
The Evolution of Avionics Networks
From ARINC 429 to AFDX

Christian M. Fuchs
Advisors: Stefan Schneele, Alexander Klein

Seminar Aerospace Networks SS2012
Chair for Network Architectures and Services

Faculty of Informatics, Technical University of Munich
Email: christian.fuchs@tum.de

ABSTRACT
Signaling and inter-system communication in avionics have
been crucial topics ever since electronic devices were first
used in aerospace systems. To deal with the challenges intro-
duced by the widespread use of general purpose computing
in commercial avionics, standards like ARINC 419 and later
on 429 were published and adopted by the industry. While in
industrial use, 429 has been adapted and extended very little
since the standard was formulated in the late 1970s. 429 to-
day cannot meet challenges and new requirements generated
by the use of Integrated Modular Avionics and flexible sys-
tem design. AFDX combines proven safety and availability
functionality with modern Ethernet technology to be able to
handle today’s requirements. This paper outlines two of the
most important avionics network architectures and aims at
depicting the evolution of networking concepts and require-
ments over the course of the past 30 years. It mainly focuses
on ARINC 429 and AFDX, the most prominent current and
past standards, but also covers two other interesting past
protocols.

Keywords
AFDX, ARINC 664, ARINC 429, Ethernet, MIL-STD-1553,
avionics, fault tolerance, security, safety

1. INTRODUCTION
Signaling and inter-system communication in avionics have
been a crucial topic ever since electronic devices were first
used in aircraft. Initially, simple sensory feedback and com-
ponents like radar and engines needed to be interconnected
with cockpit controls. As time progressed, more and more
systems which produce and consume data were introduced
in avionics, at some point becoming crucial for even the
most essential tasks, such as steering and later fly-by-wire.
To deal with these challenges in commercial avionics, stan-
dards like ARINC 419 (and later on 429) were drafted and
adopted not just by individual corporations, but collectively
by almost the entire industry [1, 2].

Today, ARINC 429 can be found in most active and retired
aircraft series. While it is well-established in the industry, it
has been adapted and extended little since the initial spec-
ifications were formulated in the late 1970s. In contrast to
avionics standards, multiple technological revolutions have
happened in the computer industry at a fast pace. Network-
ing of computers aboard aircraft may have been unthinkable
in 1970, while modern aircraft without any networked com-

puters are very uncommon. Legacy avionics communication
standards still reflect past views on computing [1, 3].

Ultimately, a modern networking architecture for avionics
use should offer a maximum of safety, redundancy and secu-
rity, as well as apply failsafe defaults. The resulting infras-
tructure should be efficiently maintainable, flexible and offer
a solid foundation for software development. More recent
standards reflect these demands, though few saw broader
use across the industry [4].

In contrast to the Internet, security and cost efficiency are
not the key objectives in avionics; rather safety is. However,
most modern networking standards are aimed at achieving
traditional PC-world security objectives and only indirectly
address safety requirements (by fulfilling traditional security
objectives) [5, 6].

In ARINC 664 Part 7, also referred to as AFDX, standard
Ethernet technology is extended and design objectives are
built around safety.

Two of the most important network architectures in the
avionics industry are outlined in this paper, and we aim
at depicting the evolution of networking concepts and re-
quirements over the course of the past 30 years. It mainly
is focused on the most prominent current and past stan-
dards, ARINC 429 and 664, but also covers two other sig-
nificant standards (MIL-STD-1553 and ARINC 629). These
standards introduced important features into aerospace net-
working design and are used as intermediate steps in this
paper even though AFDX evolved independently.

In this paper, a deeper understanding of Ethernet is as-
sumed; the reader should be familiar with redundancy and
failover concepts, as well as information-security. The OSI
layer model is used throughout this paper, even though it
is not used within the cited avionics standards. When re-
ferring to layer 2 (L2) frames, Ethernet or AFDX frames at
the data link layer are meant, while L3 and L4 refer to data
structures used in the respective protocol at the network and
transport layers.

Within the next section, the most widespread standard, AR-
INC 429, is explained in detail. In Section 3, the transition
from federated network architectures, such as 429 to modern
Integrated Modular Avionics, is depicted. Then, an analy-

doi: 10.2313/NET-2012-08-1_10Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

65



Figure 1: An ARINC 429 layout with just one transmitting LRU and up to 19 recipient. [4]

sis of the reference operating system proposed in ARINC
653 for use with integrated architectures is conducted. In
Section 4, ARINC 629 and Mil-Std-1553, two more recent
networking standards are briefly introduced. Section 5 is fo-
cused on the networking standard AFDX. The emphasis is
on the enhancements to Ethernet needed to comply with the
requirements of avionics applications. The final chapter is
dedicated to summarizing the advantages and disadvantages
of the main two named architectures.

2. ARINC 429
In the following section, the ARINC standard 429 will be
depicted in detail. We will especially focus on its architec-
tural principles, history and capabilities. Subsequently, the
limitations imposed on networks design will be outlined.

2.1 Basic Topology
ARINC 429 (in full, Mark 33 Digital Information Transfer
System), implements serial line communication and was one
of the first standards specifically targeted at avionics appli-
cations. ARINC 429’s predecessor, the commercial standard
419 [2], was first published in 1966, with 429 being based on
(from a 1978 viewpoint) more recent technology [1].

429 specifies direct wiring of LRUs using a serial twisted
shielded pair -based interface that can connect peers which
are up to about 90 meters apart. Unlike in modern network-
ing protocols, this is a signaling standard; thus the sender
always sends to the line, and the recipients always read from
it. If no data is available for sending, the line is set to zero-
voltage. Even though twisted shielded pair cabling is used,
all lines are simplex connections populated by one single
sending station and multiple recipients (up to 19), as shown
in Figure 1 [1].

The bus, also referred to as a multi-drop bus, can operate at
low or high speed. Low speed uses a variable clock rate and
a nominal throughput of 12-14 kbps, while the high speed
mode requires a fixed clock rate and allows 100 kbps.

