
Simple PKI

Sebastian Wiesner
Supervisor: Ralph Holz

Seminar Innovative Internet Technologies and Mobile Communications
Chair for Network Architectures and Services

Fakultät für Informatik, Technische Universität München
Email: basti.wiesner@mytum.de

ABSTRACT
In this paper we discuss the SPKI standard as an alternative
to the current X.509 and OpenPGP standards. The paper
starts with a short history of PKI, and assesses the cur-
rent state and the various flaws in the X.509 and OpenPGP
standards. Then the main part of this paper explains the
concepts of SPKI, and discusses how SPKI supports vari-
ous notions of trust. Finally the paper concludes with an
attempt to determine why SPKI lacks widespread imple-
mentation and deployment despite its advantages over con-
ventional PKI.

Keywords
OpenPGP, PKI, SPKI, Trust, X.509

1. A SHORT HISTORY OF PKI
In their famous 1976 paper “New Directions in Cryptog-
raphy” [10] Whitfield Diffie and Martin Hellman not only
invented public key cryptography, they also envisioned the
first PKI: “The enciphering key E can be made public by
placing it in a public directory along with the user's name
and address” [10, page 648].

Two years later the term “certificate” was introduced to de-
scribe cryptographically signed bindings from public keys to
names that were to be used independently of the public file
suggested by Diffie and Hellman [19].

By 1988 these ideas had developed into the X.509 standard,
part of the X.500 family of standards. Following the idea
of Diffie and Hellman these standards envision a “global,
distributed directory of named entities” [14, page 6]. X.509
certificates consequently bind public keys to global names.
These certificates are issued by certificate authorities.

In 1991 Phil Zimmerman published PGP (standardized as
OpenPGP [5]), an alternative certificate infrastructure with-
out certificate authorities. Instead OpenPGP allows entities
and individuals to issue their own certificates. By mutual
signing of certificates among different entitities, OpenPGP
forms a “web of trust” [2, 8] in which people assert the valid-
ity of each others certificates. The idea behind this system
is that given enough signatures all signatures of a certificate
can jointly assert the validity of the certificates, even though
some individual signatures might potentially be fraudulent.

In 1998, SPKI [13, 14] joined the family of public-key cryp-
tography standards, following ideas of Ron Rivest [27] and

Carl M. Ellison [12]. On the surface it can be considered as a
combination of the hierarchical X.509 infrastructure and the
flat PGP web. However, in fact SPKI abandons some basic
assumptions of X.509 and PGP: The need of global names
for identification, and the need of identification itself. SPKI
uses local names that live within name spaces, and it in-
troduces authorization certificates to allow for authorization
without the need of a confirmed identity.

Today X.509 is used standards such as S/MIME [24] and
SSL/TLS [9], making it the dominant certification infras-
tructure for secure HTTP communication and confidential
mail communication. However, of late several serious inci-
dents concerning certification authorities have raised con-
cerns about the security of the current CA infrastructure.
For instance, in 2011 over 200 fraudulent certificates were
issued and supposedly used in MITM attacks after a breach
into the Dutch DigiNotar CA [3, 15, 21, 22] resulting in the
removal of DigiNotar from the root stores of major browsers
and the subsequent bankruptcy of DigiNotar.

OpenPGP is widely used to ensure authentication and in-
tegrity of the infrastructure of free software projects1, mostly
because certificates can be issued and used without fees or
additional costs, since no certification authorities are in-
volved in the issuing of certificates and all necessary tools
are provided free of charge2. However, OpenPGP has not
been widely adopted among individuals, and thus there is
no large web of trust as originally indented.

SPKI, however, has not been adopted at all. The purpose
of this paper is to introduce SPKI, to assess in how far it is
an improvement over X.509 and PGP, and to discuss why it
was not adopted by software vendors and the internet com-
munity. The paper starts with a short introduction into the
current PKI situations, its problems and its flaws. The fol-
lowing main section introduces SPKI, explaining the core
concepts of name spaces and certificates. The next sec-
tion determines how a notion of trust can be represented in
SPKI, and compares this to the trust notion in OpenPGP
and X.509. The paper concludes with a discussion of SPKI's
success (or the lack thereof).

1For instance, the Debian project uses PGP to sign the pack-
ages in its software repository in order to guarantee their
authenticity and integrity.
2For instance, the Free Software Foundation provides a fully
featured PGP suite with its GNU Privacy Guard (GnuPG or
PGP) project under a free software license with no charge.

doi: 10.2312/NET-2013-02-1_11Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

83



2. PKI—THE CURRENT STATE
Nowadays X.509 and OpenPGP are the dominating stan-
dards for public-key cryptography. On the surface, both
standards appear to be vastly different, in fact even anti-
thetical, however it turns out that these standards share
some very basic assumptions on what a PKI is supposed to
provide and how it should work.

2.1 The problem of global names
The most basic assumption of OpenPGP and X.509 is that
names are global. This assumption is inherited from X.500
vision of a single global directory tree of named entities. In
this directory tree, each entity is represented by a specific
node, and this node is address by a globally unique dis-
tinguished name. Originally X.509 certificates were merely
access tokens, granting a keyholder the permission to modify
the corresponding node in the directory tree. Certificate au-
thorities were not independent entities, but associated with
nodes in the directory tree, issuing access certificates for
subordinate nodes [14].

Only after it became clear that X.500 would never be de-
ployed, X.509 certificates were extracted from the X.500
family and and—following the business needs—used as iden-
tity certificates. With the lack of a single directory tree,
there was also no single certificate hierarchy any longer. In-
stead many independent and competing CAs continued to
issue certificates for arbitrary global names. By and large
the X.509 as used today thus ignores and even contradicts
most of its original design concepts. Peter Gutmann gives
and intriguing overview of the current X.509 flaws in [16].

