
Comparison of Operating Systems
TinyOS and Contiki

Tobias Reusing

Betreuer: Christoph Söllner

Seminar: Sensorknoten - Betrieb, Netze & Anwendungen SS2012

Lehrstuhl Netzarchitekturen und Netzdienste, Lehrstuhl Betriebssysteme und Systemarchitekturen

Fakultät für Informatik, Technische Universität München

Email: reusing@in.tum.de

ABSTRACT
Wireless sensor networks can be used in a lot of di↵erent
application areas. Since such networks were first proposed,
many di↵erent node platforms both in regard to hardware
and software were introduced. In this paper we present op-
erating systems for wireless sensor nodes in general and two
of the best known operating systems, TinyOS and Contiki
with their most notable di↵erences and similarities. Both
have strengths and weaknesses which are important for var-
ious requirements of wireless sensor networks.

Keywords
TinyOS, Contiki, Operating Systems, Sensor Nodes, Wire-
less Sensor Networks

1. INTRODUCTION
Wireless sensor networks consist of a huge number of single
nodes. They can be used for a wide range of applications.
For all di↵erent application areas di↵erent requirements have
to be fulfilled. While in one application it may be most
important that the nodes can operate unattended for very
long periods of time, in another application they may have to
be able to process huge amounts of data in short time frames.
Therefore it is of high importance to choose the right hard
and software components for the particular application. The
operating system is one of the most important parts on the
software side of this decision process. There are a lot of
sensor node operating systems available and at first glance
it is not always easy to determine which one is better suited
for which applications. Therefore this paper presents two of
the best known sensor node operating systems and compares
them according to di↵erent requirements.

Section 2 of this paper presents operating systems for wire-
less sensor networks in general. Section 3 and section 4 give
an overview of the features of TinyOS and Contiki respec-
tively. In section 5 both operating systems are compared
according to requirements for wireless sensor nodes and sec-
tion 6 presents the conclusions.

2. OPERATING SYSTEMS FOR WIRELESS
SENSOR NETWORKS

Operating systems that are designed for wireless sensor net-
works are very di↵erent from operating systems for desk-
top/laptop computers like Windows or Linux or operating
systems for powerful embedded systems like smart phones.

The biggest di↵erence is the hardware on which the operat-
ing systems are running. The wireless sensor nodes (often
called motes) usually have a microcontroller as a CPU that
is not very powerful because the main focus of those motes
lies in minimal power consumption since they are often de-
signed to run on battery power for very long periods of time.
And even though the microcontroller and all other compo-
nents of motes are designed as low power devices, running
them all at full power at all times would still consume way
too much energy. So for that matter the main focus of those
operating systems is energy conservation optimal usage of
limited resources[1].

Operating systems for motes are very simple compared to
other operating systems. But they still are often required
to handle many di↵erent operations at the same time. A
mote could for example be required to collect data from a
sensor, process the data in some way and send the data to
a gateway at the same time. Since the microcontrollers are
only able to execute one program at the time, the operating
systems have to have a scheduling system that shares the
CPU resources between the di↵erent tasks, so that all of
them can finish in the desired time frame.

Since the requirements for the operating system vary be-
tween applications it is in most cases not possible to ex-
change the client program on a mote without changing the
operating system. In fact in most cases the operating system
behaves more like a library: It gets integrated into the ap-
plication and both the application and the operating system
are compiled into one single binary that is then deployed
onto the sensor node.

In summary the main requirements for an operating system
for sensor networks are[1]:

• Limited resources: The hardware platforms o↵er very
limited resources so the operating system should use
them e�ciently.

• Concurrency: The operating system should be able to
handle di↵erent tasks at the same time.

• Flexibility: Since the requirements for di↵erent appli-
cations vary wildly, the operating system should be
able to be flexible to handle those.

• Low Power: Energy conservation should be one of the
main goals for the operating system.

doi: 10.2313/NET-2012-08-2_02Seminar SN SS2012
Network Architectures and Services, August 2012

7

3. TINYOS
TinyOS was developed at the University of California in
Berkeley[2] and is now maintained as an open source project
by a community of several thousand developers and users
lead by the TinyOS Alliance[12]. The current Version of
TinyOS from April 6, 2010 is 2.1.1.