In ARINC 429 terminology, each chunk of data transmitted
over a link is called a word ; the word format is defined in
the next section. Two types of words exist: data words and
message control words. Messages consist of multiple words
of data, which are then called records [4].

Link control messages are used in a similar way as in mod-
ern networking stacks. If a listening LRU is ready to re-
ceive data, a “Request to send”message will be transmitted
via its dedicated sending link. “Clear to send” is used for
the opposite. “data follows”, “data received OK”, “data re-
ceived not OK” and “synchronization lost” can be used by
the sender/recipient for further interaction. Each message
is started by the message control word ”data follows”, fol-
lowed by up to 126 data words [1].

In contrast to today’s networking standards, as 429 defines
a unidirectional and simplex bus, recipient LRUs may not
send messages to the bus they are listening to. This includes
messages related to link control.

A station may be attached to multiple buses and operates
as either sender or recipient, thus hierarchical layouts are
possible. However, bidirectional information exchange be-
tween systems is at least required for message control and
acknowledgment [1]. In this case, recipient LRUs respond
via a secondary interface, on which the positions of sender
and recipient are interchanged. As only one single station
participating in an ARINC 429 link can occupy the sender
role, one back-channel for each LRU is required [4].

2.2 Word Format and Data Types
Multiple data encoding formats which are targeted at differ-
ent usage scenarios in avionics are defined: Binary, Binary
Coded Decimal (BCD, see Figure 3), Discrete Data, File
transfer using the ISO 646 character set, and Maintenance
Data and Acknowledgment [1].

The structure of ARINC 429 words does not conform to
modern communication standards; it is non-byte-aligned,
but optimized for keeping down latency.

Figure 2: The data format of an ARINC 429 word. [1]

doi: 10.2313/NET-2012-08-1_10Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

66



Figure 3: Two 429 words in binary coded decimal format(above) and binary format. The binary word has an
extended label (4 digits/3 bits each), whereas the BCD word in this example uses a regular 3-digit label. [1]

Common fields in all word formats are:

• label (8 bit),
• source and destination identifiers (optional, 2 bit),
• the sign/status matrix (2 bit), and
• data (19 bit) field.

Words are terminated by a single parity bit. The total size
of all words is 32 bits as depicted in Figure 2.

The small message size results in very low latency, mini-
mizing delays during processing and guaranteeing timing,
as no transport side queuing or rescheduling of traffic can
happen. The message size is one of the cornerstones for
achieving safety, resilience and reliability [1]. No other com-
munication standard currently in use in avionics offers the
same level of responsiveness, which makes it an interesting
choice for applications where a delay of a few milliseconds
may be too much [7].

Depending on the chosen data format, the Sign/Status Ma-
trix flags have predefined meaning; for example, if the BCD
format is used, setting both SSM bits to zero means North,
East, Right, To (directional), Above or Plus. Other bit-
patterns and data encoding variants have different prede-
fined meanings, which LRUs are supposed to support to re-
tain compatibility [1].

A word’s label is used as frame header, holding information
on the encoding format and three octal numbers, which can
be used by LRUs to select matching messages upon receipt.
The label may be extended by three bits, which then serve
as fourth label digit. Label digit codes are predefined in the
standard and have fixed meanings, too. The label is sent
high-order-bit first, whereas the rest of the message is sent
least-significant-bit first [1].

2.3 Limitations
Due to the simplistic layout of 429 links, each individual
connection is a physical cable, which allows for easy testing,
as either a LRU or the line itself may be faulty. This also
poses a severe challenge when designing systems with dense
interlinking.

As depicted in Figure 4, even an environment with few sta-
tions present may become very complex once a certain de-
gree of interaction is needed [1]. In modern commercial air-
craft, interlinking between a multitude of systems as well as
extreme cabling overhead may occur, imposing severe lim-
itations on network design as well as impacting the overall
weight of such a craft [7].

Bit-error correction via symmetric or cryptographic check-
sum algorithms is not designed to happen within ARINC 429
but instead needs to be implemented at application level.
In fact, all data processing must be handled by each LRU’s
software directly. There is no uniform, device-independent
429 software stack [1].

Overall, custom proprietary (and thus, expensive) hardware
is required to implement an ARINC 429 setup, which is com-
mon in the aerospace industry. Almost no consumer-off-the-
shelf hardware is available, with the exception of cabling.
However, it should be noted, separate aviation-standards ap-
ply to cabling. Software development is problematic too, as
no modern day networking protocols can be used, and devel-
opment is done for highly specialized hardware. Retrofitting
of older aircraft with new technology may thus be costly.

Figure 4: An ARINC 429 network containing just
two control subsystems and four data-consuming
components. [7]

3. INTEGRATED MODULAR AVIONICS
As has been outlined in the previous section, federated ar-
chitectures severely restrict scalability and flexibility of com-
puterized environments with dense interlinking. Thus,we
will take a look at the modern day alternative to federated
avionics in this section. First Integrated Modular Avionics
will be introduced, followed by a brief analysis of ARINC
653.

3.1 Towards Integrated Modular Avionics
ARINC 429 allows the implementation of federated network
architectures. It does not distinguish between hardware and
software, but rather between devices specially built for a sin-
gle purpose (e.g. polling a sensor, transmitting radar signals,
issuing steering commands, etc). LRUs are thus unique to
a certain degree and also need to be certified as a whole.
As there is no distinction between hardware and software,

doi: 10.2313/NET-2012-08-1_10Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

67



(a) Federated Network Layout (b) Integrated Modular Avionics

Figure 5: A comparison of network architectures. [8, 9]

re-certification needs to take place even if only software was
updated or replaced [10].

As software may require additional system resources in the
future (more RAM, disk space, CPU-power, ...), devices
need to be constructed with appropriate reserves. Com-
ponents in federated networks (usually) cannot share re-
sources and reserves need to be defined on a per-system level,
network-wide resulting in a high degree of idle capability, ex-
tra weight and extra cost. The overall result is a proprietary
network with potentially extreme cabling overhead contain-
ing a multitude of different line replaceable units or modules
fulfilling unique roles [11].