OpenPGP [5] is not different in this aspect. Though it does
not rely on CAs to issue certificates, the names—called user
ID—in OpenPGP certificates are still global in the whole
OpenPGP network.

However, global names contradict the human use of names.
While there are global names—mostly world-wide brands
and trademarks like Coca Cola, Apple or Amazon—the ex-
act meaning of names that we use depends on our local
domain.

For instance, to some people the name Coca Cola might refer
to the Coca Cola company as a whole, to others it might only
refer to the soft drink that goes by this name, and to others
again it might stand as a name for all soft drinks of this
kind (e.g. Pepsi Cola). Sometimes the meaning of name
even depends on the context of its use.

The problem of the meaning of a name is increased by the
fact that many names that we use are not actually unique.
According to the U.S. Social Security Administration the
name “Emily” was given to not less than 223,488 female
children born in the U.S. between 2000 to 2009 [4]. Thus
the name “Emily Smith” is not unique within U.S., prob-
ably not even within a larger city. In his popular book
“Beyond fear” the renowned cryptographer and security ex-
pert Bruce Schneier tells the anecdote that another Bruce
Schneier from Illinois is tired of getting Bruce Schneier's e-
mail by mistake [28, page 184]. We obviously even fail to
correctly identify a person who is present in the public by
his books, talks and interviews.

To issue an identity certificate for Emily Smith, the ambigu-
ous local name “Emily Smith” has to be turned into a unique
global name artificially. This effectively turns the problem
of distributing a public key into the problem of distributing
the public name one goes by [16].

The impact of the problem can be observed in OpenPGP.
Here keys are identified by user IDs which is typically the e-
mail address. However, an e-mail address does not provide
information about its owner, and hence cannot identified
the person behind the address. Moreover due to its dis-
tributed nature OpenPGP cannot enforce unique user IDs:
Two different keys may be bound to the same mail address.
Thus a mail address cannot sufficiently identify a key. To
address this problem, OpenPGP users typically distribute
the IDs of their keys. A Key ID is a short and unique rep-
resentation of the public key itself. Thus the problem of
securely distributing one's public key is not at all solved by
OpenPGP. It is merely turned into the problem of securely
distributing the key ID.

2.2 Authentication and Authorization
With the trust in global names comes the believe that au-
thenticating a key-holder by its certificate is sufficient to
authorize her. The consequence is that authorization with-
out authentication is impossible in OpenPGP and X.509.
Neither of these standards provides means for anonymous
authorization.

Thus any security system built on these standards is forced
to identify and authenticate its clients in order to autho-
rize actions, even if the identity of the client is not actually
relevant for authorization. However, as explained in the pre-
vious section secure identification and authentication are no
solved problems which obviously has an adverse impact on
the design of any security system that could in theory work
securely without any authentication at all.

3. SPKI—THE FUTURE?
Following these insights SPKI (Simple Public Key Infras-
tructure [13]) considers global names a fundamental con-
ceptual flaw both in PGP and X.509 [14]. Instead, SPKI
uses the keys themselves as global identifiers [14].These are
naturally globally unique and hence serve well as a reliable
global identifier.

Consequently, keys are the principal items in SPKI, contrary
to X.509 and OpenPGP which use names as principals. This
neatly avoids all the problems with names discussed above.
Most notably it allows for anonymous authorization: Not
names, but keys are the subject of authorization.

3.1 Local names
However, keys are hardly tractable by humans. Thus SPKI
allows for local naming of keys within a name space. Each
public key has an associated name space. In this name
space, keys or names can be assigned with identifiers by
basic names:

Definition 3.1. A basic name consists of a public key 𭐾
and an identifier (being a word over a chosen alphabet) [7,
14].

doi: 10.2312/NET-2013-02-1_11Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

84



Example 3.1. A basic name might be 𭐾 Fred. 𭐾 is a
key defining the name space, Fred an arbitrary identifier
that may refer to another key or another basic or compound
name.

A basic name is unique within a name space. However, a
basic name may refer to multiple other keys or names to
express group memberships.

A basic name is only meaningful within its name space.
There is no immediate relation between names from different
name spaces.

Example 3.2. 𭐾1 Fred and 𭐾2 Fred are different and un-
related local names that may map to different keys, even
though both names happen to use the same identifier.

There are no rules restricting the identifiers of local names.
Each name space may choose its own, arbitrary set of identi-
fiers. A name space concerned with DNS (e.g. a list of known
SSH hosts) may use DNS names as identifiers, another name
space used for e-mail encryption may use e-mail addresses,
and again another name space created from a local address
book may use person names as identifiers.

Example 3.3. The following are valid, but again unrelated
local names:

• 𭐾1 Fred
• 𭐾2 fred@example.com
• 𭐾3 example.com

There is no top level name space, and not even any kind of
hierarchy between name spaces. A priori each name space
is unrelated to other name spaces.

3.2 Linkage of local namespaces
However, name spaces can be linked by combining local
names to form compound names [7, 14]:

Definition 3.2. A compound name is a local name consist-
ing of two or more identifiers.

Example 3.4. 𭐾 Fred Sister is a compound name. 𭐾 is
a key defining the name space again. Within this name
space, Fred identifies another arbitrary but fixed 𭐾𭐹 . In the
name space of 𭐾𭐹 the identifier Sister maps to yet another
arbitrary but fixed key 𭐾𭑆 eventually. Hence the name
spaces 𭐾 and 𭐾𭐹 are linked with this compound name so
that Sister from 𭐾𭐹 can be referred to from 𭐾.

