
TLS Solutions for Wireless Sensor Networks

Sebastian Wöhrl

Betreuer: Corinna Schmitt

Seminar Future Internet SS2012

Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München

Email: sebastian.woehrl@mytum.de

ABSTRACT
Wireless Sensor Networks are an interesting research topic
with many possible real world applications. The increas-
ing number of sensor networks and their widespread deploy-
ment throughout the world makes them a more and more
interesting target for attackers. With the Internet Proto-
col (IPv6) becoming the standard for communication among
these networks it is possible to use established standards for
this task. The current standard for secure communication
in the internet is Transport Layer Security (TLS) which is
used worldwide and easy to implement. This paper discusses
several solutions for and enhancements of TLS to use it in
IP-based Wireless Sensor Networks to leverage the power
of TLS while still keeping in mind the limited resources of
sensor networks.

Keywords
TLS, SSL, IPv6, Security, Wireless Sensor Network

1. INTRODUCTION
A Wireless Sensor Network (WSN) is a network of small au-
tonomous sensor nodes (usually with an embedded processor
and therefore with low computing power) which are commu-
nicating using wireless connections. The application area of
such sensor networks is usually monitoring external condi-
tions ranging from physical to environmental values[11]. A
relativly new field of application is using the sensors to mon-
itor medical readings of human patients[12].

With the internet and its primary protocol (IP) being the
worldwide standard for data communication it is only logical
to also build WSNs based on this standard. This became
possible with the upcoming of IPv6 and its greatly enlarged
address pool making it possible to create IP-based networks
for sensor nodes with each sensor having its own IP-Address.
This makes it possible to integrate these sensor networks into
the internet and using established standards.

Due to the nodes communicating wirelessly special consid-
erations have to be made for securing these links. With
TLS/SSL being the standard protocol for encrypting and
authenticating connections in IP networks it is only logical
to also use it for IP-based WSNs. Of course with the sensor
nodes being very limited in terms of energy and computing
power and considering the special circumstances of the de-
ployment of such networks just using plain TLS will not be
very e�cient.

This paper will describe and discuss several approaches to
this topic and is organized as follows. Section 2 describes
”original” TLS based on the o�cial RFC. Sections 3 to 5
will discuss possible approaches for using TLS with more
than two entities[1], for using identity-based cryptograhy
with TLS[2] and finally Tiny-3-TLS[3]. Finally, the solu-
tions are compared and summarized in Section 6.

2. TLS FOLLOWING RFC 5246
The current version of TLS, 1.2 (or SSL 3.1), is defined
in RFC 52461 [4]. TLS consists of a series of protocols.
The basic protocol is the so called ”TLS Record Protocol”
which in the ISO/OSI-Layer-Model is put directly above the
Transport Layer (c.p. Figure 1).



















Figure 1: TLS in the ISO/OSI-Model [2]

Above the record protocol are the Handshake Protocol, the
Change Cipher Spec Protocol (used to negotiate key and
algorithm changes), the Alert Protocol (to signal problems)
and the Application Data Protocol (used to transport the
user data). The most interesting is the Handshake Proco-
tol because it is used to establish the TLS session and to
negotiate the session parameters like encryption keys and
algorithms. As such it provides the most starting points to
optimize the TLS protocol.

Following is a description of a normal TLS Handshake be-
tween a Client and a Server using X.509 Certificates as
shown in Figure 2.

The connection starts with the client sending a ClientHello
(1) containing a random number (rnc) and his supported
algorithms (the Cipher Suites). The random number rnc is
generated and transmitted to protect against replay attacks.
The Server responds with a ServerHello (2) also containing

1For a more lightweight reading you can refer to [6]

doi: 10.2313/NET-2012-08-1_06Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

31



a random number (rns) and the Cipher Suite the server has
chosen from the o↵ered ones. The server will also send its
certificate (3) and will optionally request a certificate from
the client (4) before ending the Hello phase (5). The client
checks the transmitted server certificate and transmits its
own certificate (6).

With certificate checks done the client generates a new ran-
dom number (called the pre-master-secret, PMS, 7) and
sends it to the server (8) encrypted with the servers pub-
lic key which is contained in the server certificate. Using
this pre-master-secret both calculate the master-secret (10,
MS) using a pseudo-random-function specified in the cipher
suite. Earlier versions of TLS used the MD5 and SHA-1 hash
functions.