Due to the described limitations, the aerospace industry
has begun to move away from federated architectures in
favor of Integrated Modular Avionics (IMA) [9, 12]. Most
importantly, IMA does discriminate between software and
hardware and defines an abstraction layer between physical
hardware and software-implemented functionality. However,
IMA still allows the use of monolithic, unique LRUs, but en-
courages the homogenization of on-board hardware [10].

Multiple functional packages implemented by different soft-
ware may be executed on a single IMA-host, as depicted in
Figure 5. As such, applications must be isolated from each
other, I/O ports and system resources need to be provided
to the correct applications. As resources on an IMA-host
are shared and available to all applications, reserves can be
calculated collectively for all run applications [13].

3.2 ARINC 653
As described in later sections, timing and timing constraints
are critical in avionics and networks design. These restric-
tions cannot be met by regular operating systems; hence,
the use of a real time operating system (RTOS) is manda-
tory in IMA [12]. A reference implementation of such an
operating system is specified in the ARINC standard 653,
including a matching API and communication concepts for
use on an IMA-host. The standard is categorized in different
parts, covering essential and extra services that can or must
be provided by the OS, as well as guidelines for testing [13].

In contrast to the operating systems used in most of the
computer industry, 653’s API APEX allows applications to
remain completely independent of the underlying system’s
architecture, as shown in Figure 7. It grants applications
access to hardware, allows file handling through a dedi-
cated core service and permits access to the virtual networks
backplane. Applications are assigned queuing ports, which
are FIFO buffers for packets, and sampling ports, which
are single-packet buffers to be overwritten upon each itera-
tion. In conjunction with APEX, communication ports allow
time-deterministic networking [13].

In 653, the core components of the RTOS are defined; many
components are identical or very similar to those in use in
common non-avionics real time operating systems and will
thus not be described further. Others, like partition man-
agement and the health monitor, are uncommon. The health
monitor provides hardware, software and network status in-
formation to the OS as well as the partitions. Thus, both
the RTOS’ core services as well as applications must support
health monitoring functions [11].

Feedback on faults related to system services allows the
health monitor to initiate countermeasures in case of fail-
ure (e.g. memory relocation, starting of service routines,
etc). In case application partitions receive relevant informa-
tion on issues, they can also take countermeasures on their
own by selecting a different path to a sensor in the network
or switching to fail-over functionality [11].

Health monitoring requires classification and categorization
based on information provided by the application’s author
or manufacturer of the individual device. Thus, errors rele-
vant for health monitoring are handled and also detected at
different levels on an IMA host. Information on all of these
error handling strategies are collected in recovery strategy
tables at a per-partition level and at the system level. The
tables themselves are to be maintained by the aircraft de-
signer.

Isolation was one of the key design objectives in 653 and
IMA, as they must allow side-effect-free executions of ap-

doi: 10.2313/NET-2012-08-1_10Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

68



plications. Applications only need to properly make use of
APEX and can be completely isolated from each other or
can be permitted IPC [11]. APEX and the underlying sys-
tem libraries are usually considered as one single functional
block. Each application is run inside an isolated partition1.
The partition management services of the RTOS are respon-
sible for assigning priorities and timing constraints for the
individual application partitions [13].

Figure 7: The functional layout of an operating sys-
tem as specified in ARINC 653. [13,14]

Therefore, if ARINC 653 is implemented, hardware and soft-
ware can be certified incrementally. If software is replaced
or updated, only the individual application or the OS is re-
quired to be re-certified. The underlying hardware remains
unaffected and does not require additional steps to be taken
beyond contingency planning and mitigating the need for
possible extra systems resources [12,13].

Strict guidelines are imposed on application design as well.
In 653, among other guidelines, the way application software
and core services of the OS are supposed to store and handle
files is specified (i.e. configuration files are to be stored as
XML files). APEX compliant applications can either run
persistently or transiently, and thus can be started, stopped
or moved to other IMA-hosts if it is permitted by the systems
and networks configuration. IMA thus requires abstraction

1653 partitioning is not to be confused with hardware par-
titioning commonly in use in commercial high performance
computing.

of networking hardware to satisfy software requirements.

4. LEGACY NETWORKING STANDARDS
Strictly federated ARINC 429 networks do not offer the log-
ical abstraction required for deploying integrated modular
avionics; a shared medium and logical abstraction of inter-
faces is needed. In the following section, legacy network
architectures offering such abstractions will be described
briefly. First we will take a look at ARINC 629; while it
is used rarely in avionics, it introduced a very important
concept for gaining determinism in a shared medium net-
work. Then, we will investigate into one of the most widely
deployed military networking standards, Mil-Std-1553b.

4.1 ARINC 629
ARINC 629, also known as Digital Autonomous Terminal
Access Communication, was developed jointly by Boeing and
NASA to overcome limitations imposed by 429, and was
later handed over to ARINC. Though more modern than
previous standards, it never saw wider use in the indus-
try. It was almost exclusively used in the Boeing 777 and
even this aircraft contained additional 429 backup infras-
tructure. According to 629, the deployment of a triplex-bus
layout, similar to the one specified by 10BASE2/10BASE5,
was foreseen. It also implements CSMA/CD as used in Eth-
ernet [16]; thus, collisions may occur on the bus. The origi-
nal standard defined a clock-speed of 2 MHz, which can be
raised as technology advances, and the bus was built upon
twisted pair cabling from the very beginning. Like ARINC
429 it uses 32 bit data words, but the data element is 2-
byte-aligned [4].

While 429-based architectures support only direct peer-to-
peer communication, 629 mainly uses directed unicast and
allows broadcast on a shared medium. It was an early at-
tempt to increase flexibility and reduce cabling effort. Flex-
ibility and the added complexity resulted in increased sig-
nal latency and reduced determinism, while the concept in
general still lacks support for COTS-hardware. Thus, bus
access by multiple stations in a 629 network may happen in
random order, depending on which system sends first.

