel 82599 uses the NdisHashFunctionToeplitz function (for
details see [2] p. 326).

Hash

CPU 1 CPU 2 CPU n...

...

Received packet

Rx1 Rx2 Rxn

Figure 6: RSS principle of operation.

Table 2: RSS hashing input data [2, 6]
Packet type Components used for hash

IPv4/v6 + TCP SourceAddress + DestinationAd-
dress + SourcePort + Destina-
tionPort

IPv4/v6 + UDP SourceAddress + DestinationAd-
dress + SourcePort + Destina-
tionPort

IPv4/v6 + unknown SourceAddress + DestinationAd-
dress

2.3.6 Interrupt management
Interrupts from PCI and PCIe devices are not generated by
separate interrupt wires, but by so called Message-Signaled
Interrupts (MSI or the extended speci�cation MSI-X) [8,
9]. Thereby an interrupt is triggered by writing to a spe-
cial memory region. With the MSI-X standard up to 2048
di�erent interrupt messages are supported [8], whereas the
intel 82599 only utilizes 64 di�erent MSI-X interrupts [2].
When a relevant event occurs within the NIC (Rx/Tx de-
scriptor writeback for a speci�c Queue, Rx Queue full, ...)
the Extended Interrupt Cause Register (EICR) is updated
according to the event, whereas the queues can be assigned
to bits in the EICR register according to �gure 7. A in-
terrupt is then generated and the cause dependant MSI-X
message is sent. In legacy MSI mode, only one type of in-
terrupt message is sent and the host has to determine the
interrupt cause in software by reading the EICR register [2].
Hence MSI-X interrupt mode improves interrupt latency.

With a high rate of packet transmission, the interrupt rate
also increases proportionally. In case of a network adapter
operating at speeds up to 10Gbit/s, this might use a big
amount of CPU time to handle the interrupts. The in-
tel 82599 NIC controller features two Interrupt Moderation
techniques, to handle high interrupt rates:

Time-based Interrupt Throttling (ITR). Usually it is not
important for the operating system to be noti�ed as soon
as every single packet arrives. Hence this feature allows the

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

5 doi: 10.2313/NET-2013-08-1_01



Figure 7: Interrupt causes and their mapping
through EICR to MSI-X messages. [2]

user to limit the maximum rate of interrupts. Therefore
an ITR Counter is introduced, which decrements the 9 Bit
ITR value every 2�s in 1Gb/s or 10Gb/s operating mode or
every 20�s in 100Mb/s mode. Once the timer reaches zero,
accumulated events trigger an interrupt and the ITR value is
reloaded with a user speci�ed value. If events happen while
the timer is not zero, the EICR register is updated and no
interrupt is sent [2].

Low Latency Interrupts (LLI). On the one side Time-
based Interrupt Throttling reduces CPU load, but on the
other side interrupt latency is increased according to the
con�gured maximum interrupt rate. So when con�guring
ITR, a compromise between these two parameters has to be
made. But this states a problem, as some important events
have to generate interrupts with as low latency as possible
(for example, if the receive descriptor ring is running dry, or
timing critical packets are handled). To solve this, the in-
tel NIC controller supports bypassing of the ITR throttling
feature for speci�c events, allowing immediate interrupt ini-
tiation, called Low Latency Interrupt. Additionally to queue
assignment, the 5 tuple �lters described in chapter 2.3.5 can
also be con�gured to generate an LLI interrupt on a match.

2.3.7 Direct Cache Access (DCA)
DCA makes it possible for PCIe devices to write data di-
rectly to the cache of a speci�c CPU. Thus reducing mem-
ory bandwidth requirement, as the CPU does not often need
to read data from memory, because less cache misses occur
[10]. A DCA 
agged PCIe Packet is therefore sent to the I/O
Controller and the data is directly written to the CPU Cache
via the Quick Path Interconnect (QPI) or a similar system
(see �g. 2). This feature is especially useful, as memory la-
tency alone can signi�cantly slow down packet transmission
[10].

2.3.8 Precision Time Protocol (PTP)
PTP is speci�ed in the IEEE1588 standard. It presents a
technique, which enables to accurately synchronize clocks
over a local area network. It is similar to NTP, which is
used in larger networks. Thus PTP provides a much bet-
ter precision up to the sub microseconds range. To enable
time synchronization with a large pool of clocks connected
in one network, the PTP standard speci�es an algorithm to
autonomously build up a master-slave hierarchy, in which
the clients �nd the best candidates for a clock source [12, 2].