Also the client proves it really is in control of the private
key for which he has presented a certificate by sending a
CertificateVerify message (9) which is a signature over all
previously exchanged messages using the clients private key.

Once the master-secret is calculated both parties send a
ChangeCipherSpec message (11, 13) and a Finished message
(12, 14) and from there on encrypt all messages using this
master secret. The Finished messages (11, 13) are already
encrypted and contain a hash and a Message Authentica-
tion Code (MAC) over all previously exchanged messages.
If the other party cannot decrypt the Finished message or
the hash or MAC verification fails then the entire handshake
is considered a failure and the connection closed.

Encryption of messages during data transport is usually
done using AES. In Wireless Sensor Networks AES-128 is
used most often as it provides the best trade-o↵ between
security and computational e↵ort. As AES is already quite
e�cient most TLS optimizations for Wireless Sensor Net-
works focus on the TLS Handshake.

Client Server

ClientHello (1)

ServerHello (2)

Certificate (3)

CertificateRequest (4)

ServerHelloDone (5)

Certificate (6)

PMS(7) ClientKeyExchange (8)

CertificateVerify (9)

MS (10) MS (10)
ChangeCipherSpec (11)

Finished (12)

ChangeCipherSpec (13)

Finished (14)

Figure 2: Time-schematic TLS Handshake[6]

3. TLS FOR MORE THAN TWO ENTITIES
Mohamad Badra describes in [1] a way to expand the original
TLS protocol to use it for more than two entities and there-
fore to no longer be bound by the client/server-architecture
of the original design.

3.1 Why more than two?
Most of the communication in the internet is done between
two entities, either in a client/server-mode or as P2P
(peer-to-peer). As client/server is the standard, TLS was
designed for that use case. Wireless Sensor Networks are
often built with several layers. The sensor nodes commu-
nicate with each other and over possibly several hops with
a router node. These in turn communicate with a gateway
node which connects the WSN to the internet and allows
clients in the internet - e.g. a lab computer controlling the
nodes and checking the sensor readings - to communicate
with the sensor nodes (for details see [9] and [11]).

The gateway node can act as a caching proxy to reduce the
number of messages to the sensor nodes if many clients want
to pull the same readings or to log the readings for futher
study. But with an encrypted connection between the sensor
and the client the proxy has no way to read the content of the
messages. Therefore a way must be found to allow a secure
connection between three entities. This can be generalized
to N entitites, one client, one server and N-2 intermediaries.

3.2 Expanding TLS
A naive approach at solving this problem would be to have
each of the entities maintain N-1 seperate connections and
send each message to all the other nodes. It is quite clear
that this is not the best approach. Mohamad Badra de-
scribes ”an enhanced way to establish a TLS session be-
tween N entities. To simplify [he] describe[s] [his] solution
with N=3”[1]. The following section is based on his paper
(Section IV).

The basic extension is that all intermediate entities are told
the pre-master-secret so they can compute the master-secret
and therefore decrypt all the messages sent. Following is a
detailed description of a handshake for N = 3 entites, Client
(C), Intermediary (E) and Server (S), also shown in Figure
3:

The client sends a ClientHello to the Intermediary (contain-
ing a random number rn

C

and suggested cipher suites), the
Intermediary selects one or more of the cipher suites and
sends an own ClientHello to the Server containing the same
random number rn

C

. The Server generates its own ran-
dom number rn

S

and sends a ServerHello to the Interme-
diary. Then these two do a normal TLS Handshake Hello
as described in section 2 (including sending and validating
the server certificate). Once this is done the Intermediary
passes on the ServerHello and the certificate from the Server
but also includes his own certificate. The client verifies all
certificates and sends his own client certificate to the In-
termediary which relays it to the Server. After this the
client computes a normal pre-master-secret but instead of
just sending it to the server (encrypted with the server’s
public key) he also sends it encrypted to the Intermediary
(whose public key he has from the transmitted intermediary
certificate). As all involved parties now have the pre-master-
secret they can each calculate the master secret and do a
ChangeCipherSpec. Following that step client and server
have a TLS-secured encrypted connection which all inter-
mediaries can legally eavesdrop on.

The extension to the original TLS Handshake protocol are

doi: 10.2313/NET-2012-08-1_06Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

32



several additional messages used to exchange information
with the intermediaries, client and server still do a normal
handshake.