Parts of the basic protocol in 629 have found their way into
modern standards, especially the use of predefined gaps be-
tween transmissions to prevent stall or packet loss to add
determinism. As depicted in Figure 6, the Synchronization
Gap is a random per-frame interval, whereas the terminal
gap is distinct for each terminal.

Figure 6: Frame-timing as specified in ARINC 629. [4]

doi: 10.2313/NET-2012-08-1_10Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

69



4.2 MIL-STD-1553b
MIL-STD-1553b, the Aircraft Internal Time Division Com-
mand/Response Multiplex Databus, is widely used in mil-
itary aircraft (e.g. Airbus’s A400M) and even the Inter-
national Space Station [13]. It is an interesting approach
that also helped bridge the gap between basic signaling and
modern networking standards like AFDX. The standard was
evolved from the initial legacy data rate of 1 Mbps to the
extended and hyper variants, which use newer hardware to
offer 120 and 200 Mbps respectively [7]. In contrast to other
bus based standards, MIL-STD-1553b specifies a logical star
on top of the physical bus topology. This topology is called
robust physical layer and uses triaxial cabling [15].

In the standard the role of a bus controller is defined. This
device is responsible for initiating all communication be-
tween subsystems(peers) on the bus through a command-
response protocol. In case the bus controller fails, another
remote terminal can take over this role for the time being.
To ensure fail-over, multiple redundant bus instances oper-
ate in parallel (see Figure 8), while each bus still only allows
half-duplex communication [3].

Subsystems sending data via the bus are not directly con-
nected, but instead use individual remote terminals to access
the network. All communication on the bus is supervised by
the bus monitor, which may also perform logging of parts or
all the communication. Usually, transmissions are unicast,
and are thus only exchanged between two remote-terminals.
Broadcast is supported by design but discouraged [3].

In 1553, data words are just 20 bits long, but there is less
protocol overhead than in other standards, as all communi-
cation is directed by the bus controller, and peers only ex-
ecute commands they were given (e.g. read from bus, send
to terminal).

To save on bit-space, three word formats exist:

• command word (sent by the bus controller),

• status word (response from LRUs to bus controller),

• and data word format.

While the standard is still incompatible with modern day
networking protocols and does not adhere to the OSI layer
model, it allows an LRU to emulate logical links, which is
required for integrated system architectures [17].

5. AVIONICS FULL DUPLEX PACKET EX-
CHANGE

In this final section, we will take an in depth look at Avion-
ics Full-DupleX Ethernet switching (AFDX). We will ana-
lyze how it was designed to extend standard Ethernet to
meet todays requirements in an aerospace environment. Af-
terwards, the key elements of an AFDX network and the
changes necessary to upper layer protocols will be described.

5.1 A brief history of ARINC 664
As an evolved standard, 429 had many limitations, but it
is a proven and commonly used protocol. As time pro-
gressed and technology advanced, more bandwidth, more
flexible topologies and new challenges like Integrated Modu-
lar Avionics (IMA, see Section 3) [13,17] emerged and were
beyond ARINC 429’s capabilities [12,18].

ARINC 664 (Part VII) was initially developed by the EADS
Airbus division as Avionics Full-DupleX Ethernet switching
(AFDX). Though previous aircraft already deployed fully
electronic fly-by-wire systems, wiring using previous stan-
dards could no longer meet the requirements of modern day
state-of-the-art aircraft. In the case of AFDX, the Airbus
A380 prompted for a new technological base to be imple-
mented; thus, AFDX was created. Later on, Airbus’ AFDX
was transformed into the actual ARINC standard [19]. Fig-
ure 9 shows a simple AFDX-based Network.

5.2 From Ethernet to AFDX
5.2.1 Architectural Changes
Ethernet has been in use for decades outside of the aerospace
industry and proved to be a robust, inexpensive, extensible
and flexible technology. However, it cannot offer essential
functionality required for high availability and reliability.
Thus, it is not directly suitable for avionics. 664 offers mod-
ern day transfer rates, while building on top of the previously
much-loathed Ethernet standard 802.3 [16]. AFDX inherits
parts of the MIL-STD-1553 terminology and overall setup.
Devices transmitting data via the network are called sub-
systems, which are attached to the network via end systems.
The full-duplex network itself is called AFDX Interconnect ;
in Ethernet terms, this includes all passive, physical parts of
the network, but not switches and other active devices [7].

The most prominent hindrance for using Ethernet network-
ing in avionics is Ethernet’s non-determinism. For regular
computer networks, packet loss and timeouts are a common

Figure 8: A single redundant MIL-STD-1553 bus network with hardware and device roles predefined for
provisioning a second fail-over bus C. [3, 15]

doi: 10.2313/NET-2012-08-1_10Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

70



Figure 9: An example of an AFDX based network.
Each subsystem is attached physically to the net-
work by two end systems. [19]

issue. Upper layers, such as a station’s operating system
or applications, are supposed to handle these issues by de-
sign. If a message is lost or corrupted during transmission,
it will simply be resent or its loss fully mitigated. When
sending data on a non micro-segmented network, collisions
may occur in each segment, forcing all stations involved in
the collision to resend. Transmission of packets is retried af-
ter a random time interval by whichever station starts first.
Again, a collision may occur which may lead to next to in-
definite repeating, and this may subsequently result in a
jammed bus [19].

Another variable factor of Ethernet networking and subse-
quently ARINC 664, are switches/bridges. While they add
flexibility to networking, additional non-determinism is in-
troduced, as frames may be reordered or manipulated in
transit. Switches offer micro-segmentation of network seg-
ments, but in turn also increase the number of hops a frame
takes from source to destination. Thus, latency is increased
and timing behavior may vary if frames move along multiple

paths [19]. In highly congested setups, switches may even
drop packets on purpose if buffer limits have been reached2.