By chaining basic names into compound names one can refer
to names from other names spaces. However, compound
names too are not meaningful outside of their name space.

Example 3.5. 𭐾1 Fred Sister and 𭐾2 Fred Sister are differ-
ent and unrelated compound names that may map to differ-
ent keys.

When no distinction between these two kinds of names is
required one may speak of a local name or just a name to
refer to either a basic name or a compound name.

3.3 SPKI certificates
To define a name within the name space of a key SPKI
provides name certificates. Furthermore SPKI provides au-
thorization certificates to delegate authorization to a key or
a name. In the SPKI language the term “certificate” is often
abbreviated as “cert” [7]. This abbreviation will be used in
the following.

3.3.1 Name space definitions with name certificates
Name certs define a basic name within the name space of
the signing key. A name cert for the local name 𭐾𭐴 is a
signed3 tuple of four elements S𭐾(𭐾, 𭐴, 𭑆, 𭑉 ) [7, 14].

Issuer 𭐾 The key 𭐾 which issued the certificate.

Identifier 𭐴 The identifier of the basic name that is de-
fined by this cert. Note that name certs only define
basic names. Compound names are created by the
composition of several names, but never defined di-
rectly.

Subject 𭑆 The “meaning” of the basic name 𭐾 𭐴, typi-
cally the key 𭐾′ to which the new basic name shall
map.

Validity 𭑉 The validity specification. Typically this is a
pair (𭑡1, 𭑡2) meaning that the cert is valid only within
the interval [𭑡1, 𭑡2]. However, SPKI also allows for
online validity checks. Section 5 of [14] discusses the
various validity conditions that may be imposed upon
SPKI certificates.

Example 3.6. The name cert S𭐾(𭐾, Fred, 𭐾𭐹 , ()) defines
the name 𭐾 Fred as Fred's key 𭐾𭐹 (see example 3.1). The
cert has unlimited validity.

As said basic names are not required to be unique. Hence
one may issue multiple certs for the same basic name:

Example 3.7. The name certs (𭐾, Friends, 𭐾 Fred, ()) and
(𭐾, Friends, 𭐾 Alice, ()) define the name 𭐾 Friends both as
𭐾 Fred and as 𭐾 Alice respectively. Essentially this defines
a group 𭐾 Friends with the members 𭐾 Fred and 𭐾 Alice.
Separate name certs are required to define the names 𭐾 Fred
and 𭐾 Alice.

While name certs may only define local names the subject
of a name certificate may also be a compound name:

Example 3.8. The cert (𭐾, Friends, 𭐾 Fred Sister, ()) de-
fines 𭐾 Friends as the compound name 𭐾 Fred Sister (see
example 3.4). To fully define this compound name both the
owner of 𭐾 and 𭐾 Fred need to issue further name certs,
for instance:

• (𭐾, Fred, 𭐾𭐹 , ()) to define 𭐾 Fred as key 𭐾𭐹 , that is
as the name space of 𭐾𭐹 .

3More precisely it is signed with the private key correspond-
ing to the public key 𭐾. For the sake of brevity I say “signed
by a key 𭐾” instead of “signed by the private key corre-
sponding to the public key 𭐾”.

doi: 10.2312/NET-2013-02-1_11Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

85



• (𭐾𭐹 , Sister, 𭐾𭐹 𭐴𭑙𭑖𭑐𭑒, ()) to define 𭐾𭐹 Sister as the
name 𭐾𭐹 Alice. Transitively 𭐾 Fred Sister is now also
defined as 𭐾𭐹 Alice.

• (𭐾𭐹 , Alice, 𭐾𭐴, ()) to eventually define 𭐾𭐹 Alice as
Alice' key 𭐾𭐴.

These bindings effectively make 𭐾𭐹 Alice a member of the
group 𭐾 Friends. Note however that the owner of 𭐾 has
no authority over names outside of her own name space.
Hence the meaning of the name 𭐾 Fred Sister depends on
certificates issued by the owner of 𭐾 and 𭐾 Fred.

3.3.2 Authorization certificates
Names as defined by name certs provide a convenient level
of abstraction from keys. However security decisions are
typically not made based on who someone is (identity) but
rather on what she is allowed to do (authorization).

SPKI strictly separates identity established by name certs
from authorization which is conveyed by authorization cer-
tificates or “auth certs”. An auth cert is a signed tuple of
five elements S𭐾(𭐾, 𭑆, 𭑑, 𭑇 , 𭑉 ) [7, 14].

Issuer 𭐾 Like with name certs, 𭐾 is the key that issued
this cert. The owner of this 𭐾 is granting the autho-
rization conveyed by this cert.

Subject 𭑆 A local name or a key that receives the autho-
rization4.

Delegation bit 𭑑 If set the subject may delegate this au-
thorization or a subset thereof. Delegation is per-
formed by issuing a new auth cert to another subject,
signed with a key that corresponds to the subject 𭑆,
either directly if 𭑆 is a key or—if 𭑆 is a name—indi-
rectly with a key that is defined for 𭑆 by a name cert.
Section 3.3.3 explains the interpretation of this flag in
more detail.

Authorization tag 𭑇 The authorization that is granted
by this cert. The interpretation and meaning of the
authorization depends on the application. The verifier
has to implement the appropriate logic to interpret
the authorization. SPKI however provides a standard
semantic for authorization tags.

Validity specification 𭑉 The validity of the cert, just like
for name certs (see section 3.3.1).