Client Intermediary Server

ClientHello
ClientHello

ServerHello

Certificate (Server)

ServerKeyExchange

CertificateRequest

ServerHelloDone

ServerHello

Certificate (Server)

ServerKeyExchange

IntermediateServerKeyExchange

CertificateRequest

ServerHelloDone

Certificate (Client)

ClientKeyExchange

IntermediateClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished

Certificate (Client)

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

Figure 3: Time-schematic TLS Handshake for more
than two entites [1]

3.3 Discussion
The described approach is superior to the mentioned naive
approach in all respects. Doing the intermediary-handshake
is cheaper than doing N-1 seperate handshakes but still more
expensive than just doing one client/server-handshake. Also
during the session each message only needs to be encrypted
with one key (the common master secret) regardless of the
number of N. This makes it interesting for Wireless Sensor
Networks which often need to communicate with several en-
tities in the loop. But doing all these crypto operations for
the establishment of the connection is not ideal for sensor
nodes. In terms of energy and computing needs RSA (which
is normally used in TLS with certificates) is quite expensive
and therefore can be too costly for the embedded processors
used in sensor nodes. This leads to the next section which
describes solutions for cheapening TLS.

4. TLS WITH IDENTITY-BASED CRYPTOG-
RAPHY FOR IP-BASED WSNS

In [2] the authors describe two ways to do a TLS Hand-
shake without using RSA and X.509 Certificates: One is
done using Identity-based Cryptography and Eliptic Curve
Di�e-Helmann, the other is done using Eliptic Curves and
Bilinear Pairing.

4.1 Some Explanations
First some introductions and explanations of the techniques
and algorithms used in these approaches.

4.1.1 Identity-Based Cryptography

Identity-based Cryptography (IBC) avoids using certificates
which reduces the number of messages to be exchanged dur-
ing a key exchange as certificates are usually quite large. In-
stead in IBC there is a Private Key Generator (PKG) which
is the replacement for the Certification Authority (CA) used
in Certificate-based cryptography. It generates a secret key
for each node based on its unique identity (which for ip-
based sensor nodes is usually the IPv6 address). The nodes
must be preloaded with this secret key prior to their deploy-
ment. Due to this role the PKG is a trusted party and must
not be compromised.

This even provides security against IP address spoofing. An
attacker could try to use the address of a legit node. But
since he does not have the private key corresponding to the
IP address and - without compromising the PKG and getting
its secure parameters - has no way of generating it.

4.1.2 Bilinear Pairing
In short bilinear Pairing allows two parties to agree on a
shared key (e.g. as a session key) without exchanging any
messages. In more mathematical terms:

”Let G1 denote a cyclic additive group of some large prime
order q and G2 a cyclic multiplacative group of the same
order. A pairing is a map e : G1 ⇥ G1 ! G2 and has an
important property that is bilinearity; if P,Q,R 2 G1 and
a 2 Z⇤

q

[...] e(aP,Q) = e(P, aQ) = e(P,Q)a.”[2]

4.1.3 Eliptic Curves
Eliptic Curves (EC) [10] are an algebraic concept which are
plane curves described by the equation

y2 = x3 + ax+ b (1)

and the points on that curve.

Su�ce it to say that as long as the discrete logarithm prob-
lem is still expensive and di�cult to solve, eliptic curve cryp-
tography can be considered secure. Their main advantage
over RSA is that the same level of security can be achieved
with much shorter keys (usually around 128 bit EC is con-
sidered the same as 1024 bit RSA). This point makes them
interesting to use for limited devices such as sensor nodes or
smartcards as shorter keys imply cheaper operations.

4.1.4 Eliptic Curve Diffie-Hellman
The Di�e-Hellman key exchange is a protocol that allows
two parties to agree on a shared key over an unsecure com-
munications channel - this works without sending the key
itsself over the wire. It is defined in RFC 2631 [7]. Elip-
tic Curve Di�e-Hellman (ECDH) is a variation of the pro-
tocol that uses eliptic curve public/private-key-pairs. The
algorithm was introduced in [5], a longer description can be
found there. Basically the exchange between Alice (A) and
Bob (B) goes as following:

Both must have the same eliptic curve (or more concretly a
generator P which is a point on the curve). Also each one
needs a public/private-key pair (denoted as d