In Ethernet, collisions are handled via CSMA/CD, but up-
per layers may encounter packet loss. There, protocols (e.g.
TCP, SCTP, etc) in the operating system’s network stack
have to deal with packet loss [13]. However, this is not a
viable solution in safety-critical environments. Certain ap-
plications require bandwidth guarantees, while others may
demand timing behavior to remain within strict boundaries.
Neither can be offered by Ethernet. No hard quality of ser-
vice guarantees are available in vanilla Ethernet, and soft
scheduling is only offered through protocol extensions such
as Ethernet-QOS IEEE 802.1p. The same applies to band-
width allocation, which can not be guaranteed in Ethernet
on a per-flow level, but is implemented using various dif-
ferent algorithms. While there are several proprietary ap-
proaches for making Ethernet usable in real-time environ-
ments, none of these standards is directly usable in avion-
ics [20, 21]. Thus, the new standard required determinism
to make it usable in avionics [19].

5.2.2 Virtual Links
Ethernet is independent of physical connections and allows
logical endpoints to be defined. Multiple physical or virtual
devices may thus share one link, supporting virtual sub-
systems or virtual machines in IMA [12, 13, 18]. Multiple
applications or devices may require different timing charac-
teristics or a fixed minimal amount of bandwidth [19].

Virtual point-to-point connections implement the same con-
cept as used in ARINC 429. In contrast to 429, they do not
exist physically, but as logical links. They are implemented
as Virtual Links (VL) on top of the AFDX Ethernet layer.
An example of virtual channels is given in Figure 10. To a
certain degree, VLs are quite similar to VLAN tagging as
defined in IEEE 802.1Q [22], but offer additional informa-
tion in addition to network isolation. Each virtual channel
has three properties besides its channel ID: the Bandwidth
Allocation Gap, the maximum L2 frame size, called LMAX
or Smax, and a bandwidth limit [4].

LMIN and LMAX are used to set a predefined smallest and
largest common Ethernet frame size along the path a packet

2In a properly laid out AFDX network, buffer overruns
should never actually occur. The network parameters are
configured based on values calculated during the planning
phase of an aircraft using a mathematical framework.

ASN Channels Sensor Rate Groups (BAG value)

1 msec 8 msec 32 msec 128 msec
Sensor Pod 1 (VL ID#) 0 - 7 8 - 15 16 - 23 24 - 31
Sensor Pod 2 (VL ID#) 32 - 39 40 - 47 48 - 55 56 - 63
Sensor Pod 3 (VL ID#) 64 - 71 72 - 79 80 - 87 88 - 95
Sensor Pod 4 (VL ID#) 96 - 103 104 - 111 112 - 119 120 - 127

Data Size 64 bytes 128 bytes 256 bytes 512 bytes
Busy Time/Channel 0.84 sec 1.48 sec 2.76 sec 5.32 sec
Total Time 26.88 sec 47.36 sec 88.32 sec 170.24 sec
Netto Bandwidth 21.504% 4.736% 2.208% 1.064%

Table 1: Impact of the bandwidth allocation gap on virtual link performance. [13, p. 11]

doi: 10.2313/NET-2012-08-1_10Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

71



Figure 10: AFDX ports are abound to virtual links,
characteristics specified by ports as well as VLs re-
sult in the actual VL parameters. [4]

may take, removing the need for IP-Packet fragmentation
and similar mechanisms, thus removing yet another source
of non-determinism from Ethernet [4].

Once the buffers present in switches or end stations are filled
up, physical links can become congested and packets would
be lost or delayed in transition. In safety-critical environ-
ments this is unacceptable; thus, the so called Bandwidth
Allocation Gap (BAG) was defined. The BAG is defined in
software for each VL, setting the delay (1-128 milliseconds)
between sending the VL’s frame and the next. In congested
networking scenarios, frames will be sent within the time-
window given by the BAG [19].

By setting LMAX and a reasonable BAG, bandwidth is seg-
mented and can thus be guaranteed for each VL individually.
The downside of introducing timesharing is a considerable
loss of bandwidth if multiple links with different properties
are defined. Table 1 reflects this loss of throughput depend-
ing on the network’s parameters. The data was taken from
benchmarking conducted by NASA in [13, p. 11] based on
a 100 Mbps ancillary sensor network configuration. Even
if little data is sent, one single VL with high BAG (long
wait-time between frames) and low LMAX (small supported
frame size) can drastically reduce overall network through-
put [7].

Virtual Links are designated using so called Virtual Link
Identifiers (VLID). The VLID replaces MAC-address based
delivery, occupying the bits normally used for the destina-
tion MAC. To retain compatibility with Ethernet, AFDX
splits the destination-MAC field into multiple parts: the
initial bits are set to reflect a locally administered MAC-
address (site-local), the final 16 bits store the VLID [19].

Only one subsystem may send data using a given VLID,
thus Virtual Links are again unidirectional. As in ARINC
429, a subsystem can assume different roles in multiple VLs
using different ports (see below), and multiple recipients may
participate in a Virtual Link. Subsystems are not explicitly
addressed, as in common Ethernet where MAC addresses are
used, but the meaning of a Virtual Links identifier is defined

and enforced by the network configuration [23]. However,
parts of the original MAC address data area are designated
user specifiable.

To make use of AFDX’s capabilities, traditional socket pro-
gramming is insufficient. Thus, a layer of abstraction was
added: the communication ports. Communication ports -
that is sampling and queuing ports - are accessed through a
dedicated networking API (see ARINC 653) by a subsystem.
Ports are assigned to Virtual Links and used to exchange
data between subsystems; end systems deliver messages to
one of the subsystem’s ports, multiple ports at a subsystem
can be members of a VL, but each port may only be attached
to a single VL.

Sampling ports have dedicated buffer-spaces in which one
single message can be read and stored. If a new message
arrives, previous data will be overwritten. A queuing port’s
buffer may contain up to a fixed number of messages that
are stored in a FIFO queue; upon reading the oldest mes-
sage, it is removed from the queue. Handler services for
communication ports need to be provided according to the
ARINC 653 specifications [12]. BAGs and LMAX of a VL
should be set accordingly to the collective requirements of
all ports participating in a link [19].