TinyOS uses an event driven programming model and con-
currency is achieved with non-preemptive tasks[1]. TinyOS
programs are organized in components and are written in
the NesC language[3], a dialect of C.

3.1 Programming Model
As already mentioned, TinyOS user applications and the
operating system itself are composed of components. Com-
ponents o↵er three types of elements: Commands, Events
and Tasks [1]. All three are basically normal C functions
but they di↵er significantly in terms of who can call them
and when they get called. Commands often are requests to
a component to do something, for example to query a sensor
or to start a computation. Events are mostly used to signal
the completion of such a request.

Tasks, on the other hand, are not executed immediately.
When a task is posted, the currently running program will
continue its execution and the posted task will later be ex-
ecuted by the scheduler (see section 3.2 for details).

Components expose which commands they can send and
which events they can handle through interfaces. An in-
terface consists of a number of commands and events that
are specified by their function signatures. A component can
either specify to use an interface or to provide it. Com-
ponents that provide an interface have to implement all of
the specified commands and can signal the specified events.
Components that, on the other hand, use an interface have
to implement all of the specified events and can use all of
the commands [4, p. 26] (cf. Figure 1).

Provider Interface UserInterface

Command

Event

Figure 1: An interface specifies which commands
the user of the interface can call and which events
the provider can signal

The connections between components are specified in so-
called configurations. A configuration defines for each inter-
face of a component which other component uses the pro-
vided interfaces and which component provides the used in-
terfaces. These connections are called wirings[4, p. 31].
Configurations are itself components, which means that they
can also provide and use interfaces. This makes it possible
to build TinyOS applications in a hierarchical manner where
components on a higher level are made up of several com-
ponents of a lower level (cf. Figure 2).

Interface 1 Interface 2 Interface 4 Interface 3

Interface 4 Interface 3 Interface 2 Interface 1

Component 1 Component 2

Component 3 Component 4

Configuration

Figure 2: Configurations map the exposed interfaces
of components onto each other

TinyOS programs and the operating system itself are written
in NesC[3]. NesC is a dialect of C. It incorporates all of the
concepts of TinyOS, like components, interfaces, commands,
events, tasks, configurations etc. into a C like language. The
biggest di↵erence between C and NesC is how the function
to be executed is selected. In C the function to be executed
at a function call is selected by its name. In NesC when a
command or event should be executed the programmer ex-
plicitly selects with the wiring in configurations which com-
ponent’s implementation of the command or event should be
used[4, p. 13]. But ”normal” C functions can still be used
in NesC and to di↵erentiate between them and commands,
events and tasks special keywords are used for invoking each
of the non-C function types. C libraries and C preprocessor
directives can be used[4, p. 46-47]. NesC is also designed
to allow whole-program analysis which allows the detection
of data-race conditions which can improve reliability and it
can help with inlining across component border which can
reduce resource consumption[3].

3.2 Execution Model
TinyOS uses a split-phase execution model[1]. This means
that the request to do an operation and the response after
completion are decoupled. This approach resembles how in-
teraction with hardware in a sensor node often works: The
micro controller sends a request to a hardware component,
which then works on it independently from the controller
and later signals the completion of the task through an in-
terrupt. In TinyOS both hardware and software modules
follow this split-phase execution model, which is represented
in the programming model: Both are components that can
handle commands and at a later time signal events after the
completion of the operation.

Concurrency in TinyOS is achieved with tasks. Tasks are
basically functions that can be posted by other tasks or in-
terrupt handlers[1]. They don’t get executed immediately
but instead will later be executed by the scheduler. The
TinyOS scheduler executes one task after another and so
tasks can never preempt each other. Each task runs un-
til completion and the next task is started after that. This

doi: 10.2313/NET-2012-08-2_02Seminar SN SS2012
Network Architectures and Services, August 2012

8

// BlinkC . nc � Bl ink module
module BlinkC {

uses interface Boot ;
uses interface Timer ;
uses interface Leds ;