Example 3.9. The auth cert

(𭐾, 𭐾𭐹 , 0, 𭑟𭑒𭑎𭑑 ftp://example.com/, ())

grants 𭐾𭑓 the undelegatable and unlimited authorization
to read from the URL ftp://example.com/. The owner of
𭐾𭐹 can include this authorization certificate in her FTP
request to the server and then sign the request with 𭐾𭐹 .
This proves the FTP server that the request is legitimate
and authorized.
4SPKI also has threshold subjects to reflect the requirement
of having 𭐾 out of 𭑁 key holders agree on an authorization
to be granted. The discussion of these subjects is beyond
the scope of this paper. See section 6.3.3 of [14] and section
10 of [7] for information about threshold subjects.

3.3.3 Chains of certificates
Auth certs are not required to grant authorization directly to
a specific key. They may also grant authorization to names:

Example 3.10. The auth cert

(𭐾, 𭐾 𭐹𭑟𭑒𭑑, 0, 𭑟𭑒𭑎𭑑 ftp://example.com/, ())

grants the authorization from example 3.9, but not to a key
𭐾𭐹 , but to the name 𭐾 𭐹𭑟𭑒𭑑.

Granting authorization to names has some advantages over
granting to keys directly:

• It abstracts from the key, making the authorization re-
silient in face of key changes. If 𭐹𭑟𭑒𭑑 needs to change
her key the auth cert does not the to be re-issued.

• It allows for authorization to be delegated to groups
as in example 3.7.

• It provides a user-friendly way to refer to the entity
that is the subject of a cert, i.e. speaking of 𭐹𭑟𭑒𭑑 is
just easier than speaking of a public key 𭐾𭐹 .

This imposes a difficulty to 𭐾 𭐹𭑟𭑒𭑑: Since the auth cert
does not contain a key to sign the FTP request, he needs
a another name cert that provides a key 𭐾𭐹 for the name
𭐾 𭐹𭑟𭑒𭑑. She then needs to include the auth cert and the
name cert into her FTP request to prove her authorization.
In short he needs to provide the server a certificate chain
from the signing key to an auth cert accepted by the server.

The discovery of such chains is an interesting computational
problem discussed in [7]. This paper introduces the concept
of rewrite rules of the form 𭐿 → 𭑅 which rewrite names in
certificates.

Definition 3.3. Name and auth certs can be represented
as rewrite rules:

• A name cert 𭐶 = (𭐾, 𭐴, 𭑆, 𭑉 ) is represented as rule
𭐾 𭐴 → 𭑆.

• An auth cert 𭐶 = (𭐾, 𭑆, 𭑑, 𭑇 , 𭑉 ) is represented as
rule 𭐾 1 → 𭑆 𭑧 with 𭑧 = 1 if 𭑑 is set and 𭑧 = 0
otherwise. The boxed suffixes (tickets) control the del-
egation of authorization during re-writing, and ensure
that undelegatable auth certs are not rewritten any
further.

Based on rewrite rules the composition of certs is defined:

Definition 3.4. Given two certs 𭐶1 and 𭐶2 with the corre-
sponding rewrite rules 𭐿1 → 𭑅1 and 𭐿2 → 𭑅2 respectively
and 𭑅1 = 𭐿2𭑋 (𭐿2 is a prefix of 𭑅1) then 𭐶3 = 𭐶1 ∘ 𭐶2 =
𭐿1 → 𭑅2𭑋. 𭑋 may be empty.

Composing certs allows to combine multiple certs into a sin-
gle, “virtual” certs that captures the “meaning” of all these
certs:

Example 3.11. Two name certs

𭐶1 = (𭐾, Friends, 𭐾 Fred Sister, 𭑉 )
𭐶2 = (𭐾, Fred, 𭐾𭐹 , 𭑉 )

doi: 10.2312/NET-2013-02-1_11Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

86



together define 𭐾 Friends as 𭐾𭐹 Sister. With the rewrite
rules corresponding to 𭐶1 and 𭐶2

𭐶1 = 𭐾 Friends → 𭐾 Fred Sister
𭐶2 = 𭐾 Fred → 𭐾𭐹

we can now compute the virtual certificate that captures this
definition:

𭐶3 = 𭐶1 ∘ 𭐶2 = 𭐾 Friends → 𭐾𭐹 Sister =
= (𭐾, Friends, 𭐾𭐹 Sister, 𭑉 )

Now the interpretation of the delegation bit becomes clear.
If the delegation bit is set, the right hand side of the rule
has a “live” ticket 1 . This right hand side can be rewritten
further with other auth certs, reflecting the delegation of
authority to another subject.

Example 3.12. The auth certs

𭐶1 = (𭐾, 𭐾𭐹 , 1, 𭐴, 𭑉 ) = 𭐾 1 → 𭐾𭐹 , 1

𭐶2 = (𭐾𭐹 , 𭐾𭐴, 0, 𭐴, 𭑉 ) = 𭐾𭐹 1 → 𭐾𭐴 0

can be composed to

𭐶3 = 𭐶1 ∘ 𭐶2 = 𭐾 1 → 𭐾𭐴 0 =
= (𭐾, 𭐾𭐴, 0, 𭐴, 𭑉 ).

The certificate 𭐶3 proves the authorization of the owner of
𭐾𭐴 to the owner of 𭐾. Thus using the chain 𭐶1, 𭐶2 the
authorization 𭐴 is effectively delegated to the owner of 𭐾𭐴.

If the delegation bit is unset however, the right hand side
of a rule has a “dead” ticket 0 . Since the left hand side
of an auth cert rule always has a live ticket, the left hand
side of an auth cert rule cannot be a prefix of a term with
a dead ticket. Thus a right hand side with a dead ticket
cannot be rewritten by another auth cert, but only by name
certs. Hence the authorization cannot be delegated to other
subjects.