A

and d
B

for
the private part and Q

A

and Q
B

for the public part). d is
a randomly selected value and Q is calculated as Q = d ⇤P .
After Alice and Bob transmit their respective public keys

doi: 10.2313/NET-2012-08-1_06Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

33



(Q) to each other they can both calculate the shared key
x as x

A

= d
A

⇤ Q
B

respectivly x
B

= d
B

⇤ Q
A

. It holds
x = x

A

= x
B

because d
A

⇤Q
B

= d
A

⇤d
B

⇤P = d
B

⇤d
A

⇤P =
d
B

⇤Q
A

. Normally some form of hash function is used on x
to get the shared key.

4.2 TLS Handshake with IBC and ECDH
With this approach of using TLS with IBC and ECDH [2]
the authors have tried to optimize the TLS handshake pro-
tocol for use with low-power devices such as sensor nodes.
Prior to their deployment inside a network all the nodes
need to be equipped with a private key and an identity
(IPv6 address). As mentioned above a PKG is needed as
a trusted party to generate private keys based on the IPv6
address, it also initializes some parameters for the eliptic
curves (namely the generator point P of the eliptic curve).

The start of the TLS Handshake is the same as the origi-
nal handshake with transmission of the ClientHello and the
ServerHello (c.p. Figure 4). Also in accordance to the origi-
nal specification both nodes generate random keys (let them
be rn

C

for the client and rn
S

for the server). But instead
of sending over his certificate the server calculates rn

S

⇤ P ,
signs it using his private key and sends it to the client with
a ServerKeyExchange message. The client does likewise,
computes rn

C

⇤ P , signs it and sends it to the server using
a ClientKeyExchange message. The parties then exchange
the normal ChangeCipherSpec and Finished messages to end
the handshake. The client now knows rns ⇤ P and rnc and
therefore can calculate rn

C

⇤ P ⇤ rn
S

which is used as pre-
master-secret. Likewise for the server who knows rn

C

⇤ P
and rn

S

and can als calculate the pre-master-secret. Then
they both can derive the master secret using the pre-master-
secret in the normal way.

The step of exchanging certificates (which is part of the
original TLS specification) can be omitted because in this
incarnation the IPv6 addresses act as certificates and are
already known to the communication partner due to the
communication being ip-based. This saves two rather costly
messages. The other point to note is that in the original
TLS specification the pre-master-secret (a random number
calculated by the client) is sent to the server encrypted us-
ing the servers public key. With this implementation (using
IBC and ECDH) this is not necessary, the parts of the pre-
master-secret (rn

C

⇤ P and rn
S

⇤ P ) are sent in plaintext
because as mentioned above it is for an attacker not feasable
to calculate the parts P and rn

C

or rn
S

of the value sent
over the wire.

4.3 TLS Handshake with ECC and bilinear
pairing

The authors also propose a second adaption of the TLS
handshake using ECC and bilinear pairing which further re-
duces the number of messages sent.

Prior to deployment of the nodes there is again a PKG
needed to choose/compute some parameters for the bilinear
pairing. These are a random number S 2 Z⇤

q

, the groups
G1 and G2 of the same prime order q, a point P 2 G1, the
bilinear map e and a hash function H returning points on
an eliptic curve for identities (IPv6 addresses, named ID).

Client Server

ClientHello (1)

ServerHello (2)

ServerKeyExchange ds ⇤ P (3)

AuthenticationRequest (4)

ServerHelloDone (5)

ClientKeyExchange dc ⇤ P (8)

MS (10) MS (10)
ChangeCipherSpec (11)

Finished (12)

ChangeCipherSpec (13)

Finished (14)

Figure 4: Time-schematic TLS Handshake with IBC
and ECDH [2]

For each node j the PKG computes Q
j

= S⇥H(ID
j

) which
is the private key.

The TLS handshake again starts with the exchange of Clien-
tHello and ServerHello (c.p. Figure 5). After ending the
hello phase with a ServerHelloDone both client and server
can calculate the pre-master-secret as follows: Let IDc be
the identity of the client (=IPv6 address) and IDs the iden-
tity of the server. S is the random number chosen by the
PKG but not directly known by neither the server nor the
client. The client computes the pre-master-secret as
e(Qc,H(IDs)) where Qc is the private key of the client. The
server computes it as e(H(IDc), Qs). These two are iden-
tical because Qc = S ⇥H(IDc) and Qs = S ⇥H(IDs), so
the client computes e(S ⇥H(IDc), H(IDs)) and the server
computes e(H(IDc), S ⇥ H(IDs)) which are equal accord-
ing to the definition of bilinear pairing above with S as a,
H(IDc) as P and H(IDs) as Q.