}
implementation {

event void Boot . booted () {
ca l l Timer . s t a r tP e r i o d i c (1 000) ;

}

event void Timer . f i r e d () {
ca l l Leds . l ed0Toggle () ;

}
}

// BlinkAppC . nc
configuration BlinkAppC { }
implementation {

components MainC , LedsC , TimerC , BlinkC ;

BlinkC . Boot �> MainC . Boot ;
BlinkC . Leds �> LedsC . Leds ;
BlinkC . Timer �> TimerC . Timer ;

}

Listing 1: Minimal example of a TinyOS application
that turns a LED on and o↵ every second. With
modifications from [4]

makes it possible that all tasks can use the same stack, which
saves memory because not every task needs it’s own desig-
nated stack like in a multi-threaded approach (see section 3.3
for details). Normally tasks are executed in a first-in-first-
out (FIFO) order, so tasks run in the same order they’re
posted[4], but it is possible to implement other (more com-
plex) scheduling strategies[2]. If there is no more task in the
queue after completion of the previous task, TinyOS sets the
mote into a low-power sleep state until an interrupt wakes
the microcontroller[4].

Code in TinyOS can only be executed in the context of ei-
ther a task or an interrupt. Interrupts can preempt tasks
and other interrupt handlers of lower priority. Code that is
reachable from an interrupt handler is called asynchronous
code and special measures have to be taken to handle con-
currency issues that can occur because of that (see Figure 3
or [4, p. 192 ↵] for further details).

Since tasks in TinyOS can not be preempted, long running
tasks, for example tasks that handle complex computations
like cryptographic functions, will block the whole application
and tasks that are time critical, like tasks handling sending
and receiving of data over a communication medium, may
be waiting for too long before the scheduler executes them.
In those cases the long running computation should be split
up in shorter running tasks that post themselves after com-
pleting a part of the computation, which enables other tasks
to run in between them. Since posting and executing a task
generates a overhead of about 80 clock cycles on a current

mote platform, a tradeo↵ between lots of short tasks and
long running tasks that execute the same computation has
to be found. Since data can not be kept on the stack be-
tween the execution of tasks, all state information has to
be kept in the private memory of the tasks component[4, p.
74].

Application

Tasks

commands, events

interrupt handler

Driver

Component 1

Application

Component 2

Application

Component 3

task execution

(synchronous)

interrupt execution

(asynchronous)

Figure 3: The TinyOS execution model. Compo-
nent boundaries are crossed between all of the com-
ponents[4]

3.3 Resource Use
TinyOS was built with the goal of minimal resource con-
sumption since wireless sensor nodes are generally very con-
strained in regards to processing speed, program memory,
RAM and power consumption.

3.3.1 Processing Power

To preserve processing power in TinyOS boundary crossings
between di↵erent components are optimized. Since all func-
tion locations are known at compile time and there is no
address-space crossing basic boundary crossing has at most
the overhead of a single procedure call. With whole-program
analysis many boundary crossings can be entirely removed.
In some cases the compiler can even inline a whole compo-
nent into it’s caller[3].

To keep the overhead of task-switching minimal the sched-
uler in TinyOS is very simple. For example tasks have no
return value and take no parameters so the scheduler does
not need to take care of them[4, p. 72].

3.3.2 Program Memory

Since it is known at compile time, which components and
which parts of those components of the application and the
operating system are used, the compiled image of the ap-
plication includes only the actually used procedures and as
good as no dead code. Also the operating system itself has
a very low memory footprint: The core TinyOS operating
system uses less than 400 bytes of program memory[3].

3.3.3 RAM

Keeping the RAM usage of wireless sensor nodes low is
very important, since the used microcontrollers are very re-
stricted in RAM size. For example the Atmel Atmega128L
micocontrollers used in the MICA2 sensor node[15] only of-
fers 4 Kbytes of RAM[16] which have to be shared between
the operating system and all running user programs. There
are no memory management units (MMU) or other memory
protection measures available on these microcontrollers so

doi: 10.2313/NET-2012-08-2_02Seminar SN SS2012
Network Architectures and Services, August 2012

9

the risk of stack overflows (when the stack exceeds it’s max-
imum size) should be avoided. The execution model with
run to completion tasks is very e�cient in terms of RAM
usage, since all tasks use the same stack as opposed to a
classic multi-threading approached where each thread needs
a designated stack for itself. To further decrease stack size
deep call hierarchies inside tasks should be avoided. TinyOS
programmers are especially discouraged of using recursion
and other similar techniques[4, p. 36-38].