Example 3.13. The authorization conveyed by the auth
cert

𭐶1 = (𭐾, 𭐾 Friends, 0, 𭐴, 𭑉 ) = 𭐾 1 → 𭐾 Friends 0

cannot be delegated any further, because there is no auth
cert can be a prefix of the right hand side of this rule. Thus
there is no valid chain that can include another auth cert
after this cert.

However this cert can still be rewritten with name certs.
Consider the name cert

𭐶2 = (𭐾, Friends, 𭐾𭐹 , 𭑉 ) = 𭐾 Friends → 𭐾𭐹 .

This cert can be composed with 𭐶1 to yield

𭐶3 = 𭐶1 ∘ 𭐶2 = 𭐾 1 → 𭐾𭐹 0 =
= (𭐾, 𭐾𭐹 , 0, 𭐴, 𭑉 ).

Hence using the chain 𭐶1, 𭐶2 the owner of 𭐾𭐹 can prove her
authorization to the owner of 𭐾. Effectively 𭐾𭐹 is granted
the authorization 𭐴 for being a member of the 𭐹𭑟𭑖𭑒𭑛𭑑𭑠
group.

The composition of certs is transitive, hence there is a tran-
sitive closure 𭐶+ for a set of certificates 𭐶. The name reduc-
tion closure 𭐶# is a subset of 𭐶+ created by only including
compositions that strictly reduce the right hand side of the
composition.

In order to find a chain that proves authentication 𭐴 for the
key 𭐾 one now takes the set 𭐶 of all valid auth certs for 𭐴
and all valid name certs and computes the name reduction
closure 𭐶#. From this closure which contains all intermedi-
ate compositions from the auth certs to the key 𭐾 (if there
are any) one can create a graph with a vertex for each key
and an edge for each auth cert in 𭐶#.

A certificate chain that proves authorization 𭐴 for the key
𭐾 can now be created by a simple breadth-first search over
this graph. If no chain is found, no such chain exists in
the set 𭐶 meaning that the owner of 𭐾 actually lacks the
authorization 𭐴 [7].

3.4 S-expressions
SPKI uses S-expressions—as known from the LISP family
of languages5—to encode names, authentications and even
certs6 These expressions are a human-readable and well-
understood syntax to encode data structures which makes
SPKI certificates pleasingly simple to read and comprehend
if compared to the complexity of the ASN.1-encoded X.509
certificates.

3.4.1 Names as S-expressions
S-expressions starting with the tag name encode local names:
Example 3.14. Within a cert issued by the key 𭐾 the S-
expression (name Fred) encodes the basic name 𭐾 Fred (see
example 3.1). Outside of a cert fully qualified names [14]
such as (name (hash sha1 H(K)) Fred) must be used to
explicitly specify the name space. 𭐻(𭐾) must be substi-
tuted with the SHA1 hash of the key 𭐾7.
Example 3.15. Within a cert issued by the key 𭐾 the
S-expression (name Fred Sister) encodes the compound
name 𭐾 Fred Sister (see example 3.4). Outside of a cert a
fully qualified name must be used, just like in the previous
example.

3.4.2 Authentication as S-expressions
The encoding of names as S-expressions is merely convenient
but in the encoding of authentication S-expressions become
truly powerful. Authorization is encoded as a (nested) list
of strings [14] starting with tag:
Example 3.16. The authorization tag
(tag (ftp ftp.example.com /foo/bar))

might allow FTP access to the directory /foo/bar on the
host ftp.example.com.
5See Rivest's S-expressions page [26] and guide [25] for more
information about S-expressions.
6The encoding of certs as S-expressions is beyond the scope
of this paper. [11] has examples of certs as S-expressions.
This S-expression encoding of certs is not mandatory. Sec-
tion 6.5 of RFC 2693 [14] defines translation rules from
X.509 and PGP certificates to SPKI certs.
7Of course, other hash algorithms may be used just as well.

doi: 10.2312/NET-2013-02-1_11Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

87



SPKI leaves the definition of the meaning of authorization
to the application that verifies the authorization, allowing
for arbitrarily complex authorizations to be conveyed. How-
ever SPKI specifies a simple and entirely optional semantic
to interpret and intersect authorizations to provide devel-
opers with a standardized, yet flexible interpretation of au-
thorization [14]:

In this semantics each item in an authorization further re-
stricts the granted authorization:

Example 3.17. The two authorization tags

(tag (ftp ftp.example.com))
(tag (ftp ftp.example.com /foo/bar))

intersect to

(tag (ftp ftp.example.com /foo/bar))

Furthermore some wild card constructs are supported, most
notably (*), which matches everything, and (* set), (*
prefix) and (* range) which match against a set of values,
a string prefix and a range of values respectively [14].

Example 3.18. The two authorization tagss

(tag (ftp ftp.example.com
(* set read write)))

(tag (ftp ftp.example.com
(* set read delete)))

intersect to

(tag (ftp ftp.example.com (* set read)))

Example 3.19. The two authorization tagss

(tag (ftp ftp.example.com
(* prefix /foo/)))

(tag (ftp ftp.example.com
(* prefix /foo/bar/)))

intersect to

(tag (ftp ftp.example.com
(* prefix /foo/bar/)))

By relying on this standard semantics developers can easily
implement authorization checks in applications. One just
needs to construct the complete S-expression that authorizes
access to a desired resource and intersect this expression
with the expression contained in the authorization certificate
that desires access. Access will be granted if the expressions
intersect.