Using this common pre-master-secret both the client and the
server can calculate the master-secret, and end the hand-
shake after doing a ChangeCipherSpec.

In comparison to the above described solution with IBC
and ECDH another two messages can be saved (namely the
ServerKeyExchange and the ClientKeyExchange).

But the security of the whole process relies on the S be-
ing kept secret so that only the PKG nows its value. If
the value would become public a eavesdropper could very
easily compute the pre-master-secret and therefore also the
master-secret because the identites (IDc and IDs) are pub-
lic.

4.4 Usefullness to WSNs
As already mentioned the sensor nodes of Wireless Sensor
Networks usually use embedded processors with a low com-
puting and power capacity. This makes RSA an undesire-
able element of the TLS Handshake as it is very expensive to
compute and the X.509 certificates accompanying the hand-
shake are relativly big and therefore expensive to transmit.

doi: 10.2313/NET-2012-08-1_06Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

34



Client Server

ClientHello (1)

ServerHello (2)

ServerHelloDone (5)

MS (10) MS (10)
ChangeCipherSpec (11)

Finished (12)

ChangeCipherSpec (13)

Finished (14)

Figure 5: Time-schematic TLS Handshake with
ECC and Bilinear pairing [2]

Both approaches deal with this by throwing out RSA and
certificates and introducing Eliptic Curves and
Identity-based Cryptography as their replacements. Thus
reducing the needed computing power and the number of
messages which have to be sent (which for wireless connec-
tions is extremely power-consuming) for a successfull TLS
Handshake.

TLS with IBC and ECDH still stays close to the origi-
nal standard by still doing a key exchange (computing and
transmitting random encrypted numbers) while TLS with
ECC and bilinear pairing fully dispenses with exchanging
keys. So both approaches make beneficial changes to the
original TLS standard for use with Wireless Sensor Net-
works.

But for all the advantages there is also a disadvantage which
comes with the design of the Private Key Generator. It is
a critical part of the infrastructure as it is responsible for
generating the private keys for all nodes. If the PKG were
to be compromised an attacker had all the information he
had for eavesdroping on the secured connections between
the nodes. This is not unlike the Certification Authority
used in certificate-based cryptography which also needs to
be maintained and kept secure. Which is not so easy as
hacks in recent times have shown [8].

5. TINY-3-TLS
As Wireless Sensor Networks usually use some form of gate-
way node anyway to connect to the outside world (i.e. the
Internet) it would make sense to use this gateway node as
a helper for establishing secure communication between a
sensor node and an outside client seeing as such a gate-
way node normally has stronger hardware and can therefore
shoulder the complex computations for cryptography more
easily. One such approach is Tiny-3-TLS whose ”goal [...] is
to provide an end-to-end secure communication between a
remote device and a wireless sensor network”[3].

5.1 Basics
The paper di↵erentiates between a partially trusted gateway,
which means the gateway helps in establishing the connec-

tion but should not be able to eavesdrop on the end-to-end
secure channel, or a fully-trusted gateway which will possess
the shared secret key and therefore be able to listen in on
the secure channel.

As a possible use case the authors mention the
MAGNET.Care-Project[12]. The scenario is that a patient
of a hospital carries medical sensors organized as a wireless
sensor network and a physican at the hospital wants to con-
nect to the sensors to get current readings using a security
gateway. From a patients viewpoint the security gateway at
the hospital ist not fully trusted and should therefore not
be able to read the transferred medical data. Whereas if
the patient is at home and his home router acts as security
gateway it is fully trusted and allowed to read the sensitive
data.

As already previously mentioned traditional asymmetric cryp-
tography like RSA is relativly expensive in terms of com-
putational needs so Tiny-3-TLS again substituts RSA with
Eliptic Curve Cryptography (ECC). As a means of agreeing
on a shared secret key the protocol uses Eliptic Curve Di�e-
Hellman (ECDH) which was already explained in an earlier
section of this paper. The ECDH public values mentioned
below refer to the public key part of the ECC public/private-
key pair, above denoted as Q

x

.