3.3.4 Power Consumption

Since many wireless sensor nodes run on battery power, en-
ergy consumption should be kept as low as possible. To
achieve a low power consumption the microcontroller should
be kept in a low power sleep state for as long as possible.
For example the Atmel Atmega128L needs a supply current
in the magnitude of a few milliamperes when active. In the
lowest sleep state a current of only a few microamperes[16]
is su�cient, which means the di↵erence between power con-
sumption in active and sleep states can be a factor of 1000
or more. TinyOS copes with this by using the split-phase
and event-driven execution model. As long as there are no
tasks in the task queue the scheduler puts the CPU in sleep
mode. So in combination with the split-phase operation the
CPU does not waste energy while waiting for other hardware
components[1].

But the CPU is not the only power critical component in a
wireless sensor mode, periphery hardware can use a lot of
power, too. For example the radio is in most cases the most
expensive part of the node in respect to energy consump-
tion[4, p. 7]. To save energy in those components TinyOS
has a programming convention that allows subsystems to be
put in a low power idle state. Components have an inter-
face, which exposes commands to tell the component to try
to minimize it’s power consumption, for example by power-
ing down hardware, and to wake up again from those power
saving states[1].

3.4 Hardware Platforms
The current release of TinyOS supports quite a few sensor
node hardware platforms. This includes di↵erent motes by
Crossbow Technologies like the MICA family of motes or
the iMote2 developed at Intel Research and many more[13].
These hardware platforms run on a range of di↵erent micro-
controller including the ATMEL AVR family of 8-bit micro-
controllers, the Texas Instruments MSP430 family of 16-bit
microcontrollers, di↵erent generations of ARM cores, for ex-
ample the Intel XScale PXA family, and more[13].

It is of course possible to use TinyOS for a custom or not
yet supported hardware platform. The platforms in TinyOS
are designed to be very modular. For each of the sup-
ported microcontrollers and other hardware, for example
radio chips, components exist in the TinyOS installation.
To port TinyOS to a platform it basically su�ces to spec-
ify which components to use, how they are connected to
each other (for example which pins of the microcontroller
are connected to the radio chip) and to configure each of the
components correctly[14].

If a hardware device of a platform is not supported by Tiny-
OS a driver has to be programmed or a existing driver has

to be ported to TinyOS. This is not trivial and can get very
complex depending on the hardware[14].

To make software for TinyOS as platform independent as
possible but at the same time o↵er the possibility to push the
hardware to its limits with platform specific code, the hard-
ware abstraction architecture (HAA) was introduced. The
HAA o↵ers three levels of hardware abstraction for drivers[4,
p. 206-207]:

• The hardware interface layer (HIL): This is the most
platform independent level of device drivers. It o↵ers
only the functionality that is common to all devices
that use the common interfaces.

• The hardware adaption layer (HAL): The HAL is a
tradeo↵ between platform independence and the use of
platform specific code. It should o↵er platform inde-
pendent interfaces when possible and platform specific
interfaces in all other cases

• The hardware presentation layer (HPL): The platform
specific level of the HAA. It sits directly on top of the
hardware and o↵ers all of it’s functionality in a NesC
friendly fashion.

3.5 Toolchain
The core of the TinyOS toolchain is the NesC compiler. Cur-
rent implementations of the NesC compiler take all NesC
files, including the TinyOS operating system, that belong
to a program and generate a single C file. This C file can
then be compiled by the native C compiler of choice for the
target platform. The resulting binary can then be deployed
on the motes in a appropriate way. Many optimizations are
already done by the NesC compiler, for example the exclu-
sion of dead code. Furthermore the output C file of the
NesC compiler is constructed in a way, that makes it easy
for the C compiler to further optimize it. Since it is just
one single file the C compiler can freely optimize across call
boundaries.