4. TRUST
SPKI provides a distributed certificate infrastructure. In
such an infrastructure participating entities are likely to
have only an indirect relation between each other. For in-
stance, in PGP one may receive a key not directly from the
key owner, but instead from a 3rd party like a public key

server. This key may be signed by other keys whose owners
by not be known at all. In SPKI, one may have to verify an
authorization delegated to an unknown entity.

Naturally the question arises in how far such signatures or
such delegated authorizations can be trusted in various as-
pects. In PGP one might want to know if a signer really
verified the key owner's identity before signing the key. In
SPKI one might want to know whether the delegator of an
authorization really ensured that the subject of the delega-
tion will use the authorization appropriately.

4.1 The problem of transitive trust
These questions can be generalized to the question in how
far statements of entities are trusted. If the entity making a
statement is directly known one can directly assess trust into
this entity. One can gather enough information and execute
sufficient checks to ensure that this entity will behave as
expected.

If the entity is not directly known, this is not longer possi-
ble. Instead one has to rely on somebody else's statement
about the trust into this entity. Of course this statement
is affected by the trust one has into the entity making this
statement. Trust becomes a transitive relation which arises
the requirement to adequately communicate trust and to
make automated decisions about trust.

4.2 Trust in X.509
As explained in section 2.1 there are different competing
CAs that issue certificates. Hence every X.509 application
has a root store containing certificates of implicitly trusted
CAs.

However, there is no standardized formal process for the
inclusion of CAs in root stores. Every application and every
organization has its own processes and guidelines regarding
the inclusion of CAs in root stores or their removal thereof.
These processes and guidelines greatly vary in quality, and
consequently many applications include a lot of CAs in their
root stores.

All of these root CAs have equal signing authority and may
issue certificates for arbitrary names. They may even create
subordinate CAs by issuing intermediate certificates which
are normally permitted to issue arbitrary certificates them-
selves.

Thus one effectively trusts a lot of CAs with equal signing
authority, many of which are not even known to the user.
The security of the whole infrastructure is thus lowered to
the weakest CAs reachable via the root store. The trust
model of X.509 is simply unlimited and ultimate transitive
trust.

4.3 Trust in GPG
OpenPGP provides a far less transitive, but still simple trust
model. A OpenPGP user may assign an Owner trust level to
a key in her key ring. This trust level should reflect in how
far the owner of that key is trusted to introduce keys, i.e.
in how far the owner's signature on another key is trusted.
PGP knows three trust levels not trusted, marginally trusted
and completely trusted [2, 8, 18].

doi: 10.2312/NET-2013-02-1_11Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

88



To OpenPGP these levels assess the quality of a signature
of this key. PGP calculates the authenticity of a key as a
weighed sum of the number of marginally trusted and com-
pletely trusted signatures on that key, based on the user's
preferences on how many marginally or completely trusted
signatures make a key trusted.

While these trust levels define the trust given to introduced
keys, the trust levels themselves are private and not com-
municated to the outside. They are not transitive.

4.4 Trust in SPKI—By example
Contrary to X.509 and OpenPGP SPKI does not specify
any kind of trust management model. Trust management in
SPKI is left to the application which may implement arbi-
trary trust semantics and algebras.

One such algebra is presented in [18]. It assesses trust based
on a framework called Subjective Logic which is essentially
a calculus for opinions [18]:
Definition 4.1. An opinion is a triple 𭜔 = {𭑏, 𭑑, 𭑢} where
𭑏 + 𭑑 + 𭑢 = 1 and {𭑏, 𭑑, 𭑢} ∈ [0, 1]3. The components are
the belief 𭑏, the disbelief 𭑑 and the uncertainty 𭑢. 𭜔𭐴

𭑝 =
{𭑏𭐴

𭑝 , 𭑑𭐴
𭑝 , 𭑢𭐴

𭑝 } is the opinion of an agent 𭐴 about a statement
𭑝.

The belief and disbelief components describe the probabil-
ity of whether a statement is true or not. The uncertainty
component compensates for the absence of knowledge about
a statement.

Such opinions provide the base for a logic calculus of con-
junction, recommendation and consensus [18]8.:
Definition 4.2. The conjunction 𭜔𭐴

𭑝∧𭑞 = 𭜔𭐴
𭑝 ∧ 𭜔𭐴

𭑞 of the
opinions 𭜔𭐴

𭑝 and 𭜔𭐴
𭑞 about two discrete binary statements

𭑝 and 𭑞 represents 𭐴's opinion about 𭑝 and 𭑞 being true.
Definition 4.3. The recommendation 𭜔𭐴𭐵

𭑝 = 𭜔𭐴
𭐵 ⊗ 𭜔𭐵

𭑝 is
𭐴's opinion about the statement 𭑝 as a result of a recom-
mendation from 𭐵. 𭜔𭐴

𭐵 is 𭐴's opinion about 𭐵's recom-
mendations. 𭜔𭐵

𭑝 is 𭐵's opinion about the statement 𭑝 as
recommended to 𭐴9.

In order two assess trust in an SPKI certificate two special
opinions are of importance [18]:
Definition 4.4. The opinion 𭜔𭑅

𭐾𭐴(𭐾𭐼) is the opinion of the
recipient 𭑅 of a certificate about the authenticity of the key
𭐾𭐼 of the certificate's issuer 𭐼, that is, whether the key
really belongs to the issuer.
Definition 4.5. The opinion 𭜔𭑅

𭑅𭑇(𭐼) is the opinion about
the recipient 𭑅 of a certificate about the recommendation
trustworthiness of the certificate's issuer 𭐼, that is, how
much 𭑅 trusts 𭐼 to issue certificates correctly10.
8The exact mathematical definition of these operators are
not reproduced here, as these are not relevant for the dis-
cussion of this algebra within the scope of this paper. Refer
to section 3 of [18] for details.
9This is not necessarily identical to 𭐵'S real opinion about
𭑝.