Scheduling is performed on a per-port and per-link level
at each end system independently based on the previously
named properties. End systems ensure Virtual Links do not
exceed their bandwidth limits, when multiplexing transmis-
sions from different ports and Virtual Links. Also, jitter
must be kept within fixed boundaries (specified by the stan-
dard), as frame-transmissions are offset by jitter within the
BAG [19]. Virtual Links are scheduled before redundancy
is applied to transmissions.

Subsequently, data passing through a Virtual Link will al-
ways take the same path in an active AFDX network, as
they are predefined on the AFDX-switches along the route.
As reconfiguration of AFDX devices does not happen at run-
time, this path will persist until the relevant devices in the
network are reinitialized. This implies timing behavior at
runtime will remain constant for each frame (as defined by
the BAG), even if individual devices along the path fail. Sin-
gle failures will have no impact on the overall setup due to
the provided redundancy. More on AFDX-switching will be
discussed in Section 5.2.4

5.2.3 Redundancy
High availability environments also require redundancy on
the bus as well as within stations. Again, Ethernet does
not offer any sort of fail-over by default, however, optional
link aggregation as defined in IEEE 802.1AX [24] can of-
fer such functionality. 664 by design specifies sophisticated
redundancy concepts for end stations as well as cabling by
providing two dedicated networks (network A and B). After
scheduling of Ethernet frames, redundancy is introduced.
Each AFDX subsystem has two interfaces called end sys-
tems. Redundancy is added transparently by sending each
frame via both end systems, applying the frame sequence
number (see Figure 10). Assuming no transmission errors
occurred, one duplicate will arrive at the destination for each
frame transmitted [19].

doi: 10.2313/NET-2012-08-1_10Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

72



Figure 11: The layout of an ARINC 664 frame is almost identical to an standard Ethernet frame and can be
transported via COTS Ethernet hardware. [19]

Duplicate frames must be detected and discarded. To do so,
a single byte sequence counter was appended to each OSI
layer 3 packet, turning the resulting Ethernet frame into
an AFDX Frame, as depicted in Figure 11. The AFDX se-
quence number is added as a trailer to the Layer 2 payload.
For each packet sent via a Virtual Link, the counter is incre-
mented. The first frame with a valid checksum to arrive at
a subsystem is used for processing, subsequent frames with
a duplicate sequence number can then be identified and dis-
carded [4].

In case a of failure on the AFDX Interconnect, software and
switches can be made aware of this issue and may divert traf-
fic along other, predefined fail-over paths within the same
network without having to rely solely on the independent
network redundancy [11].

AFDX currently supports line speeds of up to 1 Gbps (see
Table 2 created by [7]), but may support faster transports as
technology advances. End systems are connected to switches
directly and use full-duplex links [4]. As defined in the stan-
dard and due to the use of fully-switched Ethernet, only two
stations exist in each AFDX Layer 2 segment: an end system
and a switch, two switches, or two end systems. Collision
domains are thus minimized. Subsequently frame collisions
that need to be resolved via CSMA/CD on a single segment
essentially should not happen [25].

5.2.4 AFDX Switches
Most features AFDX consists of can also be implemented
using regular Ethernet hardware, if special AFDX-stack im-
plementations are run. While purely software-based imple-
mentations exist [23], these solutions can not guarantee de-
terminism. They can not keep jitter within boundaries im-
posed by AFDX and are useful for basic interoperability
testing only.

To achieve determinism, specialized hardware to enforce the
Virtual Link rules, which are based on the VL parameters.
introduced by ARINC 664 is needed. AFDX switches fill
this role and enforce latency, bandwidth constraints for VLs
and provide a dependable, fixed configuration. This config-
uration is read at bootup and remains constant at run time
to avoid fluctuations in the network’s topology and provide
uniform timing behavior.

For integrity reasons, store-and-forward circuit switching
is used when relaying packets, in contrast to most mod-
ern day high-speed Ethernet switches, which perform cut-
through switching [19]. The configuration for all Virtual
Links (LMIN, LMAX, BAG, priority) and switch parame-

ters should be set according to a one of the mathematical
proofing models in use today [26,27].

By fixing network parameters at boot-up, changes at run-
time are prevented and the network retains constant timing
properties and a static layout throughout operation. Non-
fault generated deviations off default settings may not hap-
pen and are taken into account when calculating global pa-
rameters mathematically [27]. Switches isolate Virtual Links
from each other and perform scheduling for passing-through
frames based on their VLID [4]. Other parameters specified
in switch and system configuration include priority, LMIN
(equivalent to LMAX) and jitter for Virtual Link. Ports
have a fixed maximum delay and buffer-size [19].

Certification of components for use in avionics environments
requires provable properties and usually results in a worst-
case but congestion-free setup. Network Calculus [28] is
widely used, but alternative approaches such as the trajec-
tory based models or model-checking would be viable alter-
natives, too; common to all of them is a resulting formal
proof of the network’s correct functionality [26,27].

5.2.5 Impact On OSI-Layer 3 and Above
AFDX adheres to the OSI layer model and is based on com-
mon protocols from the Internet-world. Subsequently, famil-
iar protocols like IP, UDP and IP-multicast are used. Alien
networking environments, such as ARINC 429 links, can be
transported within a Virtual Link transparently to the in-
dividual applications, thereby reducing development effort.
In fact, virtually any previous network standard which does
not exceed ARINC 664 in capabilities can be implemented
on top of it [19].

At Layer 3, the IPv4 protocol is deployed, though the fields
usually used for source and destination IP-addresses have
been reassigned, as depicted in Figure 12. The top packet-
version shows an IP packet being directed to an individ-
ual system using the VLID, while the bottom packet uses
multicast-addressing. The 32 bits of the source IP address
field are separated into:

• the single bit class identifier,

• 7 bit private address,

• user-defined 16 bit ID,

• as well as an 8 bit partition identifier.

The partition identifier is used to address virtual subsystems
in a virtualized IMA environment [12,18].

The Destination IP is either used to designate a multicast

doi: 10.2313/NET-2012-08-1_10Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

73



Figure 12: Similar to AFDX’s frame format on OSI-layer 2, the structure of the IPv4 header remains
unchanged. [19]

IP address, or contains a field of 16 bits prefixed to the
VLID. The first 16 bits contain a fixed number (specified by
the standard), while the second part contains the VLID, if
direct IP-addressing and IMA is used [19].