Apart from the actual build toolchain there is also a TinyOS
simulator called TOSSIM[5]. It can simulate whole TinyOS
programs and the underlying motes without the need of ac-
tually deploying it on hardware. With TOSSIM it is possible
to simulate sensor node networks of thousands of nodes.

4. CONTIKI
Contiki is a open source operating systems for sensor nodes.
It was developed at the Swedish Institute of Computer Sci-
ence by Dunkels et al. [6]. It’s main features are dynamic
loading and unloading of code at run time and the possibility
of multi-threading atop of an event driven kernel, which are
discussed in sec. 4.1 and sec. 4.2 respectively. It’s current
version is 2.5 released on September 12, 2011.

4.1 Programming Model
A Contiki application consists of the Contiki kernel, libraries,
the program loader and processes. Processes are either ser-
vices or an application program. The di↵erence between
services and application programs is, that the functional-
ity of services can be used by more than one other process,

doi: 10.2313/NET-2012-08-2_02Seminar SN SS2012
Network Architectures and Services, August 2012

10

while application programs only use other processes and do
not o↵er functionality for di↵erent other processes[6].

Each of the processes must implement an event handler func-
tion and can optionally implement a poll handler function.
Processes can be executed only through these handlers. Ev-
ery process has to keep its state information between calls of
these functions, since the stack gets restored after the return
from these functions[6].

One of the special features of Contiki is the ability to replace
all programs dynamically at run-time. To accomplish that
Contiki o↵ers a run-time relocating function. This function
can relocate a program with the help of relocation infor-
mation that is present in the program’s binary. After the
program is loaded the loader executes its initialization func-
tion where one or more processes can be launched[6].

A running Contiki system consists of the operating system
core and the loaded programs. The core typically consists
of the kernel, di↵erent libraries and drivers and the pro-
gram loader (See Figure. 4). The core usually is deployed
as one single binary while the loaded programs each can be
distributed independently[6].

Loaded programs

Kernel

Program loader

Libraries

Drivers

Core

Figure 4: The partitioning of the Contiki core and
the loaded programs

The Contiki kernel o↵ers no hardware abstraction. If hard-
ware abstraction is desired libraries and/or drivers have to
implement it themselves. All components of a Contiki ap-
plication have direct access to the underlying hardware.

4.2 Execution Model
The Contiki kernel is event-driven. Processes can only be
executed by the scheduler when it either dispatches an event
to the event handler of the process or by calling the polling
handler. While events always have to be signaled by a pro-
cess, the scheduler can be configured to call the polling han-
dlers of all processes that implement one in periodic intervals
between the dispatching of events. Both the event handlers
and the polling handlers are not preempted by the scheduler
and therefore always run to completion. Like the tasks in

// b l i n k . c
PROCESS(b l i nk p ro c e s s , ”b l i nk example ”) ;
AUTOSTARTPROCESSES(&b l i n k p r o c e s s) ;

PROCESSTHREAD(b l i nk p ro c e s s , ev , data)
{

PROCESSBEGIN() ;
l e d s o f f (LEDS ALL) ;
stat ic struct et imer et ;
while (1) {

e t ime r s e t (&et , CLOCK SECOND) ;

PROCESSWAITEVENT() ;
l e d s t o g g l e (LEDS GREEN) ;
}

PROCESSEND() ;
}

Listing 2: The example from Listing 1 implemented
as a protothread for Contiki. With modifications
from [17]

TinyOS these handlers all can operate on the same stack
and do not need a private stack of their own[6].

There are two kinds of events in Contiki: Asynchronous
and synchronous events. Asynchronous events work similar
to the posting of tasks in TinyOS. When an asynchronous
event is signaled the scheduler enqueues the event and will
call the corresponding event handler after all currently en-
queued events were processed. Synchronous events on the
other hand are more like inter-process procedure calls: The
scheduler immediately calls the corresponding event handler
and returns the control to the calling process after the event
handler has finished running.

While event handler can not preempt each other, interrupts
can of course preempt the current running process. To
prevent race-conditions from happening, events can not be
posted from within interrupt handlers. Instead they can re-
quest the kernel to start polling at the next possible point
in time.