10This is essentially equivalent to the Owner trust of PGP,
however at a much finer level.

Together these two opinions form 𭑅's opinion about a cer-
tificate issued by 𭐼, expressed as the conjunctive recommen-
dation term 𭜔𭑅

𭐼 = 𭜔𭑅
𭐾𭐴(𭐾𭐼) ∧ 𭜔𭑅

𭑅𭑇(𭐼) [18]. The trust in a
certificate subject 𭑆 is consequently expressed as a recom-
mendation 𭜔𭑅

𭑆 = 𭜔𭑅
𭐼 ⊗𭜔𭐼

𭐾𭐴(𭐾𭑆) where 𭐾𭑆 is the public key
of 𭑆. By chaining such expressions one can now compute the
relative trust of a certificate chain in which each certificate's
subject has an opinion about the subsequent certificate.

This can naturally be applied to SPKI. As discussed in
section 3.3.3 the verifier of an authorization needs a complete
chain of certificates as proof of authorization. To express the
trust in such a chain, each certificate 𭐶𭑖 in this chain has
to include an opinion about the authenticity of its subject.

The only obstacle are names used as certificate subjects.
Obviously one cannot assess the key authenticity of names
and hence not calculate their trust opinion. However, in
a valid certificate chain a name subject must eventually be
bound to a key by a name cert. Hence the opinion of trust
into a name is equivalent to the opinion about trust in all
name certs needed to obtain a key for the name.

The verifier of an authorization can calculate the trust of
the chain for use as parameter in its decision about a re-
quest to a protected resource, and for instance only accept
request that provide chains whose trust belief exceed a cer-
tain threshold. Combined with SPKI's authorization delega-
tion this provides a flexible way of delegating and verifying
authorization that can model a wide range of organizational
structures.

5. FAILURE AND SUCCESS OF SPKI
This paper has introduced SPKI and discussed the definition
and semantics of its certificates, and revealed the flexibility,
elegance and expressiveness of naming and authorization.
It has furthermore analyzed how trust can be measured and
assessed in certificate chain.

It has however not given an practical use of SPKI, simply
because there is none. There has been research about using
SPKI with various technologies and protocols, for instance
DNS [17], HTTP [6] or sensor network [23], but to this days
SPKI has not seen wide-spread adoption in real applications.
Especially it has not replaced X.509 in application though
that was an original intent of SPKI.

One may speculate about the reasons for this lack of de-
ployment. Probably SPKI just came too late. By the time
it was standardized and sufficiently researched, X.509 was
already widely employed and had become the cryptographic
backbone of the internet. With a cryptographic infrastruc-
ture at hand, there was little motivation to implement yet
another one. Moreover SPKI did not offer a business model
for companies, thus there was little interest to invest into
the deployment of this standard.

A decade after the standardization of SPKI it seems unlikely
that SPKI will ever happen to replace X.509 in important
application. However, it may serve well in special domains
and niche applications that have need of a simple and easy
to implement public key standard. This paper may help
developers of such applications to look beyond X.509 and

doi: 10.2312/NET-2013-02-1_11Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

89



possibly discard its complexity in favour of a really simple
public key infrastructure.

References
[1] M. Abadi. “On SDSI's Linked Local Name Spaces”. In:

CSFW. Ed. by IEEE Computer Society. IEEE. 1997,
pp. 98–108.

[2] A. Abdul-Rahman. “The PGP trust model”. In: EDI-
Forum: the Journal of Electronic Commerce 10.3 (1997),
pp. 27–31.

[3] H. Adkins. An update on attempted man-in-the-middle
attacks. Google Inc. Aug. 29, 2011. Url: http://googleonlinesecurity.
blogspot.de/2011/08/update-on-attempted-man-
in-middle.html.

[4] U.S. Social Security Administration, ed. Top names of
the 2000s. May 14, 2012. Url: http://www.socialsecurity.
gov/OACT/babynames/decades/names2000s.html.

[5] J. Callas et al. OpenPGP Message Format. RFC 4880
(Standards Track). IETF, Nov. 2007. Url: http://
www.ietf.org/rfc/rfc4880.txt.

[6] D. Clarke. “SPKI/SDSI HTTP Server / Certificate
Chain Discovery in SPKI/SDSI”. Master's Thesis. Mas-
sachusetts Institute of Technology, 2001.

[7] D. Clarke et al. “Certificate Chain Discovery in SP-
KI/SDSI”. In: Journal of Computer Security 9.4 (2001),
pp. 285–322.

[8] M. Copeland, J. Grahn, and D. Wheeler. The GNU
Privacy Handbook. The Free Software Foundation. 1999.
Url: http://www.gnupg.org/gph/en/manual.html.

[9] T. Dierks and E. Rescorla. The Transport Layer SEcu-
rity (TLS) Protocol Version 1.2. RFC 4492 (Standards
Track). IETF, Aug. 2008. Url: http://www.ietf.org/
rfc/rfc5246.txt.

[10] W. Diffie and M. Hellman. “New Directions in Cryp-
tography”. In: IEEE Transactions on Information The-
ory 6.22 (Nov. 1976), pp. 644–654.

[11] J. Elien. “Certificate Discovery Using SPKI/SDSI 2.0
Certificates”. Master's Thesis. Massachusetts Institute
of Technology, 1998.