Due to the guarantees provided by AFDX, certain features
usually introduced at higher OSI layers (e.g. packet-loss
handling and reordering of packets) are already implemented
by the underlying L2/3-networking structure. In commercial
networking, protocols such as TCP or SCTP are used to
provide this functionality. In AFDX, transmission control
and integrity is already provided at the lower layers, thus,
UDP was chosen to be the default protocol in AFDX [7].

AFDX-Ports are mapped directly at UDP’s source and des-
tination port fields. AFDX-flows are identified by using a
combination of the following parameters:

• destination MAC address (containing the VLID),
• source and destination IP address,
• source and destination UDP port,

Due to architectural restrictions, the minimum payload size
for packets transmitted inside a AFDX-L3 packet is 144 bits.
If an UDP packet’s length drops below this limit, padding
is added at the end of the L4 packet [19].

The standard also defines monitoring to be performed via
SNMP, and intra-component data transfer through TFTP.
Payload transferred inside the L4-structure usually has no
fixed predetermined meaning, in contrast to earlier stan-
dards. However, ARINC 664 defines a number of common
data structures, such as floating point number formats and
booleans. These do have no direct impact on network pay-
load, but offer common ground for software development
[19].

6. CONCLUSIONS
ARINC 429 was developed at a time when the use of inter-
connected, programmable subsystems aboard aircraft was
simply not feasible due to aspects such as size, energy con-
sumption, fragility and hardware cost. 429 solely treats data
transfer between systems at a per-device level, interconnect-
ing systems on a pin level. Though it has advantages over
more modern standards, it clearly had reached its limits
once multipurpose computers are interconnected. However,
429 will most likely not simply vanish; it will still be used
in scenarios where simple signaling is sufficient, and in la-
tency critical scenarios. It is a proven and extremely reliable
technology and thus is also used as fall-back network for the
AFDX network, e.g. in the Airbus A380.

Most of 429’s limitations have been identified decades ago,
but no uniform standard had been adopted by the aerospace
industry. Other standards introduced more modern, faster
or more flexible networking models, in contrast to basic sig-
naling as in 429. However, known attempts are either in use
exclusively in individual aircraft models or are applied only
internally by manufacturers (629, ASCB, CSCB, EFAbus
[4]) offering little or no compatibility to the other implemen-
tations. Still, these standards introduced approaches which
can be found in an altered form in AFDX [7].

AFDX combines proven safety and availability functionality
with modern technology to be able to handle today’s re-
quirements. It adheres to the OSI-layer-model and outlines
a compatible stack architecture, while allowing to emulate
previous communication standards on top. Besides, the In-
ternet Protocols Suite (IP/UDP) and Ethernet are used and
only slight alterations to the individual data structures are
applied, which lowers the bar for designing hardware and
developing software in avionics considerably.

ARINC 429 ARINC 629 Mil-Std-1553 ARINC 664 (at 100 Mbps)

Topology (logical) Bus Bus Bus (Star) Star
Duplex Simplex Half-Duplex Half-Duplex Full-Duplex
Medium Dedicated Shared Shared Shared

Speed 100 kHz 2 MHz 1 MHz 100 MHz
Bandwidth 2778 words/sec Variable 46000 words/sec 3,000,000+ frames/sec
Latency Fixed Bounded Variable Bounded
QoS 100% None None Configurable

Table 2: A capability comparison of ARINC 429, 629, Mil-Std-1553 and AFDX. [7]

doi: 10.2313/NET-2012-08-1_10Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

74



For certain parts of an AFDX network, COTS hardware
can be used in conjunction with matching software, though
AFDX hardware implementations must be used to retain de-
terminism. Still, by adding standard Ethernet hardware in
conjunction with an AFDX-stack implementation in the op-
erating system, non-AFDX hardware could be used without
further alterations [19,23].

Changes to the overall network layout do not negatively im-
pact individual Virtual Links or ports of the individual end-
and subsystems, due to the added abstraction [12, 18]. Di-
agnosing issues within an AFDX network requires highly
skilled personnel, in contrast to 429. Still, hardware swap-
ping in a 664 network can be done with little effort whereas
fixing a line running through an entire aircraft due to a
fault may require considerable effort [7]. ARINC 664 sup-
porting devices may also support virtualization and hard-
ware partitioning, as virtual/logical devices as specified in
IMA/ARINC 653 can be used [29]. 429 will never be able
to support IMA architectures, let alone non-physical hard-
ware [12,13,18].

AFDX implementations still remain relatively conservative,
using a proven and mature technology base instead of state-
of-the-art hardware [14]. For example, the Airbus A380’s
and A350’s networks are based on copper-cabling, while op-
tical cabling has become the de-facto standard for high-
speed interconnection on backbones in corporate and car-
rier backbones. However, ARINC 664 architectures can in-
tegrate future technology seamlessly. Future AFDX imple-
mentations like the one used in Boeing’s 787 will use fiber-
optics.

664’s flexibility in complex setups makes it an obvious solu-
tion to the cabling overhead and complexity issues of 429.
While offering a comparable level of reliability as Mil-Std-
664 in civilian application, its architecture is a considerably
more adaptive and can benefit seamlessly from the parallel
evolution of the Ethernet standards family. Also line speeds
previously unachievable in commercial avionics are now at-
tainable and require far less development effort for both hard
and software, as the technological base still remains to be
Ethernet.

In the long run, the technological layering will minimize the
need to review AFDX to incorporate new features, as those
can be introduced via the underlay standards. AFDX is far
more advanced, modern and powerful than previous stan-
dards, yet retains its flexibility. In the future, we will most
likely observe an acceleration of the introduction of this new
networking standard into commercial avionics.

7. REFERENCES
[1] P. Frodyma and B. Waldmann. ARINC 429

Specification Tutorial. AIM GmbH, 2.1 edition, 2010.
[2] Working Group. ARINC 615, P2: ARINC Airborne

Computer Data Loader. Technical Report 1,
Aronautical Radio, INC, June 1991.