On top of this basic event-driven kernel other execution
models can be used. Instead of the simple event handlers
processes can use Protothreads[7]. Protothreads are simple
forms of normal threads in a multi-threaded environment.
Protothreads are stackless so they have to save their state
information in the private memory of the process. Like the
event handler Protothreads can not be preempted and run
until the Protothread puts itself into a waiting state until it
is scheduled again[7].

Contiki also comes with a library that o↵ers preemptive
multi-threading on top of the event-driven kernel. The li-
brary is only linked with the program if an application ex-
plicitly uses it. In contrast to Protothreads this multi-thread-
ing approach requires every thread to have it’s own desig-
nated stack[6].

Both multi-threading approaches were introduced because

doi: 10.2313/NET-2012-08-2_02Seminar SN SS2012
Network Architectures and Services, August 2012

11

modeling application in the event-driven approach can be
very complex depending on the specific requirements of the
program. The event-driven execution model requires in most
cases the implementation of a state machine to achieve the
desired behavior, even if the programmer may not be aware
of that. Dunkels et al. suggest in [7] that the code size
of most programs can be reduced by one third and most
of the state machines could entirely removed by using Pro-
tothreads. While the overhead in execution time is minimal
there is a moderate increase in the program memory required
by this approach.

4.3 Resource Use
Since the scheduler and the kernel in general are more com-
plex in Contiki than in TinyOS and the possibility of dynam-
ically load processes, which doesn’t allow cross boundary
optimization, the required program memory and execution
time for Contiki programs is higher than that of TinyOS
programs. When using the preemptive multi-threading li-
brary the RAM usage will be higher than using only the
event-driven kernel for scheduling[6].

4.4 Energy Consumption
The Contiki operating system o↵ers no explicit power saving
functions. Instead things like putting the microcontroller or
peripheral hardware in sleep modes should be handled by
the application. For that matter the scheduler exposes the
size of the event queue so that a power saving process could
put the CPU in sleep mode when the event queue is empty.

4.5 Hardware Platforms
Contiki has been ported to a number of mote platforms
on basis of di↵erent microcontrollers. Supported micro-
controller include the Atmel AVR, the Texas Instruments
MSP430 and the Zilog Z80 microcontrollers[6].

Porting Contiki requires to write the boot up code, de-
vice drivers and parts of the program loader. If the mul-
tithreading library is used, its stack switching code has to
be adapted. The kernel and the service layer are platform
independent. According to Dunkels et al. in [6] the port for
the Atmel AVR was done by them in a view hours and the
Zilog Z80 port was made by a third party in one single day.

4.6 Toolchain
Contiki is written in plain C so a native C compiler for the
target platform can be used.

5. DISCUSSION
As presented in sec. 2 operating systems for wireless sensor
nodes have to fulfill a few requirements. After the look at
both TinyOS and Contiki we now compare both operating
systems by means of these requirements:

• Limited resources: Both operating systems can be run
on microcontrollers with very limited resources. But
due to the higher complexity of the Contiki kernel
TinyOS can generally get by with lower resource re-
quirements.

• Concurrency: TinyOS o↵ers only the event-driven ker-
nel as a way of fulfilling the concurrency requirements.

While Contiki also uses an event-driven kernel it also
has di↵erent libraries that o↵er di↵erent levels of multi-
threading on top of that. But there are e↵orts to o↵er
libraries similar to those of Contiki, for example by
Klues et al. [8] or MacCartney et al. [9].

• Flexibility: Both operating systems are flexible to han-
dle di↵erent types of applications. When it comes to
updating an application that is already deployed Con-
tiki can dynamically replace only the changed pro-
grams of the application, while an application using
TinyOS has to be replaced completely, including the
operating system. But there are solutions for mak-
ing dynamic loading op application code possible for
TinyOS, for example by introducing a virtual mach-
ine[10, 11].

• Low Power: TinyOS has out-of-the-box better energy
conservation mechanisms but for Contiki similar power
saving mechanisms can be implemented.