[12] C. Ellison. “Establishing Identity Without Certifica-
tion Authorities”. In: Proceedings of the 6th USENIX
Security Symposium. Ed. by USENIX. 1996, pp. 67–
76.

[13] C. Ellison. SPKI Requirements. RFC 2692 (Experi-
mental). IETF, Sept. 1999. Url: http://www.ietf.
org/rfc/rfc2692.txt.

[14] C. Ellison et al. SPKI Certificate Theory. RFC 2693
(Experimental). IETF, Sept. 1999. Url: http://www.
ietf.org/rfc/rfc2693.txt.

[15] Mozilla Foundation, ed. Protection against fraudulent
DigiNotar certificates. MFSA 2011-34. Aug. 30, 2011.
Url: https://www.mozilla.org/security/announce/
2011/mfsa2011-34.html.

[16] P. Gutmann. Everything you Never Wanted to Know
about PKI but were Forced to Find Out. 2002.

[17] T. Hasu and Y. Kortesniemi. “Implementing an SPKI
Certificate Repository within the DNS”. In: Poster Pa-
per Collection of the Theory and Practice in Public Key
Cryptography (PKC 2000 (2000), pp. 18–20.

[18] A. Jøsang. “An Algebra for Assessing Trust in Certifi-
cation Chains”. In: NDSS. Ed. by The Internet Society.
1999.

[19] L. Kohnfelder. “Towards a Practical Public-key Cryp-
tosystem”. Bachelor. Massachusetts Institute of Tech-
nology, May 1978.

[20] I. Lehti and P. Nikander. “Certifying Trust”. In: Public
Key Cryptography. Ed. by Hideki Imai and Yuliang
Zheng. Springer, 1998, pp. 83–98.

[21] J. Nightingale. DigiNotar Removal Follow Up. Mozilla
Foundation. Sept. 2, 2011. Url: http://blog.mozilla.
org/security/2011/09/02/diginotar- removal-
follow-up/.

[22] Johnathan Nightingale. Fraudulent *.google.com Cer-
tificate. Mozilla Foundation. Sept. 6, 2011. Url: http:
//blog.mozilla.org/security/2011/08/29/fraudulent-
google-com-certificate/.

[23] C. Pearce, V. Yin-Man Ma, and P. Bertok. “A secure
communication protocol for ad-hoc wireless sensor net-
work”. In: ICISSNIP. Ed. by IEEE Computer Society.
IEEE. 2004, pp. 79–84.

[24] B. Ramsdell and S. Turner. Secure/Multipurpose In-
ternet Mail Extensions (S/MIME) Version 3.2 Mes-
sage Specification. RFC 5751 (Standards Track). IETF,
Jan. 2010. Url: http://www.ietf.org/rfc/rfc5751.
txt.

[25] R. Rivest. S-Expressions. Massachusetts Institute of
Technology. May 4, 1997. Url: http://people.csail.
mit.edu/rivest/Sexp.txt.

[26] R. Rivest. SEXP---(S-expressions). Massachusetts In-
stitute of Technology. May 4, 1997. Url: http : / /
people.csail.mit.edu/rivest/sexp.html.

[27] R. Rivest and B. Lampson. SDSI - A Simple Dis-
tributed Security Infrastructure. Massachusetts Insti-
tute of Technology. Sept. 15, 1996. Url: http://people.
csail.mit.edu/rivest/sdsi10.html.

[28] B. Schneier. Beyond Fear. Thinking Sensibly About Se-
curity in an Uncertain World. Springer Science+Busi-
ness Media, 2006. ISBN: 978-0-387-02620-6.

doi: 10.2312/NET-2013-02-1_11Seminar FI & IITM WS2012/2013, 
Network Architectures and Services, February 2013

90

http://googleonlinesecurity.blogspot.de/2011/08/update-on-attempted-man-in-middle.html
http://googleonlinesecurity.blogspot.de/2011/08/update-on-attempted-man-in-middle.html
http://googleonlinesecurity.blogspot.de/2011/08/update-on-attempted-man-in-middle.html
http://www.socialsecurity.gov/OACT/babynames/decades/names2000s.html
http://www.socialsecurity.gov/OACT/babynames/decades/names2000s.html
http://www.ietf.org/rfc/rfc4880.txt
http://www.ietf.org/rfc/rfc4880.txt
http://www.gnupg.org/gph/en/manual.html
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc2692.txt
http://www.ietf.org/rfc/rfc2692.txt
http://www.ietf.org/rfc/rfc2693.txt
http://www.ietf.org/rfc/rfc2693.txt
https://www.mozilla.org/security/announce/2011/mfsa2011-34.html
https://www.mozilla.org/security/announce/2011/mfsa2011-34.html
http://blog.mozilla.org/security/2011/09/02/diginotar-removal-follow-up/
http://blog.mozilla.org/security/2011/09/02/diginotar-removal-follow-up/
http://blog.mozilla.org/security/2011/09/02/diginotar-removal-follow-up/
http://blog.mozilla.org/security/2011/08/29/fraudulent-google-com-certificate/
http://blog.mozilla.org/security/2011/08/29/fraudulent-google-com-certificate/
http://blog.mozilla.org/security/2011/08/29/fraudulent-google-com-certificate/
http://www.ietf.org/rfc/rfc5751.txt
http://www.ietf.org/rfc/rfc5751.txt
http://people.csail.mit.edu/rivest/Sexp.txt
http://people.csail.mit.edu/rivest/Sexp.txt
http://people.csail.mit.edu/rivest/sexp.html
http://people.csail.mit.edu/rivest/sexp.html
http://people.csail.mit.edu/rivest/sdsi10.html
http://people.csail.mit.edu/rivest/sdsi10.html