One basic assumption is made for both approaches: Between
the sensor node and the security gateway there is a shared
secret key, denoted as K.

5.2 Partially Trusted Gateway
In this scenario the gateway (GW) assists in establishing
the secure connection between a remote terminal acting as
a client and a sensor node acting as a server but does not
possess the TLS session key at the end.

The TLS handshake (as shown in Figure 6) starts with
a ClientHello containing the usual CipherSuite o↵ers, the
client identity (ID

c

) and a nonce (N
c

) from the client to the
GW which encrypts the entire packet using the shared sym-
metric key K and sends it on to the server. In response the
server sends a ServerHello message (encrypted wth K) to
the GW additionally containing the server identity (ID

s

), a
nonce (N

s

) and its ECDH public values. The GW does not
pass the message on to the client but instead composes his
own ServerHello which does not contain the servers ECDH
public values but instead contains the GW certificate and a
request for a client certificate. To this the client responds
with his own certificate, ECDH public values and a second
nounce (N

g

), called gateway authentication nonce. The en-
tire message is encrypted asymmetricly using the GWs pub-
lic key found in the certificate. Upon receipt the GW proves
its ownership of the private key mentioned in the GW cer-
tificate by sending the gateway authentication nonce back
to the client, it also includes the ECDH public values of the
server which the GW removed from the first ServerHello (all
encrypted with the clients public key). Also the GW trans-
mits the ECDH public values received from the client to the
server (again encrypted with K).

As both the server and the client now have the ECDH public
values of the other partner they can now calculate the pre-

doi: 10.2313/NET-2012-08-1_06Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

35



master-secret according to the ECDH algorithm and using
the exchanged nonces (N

c

and N
s

) and identities (ID
c

and
ID

s

) calculate the master key. With this both can encrypt
the Finished messages and start using their secure end-to-
end channel.

Client Gateway Server

ClientHello (IDc, Nc)

ClientHello (IDc, Nc)

ServerHello (IDs, Ns, ECDHs)ServerHello (IDs, Ns

Certgw , CertReq)

Certificate (Ng, ECDHc

CertificateVerify (ECDHs, Ng

ECDHc

Finished

Finished

Figure 6: Time-schematic Tiny-3-TLS with partially
trusted GW [3]

5.3 Fully Trusted Gateway
5.3.1 TLS Handshake
The procedure for doing the TLS handshake using the fully-
trusted gateway (as shown in Figure 7) is at the beginning
very similar to the procedure for the partially-trusted gate-
way. The client sends its ClientHello, the GW passes it
on encrypted with K to the server which responds with a
ServerHello but this time without ECDH public values. The
GW again passes the message along but includes his certifi-
cate and a certificate request. The client responds to that
request by transmitting his own certificate to the GW. Then
- as in standard TLS - it generates a pre-master-secret (usu-
ally just a random number), encrypts it with the public key
of the GW and sends it on to the GW.

The GW generates a client-read-key and a client-write-key
and sends them along with a random number encrypted (us-
ing K) to the server. Once the server confirmed it has re-
ceived and decrypted the keys (by sending back the random
number) the GW ends the TLS handshake with the client by
sending a Finished message. With that the secure channel
is established.

Communication between the client and the GW is done us-
ing the master secret derived from the pre-master-secret sent
by the client. Between the GW and the server messages are
encrypted using the client-read-key and the client-write-key
generated by the GW.

5.3.2 Comparison to TLS for more than two entities
Tiny-3-TLS with a fully trusted gateway is very similar to
the TLS enhancement for more than two entites from [1]
explained in section 3. The main di↵erence to the outcome
is that in [2] at the end all entities have and use the same
master secret whereas in Tiny-3-TLS a real TLS session is
only established between the client and the GW which relays
the messages to the server using a special key not known to
the client. This means the GW has to do additional cryp-
tography computations for reencrypting all messages passed
around. But this can be an advantage. Client and GW can

Client Gateway Server

ClientHello (IDc, Nc)

ClientHello (IDc, Nc)

ServerHello (IDs, Ns)ServerHello (IDs, Ns

Certgw , CertReq)

Certificate (Ng, PMS)

ReadKey, WriteKey, Ngw

Ngw

Finished

Figure 7: Time-schematic Tiny-3-TLS with fully
trusted GW [3]

use strong and complicated encryption algorithms to secure
the messages while travelling through the internet or an-
other unsecure network. Whereas between server and GW a
cheaper algorithm can be used which is more suited for the
low-power processors used in sensor nodes.