6. CONCLUSION
Both operating systems can generally fulfill all of the dis-
cussed requirements. In details there are di↵erences, so
while TinyOS is better suited when resources are really scarce
and every little bit of saved memory or computing power can
help, Contiki might be the better choice when flexibility is
most important, for example when the node software has to
be updated often for a large amount of nodes.

This paper is not an in depth discussion of both operating
systems. When choosing the operating system for a specific
application many things have to be considered and not all
could be presented here. These two operating systems are
also not the only operating systems for wireless sensor nodes
so others may be considered.

7. REFERENCES
[1] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K.

Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E.
Brewer TinyOS: An operating system for sensor
networks In Ambient intelligence, p. 115-148,
Springer, Berlin, 2005

[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler,
K. S. J. Pister System architecture directions for
networked sensors In SIGPLAN Not. 35 (11), p.
93–104, ACM, 2000

[3] D. Gay, P. Levis, R. von Behren, M.Welsh, E. Brewer,
and D. Culler The nesC language: A holistic approach
to networked embedded systems In Proceedings of the
ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation (PLDI), ACM,
2003

[4] P. Levis, D. Gay TinyOS Programming Camebridge
University Press, Camebridge, 2009

[5] P. Levis, N. Lee, M. Welsh, D. Culler TOSSIM:
Accurate and scalable simulation of entire TinyOS
applications In Proceedings of the 1st international
conference on Embedded networked sensor systems, p.
126-137, ACM, 2003

[6] A. Dunkels, B. Grönvall, T. Voigt Contiki - a
Lightweight and Flexible Operating System for Tiny
Networked Sensors In Proceedings of the First IEEE

doi: 10.2313/NET-2012-08-2_02Seminar SN SS2012
Network Architectures and Services, August 2012

12

Workshop on Embedded Networked Sensors, Tampa,
Florida, USA, 2004

[7] A. Dunkels, O. Schmidt, T. Voigt, M. Ali
Protothreads: Simplifying Event-Driven Programming
of Memory-Constrained Embedded Systems In
Proceedings of the Forth International Conference on
Embedded Networked Sensor Systems, p. 29-42, ACM,
2006

[8] K. Klues, C.J.M. Liang, J. Paek, R. Musaloiu-E, P.
Levis, A. Terzis, R. Govindan TOSThreads:
thread-safe and non-invasive preemption in TinyOS In
Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, p. 127-140, ACM, 2009

[9] W. P. McCartney, N. Sridhar Stackless Preemptive
Multi-Threading for TinyOS In Proceedings of the
2011 International Conference on Distributed
Computing in Sensor Systems (DCOSS), IEEE, 2011

[10] P. Levis, D. Culler Maté: a tiny virtual machine for
sensor networks In Proceedings of the 10th
international conference on Architectural support for
programming languages and operating systems, p.
85-95, ACM, 2002

[11] A. Dunkels, N. Finne, J. Eriksson, T. Voigt Run-time
dynamic linking for reprogramming wireless sensor
networks In Proceedings of the 4th international
conference on Embedded networked sensor systems, p.
15-28, ACM, 2006

[12] TinyOS Open Technology Alliance,
http://www.cs.berkeley.edu/~culler/tinyos/

alliance/overview.pdf

[13] TinyOS Wiki - Platform Hardware,
http://docs.tinyos.net/tinywiki/index.php?

title=Platform_Hardware&oldid=5648

[14] TinyOS Wiki - Platforms, http://docs.tinyos.net/
tinywiki/index.php?title=Platforms&oldid=4712

[15] Crossbow Technology MICA2 Datasheet
http://bullseye.xbow.com:81/Products/Product_

pdf_files/Wireless_pdf/MICA2_Datasheet.pdf

[16] Atmel Corporation ATmega128/L Datasheet
http://www.atmel.com/Images/doc2467.pdf

[17] Zoleria Dokumentation Wiki,
http://zolertia.sourceforge.net/wiki/index.

php?title=Mainpage:Contiki_Lesson_1&oldid=1138

doi: 10.2313/NET-2012-08-2_02Seminar SN SS2012
Network Architectures and Services, August 2012

13