Master Slave

T0 + �TT0

T1

T2

T3

T4

Sync

Follow Up(T1)

Delay Req

Follow Up(T3)

Delay Resp(T4)

Timestamp register

Slave
Host

Slave NIC

Time

stamping

Medium

Figure 8: PTP Sync. Principle of operation. [2]

The clock synchronization itself is shown on the left side
of �gure 8. The master periodically sends a Sync packet
and captures the time (T1) when the Sync packet leaves the
NIC. If the client receives a Sync packet, it also captures
the current time (T2) according to its own shifted clock and
memorizes the value. After the Sync packet has been sent
by the master, a Follow Up packet including the captured
time stamp T1 of the Sync packet is sent2. The client then
sends a Delay Req packet to the host, which is again times-
tamped by the client (T3) and the server (T4), as mentioned
before. In a Delay Resp message the server �nally sends the
time stamp T4 to the client [12, 2]. Now enough data has
been collected to calculate the clock di�erence:

(T0 +�T + T2)� (T0 + T1) = (T0 + T4)� (T0 +�T + T3)

) �T =
(T2 � T1)� (T4 � T3)

2

In version 1 of the PTP standard the packets sent for syn-
chronization are UDP Layer 4 packets. With version 2 of
the standard however, the protocol is also speci�ed for pure
ethernet frames identi�ed by a special EtherType value in
the MAC header.
The intel 82599 supports hardware time stamping of in-
coming and outgoing Sync and Delay Req packets. This
is supported for ethernet PTP messages as well as for UDP
packed PTP messages. Thereby the time stamp is captured
by the NIC exactly, before the last bit of the ethernet Start
of Frame Delimiter is sent over the wire. The chip only
takes the time stamp of the transmitted or received packet
and provides the value in NIC registers. The rest of the
PTP implementation (including building and sending the
Follow Up messages) has to be done in software by reading
the time stamp registers.
Figure 8 shows the role of the NIC during a PTP clock syn-
chronization and which PTP packets trigger the hardware
time stamping logic.
Because the time stamping logic is located as near as possi-
ble to the physical medium interface, very high accuracy is
achieved with hardware PTP support in the intel 82599 [2].

2The time stamp can not be included in the Sync packet,
because at the time, the Sync packet is built the time stamp
does not yet exist, as it is captured when the packet is al-
ready being sent.

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

6 doi: 10.2313/NET-2013-08-1_01



3. CONCLUSION
In the previous sections an overview of current techniques
were presented, to speed up packet processing in high speed
networks. Such as moving work from the TCP/IP Stack to
the hardware (o�oading features), enabling better utiliza-
tion of multi processor systems and optimizing data transfer
and communication between NIC and the host system. To
enable networking on even higher speeds than 10Gb/s, these
e�orts might not be enough and hence the NICs are still
a subject for active research. Ideas for integrating parts of
NICs into CPUs to further improve communication and data
exchange with the CPU exist [13] and it is a visible trend
that more and more work will be done by NIC hardware in
the future to conquer latency and high CPU load.

4. REFERENCES
[1] IEEE Std 802.3 - 2008 Part 3: Carrier sense multiple

access with collision detection (CSMA/CD) access
method and physical layer speci�cations - Section
Four, In IEEE Std 802.3 - 2008 (Revision of IEEE Std
802.3 - 2005), IEEE New York, NY, USA, 2008

[2] Intel 82599 10 GbE Controller Datasheet Rev. 2.76,
Intel, Santa Clara, USA, 2012

[3] Product brief - Intel Ethernet Converged Network
Adapter X520, Intel, Santa Clara, USA 2012

[4] L. Rizzo: Revisiting Network I/O APIs: The netmap
Framework, In Queue - Networks Volume 10 Issue 1,
ACM New York, NY, USA 2012

[5] Evaluating the Suitability of Server Network Cards for
Software Routers, Maziar Manesh, ACM PRESTO
Philadelphia, USA 2010

[6] Receive Side Scaling, Microsoft msdn online
documentation,
http://msdn.microsoft.com/en-us/library, 2013

[7] O�oading the Segmentation of Large TCP Packets,
Microsoft msdn online documentation,
http://msdn.microsoft.com/en-us/library, 2013

[8] Introduction to Message-Signaled Interrupts, Microsoft
msdn online documentation,
http://msdn.microsoft.com/en-us/library, 2013

[9] G. Tatti: MSI and MSI-X Implementation, Sun
Microsystems, In PCI-SIG Developers Conference,
2006

[10] R. Huggahalli, R. Iyer, S. Tetrick: Direct Cache
Access for High Bandwidth Network I/O, In Computer
Architecture, 2005. ISCA '05. Proceedings. 32nd
International Symposium on, IEEE, 2005

[11] S. Makineni, R. Iyer: Receive Side Coalescing for
Accelerating TCP/IP Processing, In HiPC'06
Proceedings of the 13th international conference on
High Performance Computing, Springer-Verlag,
Berlin, Heidelberg, 2006

[12] J. Eidson: IEEE-1588 Standard Version 2 - A
Tutorial, Agilent Technologies, Inc, 2006

[13] N. Binkert, A. Saidi, S. Reinhardt: Integrated Network
Interfaces for High-Bandwidth TCP/IP, ACM, San
Jose, California, USA, 2006

Seminars FI / IITM / ACN SS2013,
Network Architectures and Services, August 2013

7 doi: 10.2313/NET-2013-08-1_01