6. SUMMARY
In this paper three di↵erent extensions/enhancements to the
Transport Layer Security Protocol were described which all
have their merits and faults (a tabular comparison is shown
in Table 1). TLS for more than two entities is the ideal so-
lution for interconnecting multiple entities with one shared
secured channel. But it is not very usefull for applications
in Wireless Sensor Networks as it still uses the computa-
tionally heavy standard TLS asymmetric cryptopgrahy pro-
tocols such as RSA with X.509 certificates. But it provides
an interesting basis for connections between multiple nodes
which in sensor networks is more common than in the classic
internet.

Tiny-3-TLS remedied that weakness by introducing eliptic
curves and a gateway node for handling the intensive cryp-
tography computations. It can be seen as an enhanced way
for the approach in section 3 - specifically tailored for N = 3.

The introduction of Identity-based Crytography is a di↵er-
ent approach also making use of eliptic curve cryptography
and other concepts to reduce the number of messages and
computations that have to be done by the nodes but keeps
the involved number of entities fixed at N = 2.

All three approaches enhance TLS for specific applications
and should not be considered as a general improvement of
Transport Layer Security.

7. REFERENCES
[1] M. Badra: Securing Communications between Multiple

Entities Using a single TLS Session, IEEE 2011
[2] R. Mzid, M. Boujelben, H. Youssef, M. Abid:

Adapting TLS Handshake Protocol for Heterogenous
IP-Based WSN using Identity Based Cryptography, In
Proceedings of the International Conference on
Wireless and Ubiquitous Systems, 8-10 October 2010,
Sousse, TUNISIA

[3] S. Fouladgar, B. Mainaud, K. Masmoudi, H. Afifi:
Tiny 3-TLS: A Trust Delegation Protocol for Wireless

doi: 10.2313/NET-2012-08-1_06Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

36



Table 1: Advantages & Disadvantages of the di↵er-
ent approaches
Approach Advantages Disadvantages
TLS
N > 2 • little additional e↵ort

required
• compatible to origi-

nal TLS

• uses X.509 Certifi-
cates

• uses RSA (computa-
tionally expensive)

IBC, EC,
BP • Eliptic Curves are

better than RSA
• Bilinear Pairing op-

timal for number of
messages sent

• Private Key Genera-
tor is needed

• Not conformant to
TLS standard

Tiny-3-
TLS • Uses gateway node

which is needed any-
way

• Less number of mes-
sages

• Gateway needs to be
trusted

• K must be securely
shared

Sensor Networks, ESAS 2006, LNCS 4357, pp. 32–42,
2006

[4] T. Dierks, E. Rescorla: RFC 5246 - The Transport
Layer Security (TLS) Protocol, Version 1.2,
http://tools.ietf.org/html/rfc5246

[5] L. Law, A. Menezes, M. Qu, J. Solinas. S. Vanstone:
An E�cient Protocol for Authenticated Key
Agreement, Technical Report CORR 98-05, Dept. of
C&O, University of Waterloo, Canada, March 1998

[6] S. A. Thomas: SSL and TLS Essentials - Securing the
Web, Wiley Computer Publishing, USA 2000

[7] E. Rescorla: RFC 2631 - Di�e-Hellman Key
Agreement Method, June 1999,
http://tools.ietf.org/html/rfc2631

[8] What You Need to Know About the DigiNotar Hack,
http://threatpost.com/en_us/blogs/what-you-

need-know-about-diginotar-hack-090211

[9] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E.
Cayirci: Wireless sensor networks: a survey,
Computer Networks 38 (2002) p. 393-422

[10] C, Eckert: IT-Sicherheit: Konzepte, Verfahren,
Protokolle, Oldenbourg Wissenschaftsverlag, München
2008

[11] H. Karl, A. Willig: Protocols and Architectures for
Wireless Sensor Systems, Wiley 2005

[12] IST-MAGNET, http://www.ist-magnet.org

doi: 10.2313/NET-2012-08-1_06Seminars FI / IITM / AN SS2012, 
Network Architectures and Services, August 2012

37