[3] P. Frodyma, J. Furgerson, and B. Waldmann.
MIL-STD-1553 Specification Tutorial. AIM GmbH,
2.3 edition, 2010.

[4] L. Buckwalter. Avionics Databuses, Third Edition.
Avionics Communications Incorporated, 2008.

[5] Miguel A. Sánchez-Puebla and Jesús Carretero. A new
approach for distributed computing in avionics
systems. In Proceedings of the 1st international
symposium on Information and communication
technologies, ISICT 2003, pages 579 – 584. Trinity
College Dublin, 2003.

[6] N. Thanthry and R. Pendse. Aviation data networks:
security issues and network architecture. Aerospace
and Electronic Systems Magazine, IEEE, 20(6):3 – 8,
June 2005.

[7] T. Schuster and D. Verma. Networking concepts
comparison for avionics architecture. In Digital
Avionics Systems Conference, 2008. DASC 2008.
IEEE/AIAA 27th, pages 1.D.1–1 – 1.D.1–11, October
2008.

[8] J. Craveiro, J. Rufino, C. Almeida, R. Covelo, and
P. Venda. Embedded Linux in a partitioned
architecture for aerospace applications. In Computer
Systems and Applications, 2009. AICCSA 2009.
IEEE/ACS International Conference on, pages 132 –
138, May 2009.

[9] M.J. Morgan. Integrated modular avionics for
next-generation commercial airplanes. In Aerospace
and Electronics Conference, 1991. NAECON 1991.,
Proceedings of the IEEE 1991 National, pages 43 – 49
vol.1, May 1991.

[10] C.B. Watkins and R. Walter. Transitioning from
federated avionics architectures to Integrated Modular
Avionics. In Digital Avionics Systems Conference,
2007. DASC 2007. IEEE/AIAA 26th, pages 2.A.1–1 –
2.A.1–10, October 2007.

[11] P.J. Prisaznuk. ARINC 653 role in Integrated Modular
Avionics (IMA). In Digital Avionics Systems
Conference, 2008. DASC 2008. IEEE/AIAA 27th,
pages 1.E.5–1 – 1.E.5–10, October 2008.

[12] INC Aronautical Radio. ARINC 653, P1-3: Avionics
Application Software Interface. ARINC Specification
653 Parts 1-3, November 2010.

[13] Richard L. Alena, John P. Ossenfort Iv, Kenneth I.
Laws, and Andre Goforth. Communications for
Integrated Modular Avionics. In IEEE Aerospace
Conference 2007, pages 1 – 18, March 2007.

[14] R. Ramaker, W. Krug, and W. Phebus. Application of
a civil Integrated Modular Architecture to military
transport aircraft. In Digital Avionics Systems
Conference, 2007. DASC 2007. IEEE/AIAA 26th,
pages 2.A.4–1 – 2.A.4–10, October 2007.

[15] Michael Hegarty. A Robust Physical Layer for aircraft
data networks based on MIL-STD-1553. In SAE 2011
AeroTech Congress and Exhibition, pages 1394 – 1401,
October 2011.

[16] Working Group. 802.3-2008 IEEE Standard for
Ethernet, 2008.

[17] Gitsuzo B. S. Tagawa and Marcelo Lopes de Oliveira e
Souza. An overview of the Intergrated Modular
Avionics (IMA) concept. In DINCON 2011, pages 277
– 280. Conferência Brasileira de Dinâmica, Controle e
Aplicações, September 2011.

doi: 10.2313/NET-2012-08-1_10Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

75



[18] John Rushby. Partitioning in avionics architectures:
Requirements, mechanisms, and assurance. Final
Report DOT/FAA/AR-99/58, NASA Langley
Research Center and U.S. Federal Aviation
Administration (US DOT), March 2000.

[19] INC Aronautical Radio. ARINC 664, P7: Avionics
Full Duplex Switched Ethernet (AFDX) Network.
ARINC Specification 664 Part 7, June 2005.

[20] M. Felser. Real-Time Ethernet - Industry Prospective.
Proceedings of the IEEE, 93(6):1118 – 1129, June 2005.

[21] J.-D. Decotignie. Ethernet-Based Real-Time and
Industrial Communications. Proceedings of the IEEE,
93(6):1102 – 1117, June 2005.

[22] L A N Man and Standards Committee. 802.1Q-2005
IEEE Standard for Local and metropolitan area
networks: Virtual Bridged Local Area Networks,
volume 2005. IEEE, 2005.

[23] Emre Erdinc. Soft AFDX end system implementation
with standard PC and Ethernet card. Master’s thesis,
Graduate School of Natural and Applied Sciences of
the Middle East Technical University, 2010.

[24] Working Group. 802.1AX-2008 IEEE Standard for
Local and Metropolitan Area Networks - Link
Aggregation, 2008.

[25] Todd Lammle. CCNA: Cisco certified network
associate study guide. Sybex, San Francisco, 2004.

[26] M. Boyer, N. Navet, and M. Fumey. Experimental
assessment of timing verification techniques for
AFDX. Technical report, Realtime-at-work, ONERA,
Thales Avionics, 2012.

[27] Ananda Basu, Saddek Bensalem, and Marius Bozga.
Verification of an AFDX Infrastructure Using
Simulations and Probabilities. In Runtime
Verification, volume 6418 of Lecture Notes in
Computer Science, pages 330 – 344. Springer Berlin /
Heidelberg, 2010.

[28] Jean-Yves Le Boudec and Patrick Thiran. Network
calculus: a theory of deterministic queuing systems for
the internet. Springer-Verlag, Berlin, Heidelberg, 2001.

[29] D. Kleidermacher and M. Wolf. MILS virtualization
for Integrated Modular Avionics. In Digital Avionics
Systems Conference, 2008. DASC 2008. IEEE/AIAA
27th, pages 1.C.3–1 – 1.C.3–8, October 2008.

doi: 10.2313/NET-2012-08-1_10Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

76


