
Minimum-Cost Multicast over Coded Packet Networks

Jan Schalkamp

Advisor: Stephan M. Günther

Seminar: Innovative internet technologies and mobile communications WS11/12

Chair for Network Architecture and Services

Department of Computer Science, Technische Universität München

Email: jan.schalkamp@in.tum.de

ABSTRACT
Streaming data to di↵erent receivers from a single source is
a very common scenario. In general this would be achieved
by using single source multicast, for which finding the most
cost-e�cient paths is very hard as it has to be computed in a
centralized manner and is only a↵ordable for little networks
since it is not solvable in polynomial time. Although today’s
networks use e.g. heuristics to quickly find sub-optimal solu-
tions to transmit data from one source to multiple receivers,
it would be nice to find even better solutions in less time.
However, changing the problem a little bit might help. Al-
though routers are currently only able to forward and copy
packets, there is no reason to limit them to only those func-
tionalities. Having a network of routers capable of network
coding – meaning being able to apply an arbitrary causal
function on multiple incoming packets, resulting in one out-
going packet – can change this. This work gives an intro-
duction to finding optimal cost solutions for multicast in a
coded packet network, and shows that finding these solu-
tions is possible in a decentralized manner resulting in only
polynomial e↵ort to calculate.

Keywords
Coded Packet Network, Multicast, Network Coding, La-
grangian Dual Problem, Optimization Problem, Minimum
Cost Flow Problem

1. INTRODUCTION
Sending data from a single source to multiple sinks is an
important task of today’s networks. This, for example, is
the case for video streaming services like YouTube, as the
amount of tra�c from video streaming is a crucial part of
their expenses. Therefore it is vitally to reduce these cost
as good as possible. There is a multitude of ways to achieve
the minimal cost, which depend mostly on the characteris-
tics of the network being used. If routers were only able to
forward packets, the weighted shortest paths to each sink
are the most cost-e�cient way of delivering the data. These
paths can easily be found by using the widely known Di-
jsktra algorithm. But as today’s routers are also capable of
copying packets and forwarding them to di↵erent receivers,
the task of optimizing cost becomes more di�cult. In gen-
eral multicast would be used to transmit data from a single
source to multiple sinks. However, finding the minimal cost
in this kind of network becomes very di�cult as calculating
a minimum spanning tree is NP-complete, which leads to a
not a↵ordable cost of computation. As there is no reason to
limit routers to only being able to copy and forward pack-

ets, coded packet networks were introduced by Ahlswede et
al [3]. In these networks, routers are able to combine mul-
tiple incoming packets by an arbitrary function to only one
outgoing packet. This work, based on Desmund Lun’s pa-
per Minimum-Cost Multicast Over Coded Packet Networks,
shows that this new characteristic of a network yields a way
of minimizing the cost for multicast in a decentralized man-
ner, which is also solvable in polynomial time. Therefore,
we first take a look at the ways to deliver data from a single
source to multiple sinks in di↵erent networks. Secondly a
general optimization problem for minimizing costs in routed
and coded packet networks are formulated. As solving these
optimization problems would be out of the scope of this
work, it is only shown that a specific kind of cost function
leads to a way of solving the optimization problem in a de-
centralized manner.

2. COMPARING WAYS TO DELIVER IN-
FORMATION TO MULTIPLE SINKS

As this work focuses on optimizing the cost for multicast in
coded packet networks it is of great help to compare these
networks with routed networks first. Therefore we represent
a network by a graph G = (N ,A), that is directed, weighted.
N determines the set of Nodes, which would for example
be routers in a real world application. The arcs between
nodes are depicted by the set A. Furthermore, we write an
arc of set A as tuple (i, j) with i, j 2 N as the arc’s start,
respectively end nodes. To model a network, we also need
some kind of capacity c

ij

which is the maximum rate at
which packets can be transmitted over an arc (i, j) and cost
for that transmission, which will be denoted by the arc’s
positive weight a

ij

.

2.1 Dedicated unicast in routed networks
As we wish to transmit data from a single source s 2 N to
multiple sink nodes t 2 T with T ⇢ N\{s}, it is the easiest
approach to send the data to the sinks one by one. There-
fore, one unicast connection per sink node is established from
the source to the sink node and the same information is
transmitted |T | times. To transmit with the lowest cost the
shortest path to each node is evaluated, for example by using
the Dijsktra algorithm [6]. This results in a shortest path
tree, giving the source the necessary information to send it’s
data to each sink via the lowest cost path per sink node.
This would be the minimum-cost way to distribute data in
a network only able to establish unicast connections. But
as we will see in the forthcoming section 2.2, distributing
the same information to multiple sink nodes by unicast is
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not the best way to do it. An example of the unicast ap-
proach can be seen in Figure 1. Here the shortest paths from
the source Q to the sinks S1 and S2 are (Q, 1), (1, S1) and
(Q, 2), (2, S2). Each path has costs of 2 · (5+2), resulting in
a total cost of 28.
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    2

   4

  S2  S1

A,B A,B

A,BA,B

2 2

2 2

22

55

2

Figure 1: Unicast example

2.2 Multicast in routed networks
In networks with nodes being capable of not only forwarding
packets but also copying and directing these packets to mul-
tiple nodes, multicast is a way to distribute information to
multiple sinks. Due to nodes being able to copy packets it is
no longer necessary to send each packet |T | times as can be
seen in Figure 2. Here, the information A and B is only sent
once to node 4 at costs of 2 · (5+2+2) = 18 and afterwards
node 4 copies the received information and sends it to each
sink at costs of 2 · (2 · 2) = 8, resulting in total costs of 26.
So, as one can see in comparison to the unicast’s cost of 28,
multicast is a better solution than unicast. As the optimal
distribution path in routed networks is a Steiner tree, the
total costs of transmitting information can only be as high
as using the shortest path to each sink – just like the unicast
solution does. This would be the case, if the costs for arcs
(1, 3) and (2, 3) in our example were increased to 4. Calcu-
lating such a Steiner tree in polynomial time is not possible,
which leads to a problem for big networks [4]. Nevertheless
multicast without the use of Steiner trees is used in todays
networks, as even sub-optimal solutions, calculated with the
help of heuristics and specialized multicast protocols, are
better than using unicast. In section 2.3 we see, that it is
possible to find even lower cost solutions in polynomial time
in a special kind of networks.

2.3 Multicast in coded packet networks
Just like in section 2.2 and real world networks, our nodes
are able to forward, copy and direct copies to multiple nodes.
But there is no reason to limit nodes to only that functional-
ity. In coded packet networks, nodes are additionally able to
use an arbitrary causal function on multiple incoming pack-
ets. This can be used to combine two packets , e.g. by using
bitwise XOR (A�B), in order to reduce the total amount of
packets needed to be transmitted through the network. As
in the example of Figure 3, node 3 combines the incoming
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Figure 2: Multicast example

packets A and B to the new packet A�B and sends it via 4
to both sink nodes. Now, the packet A�B is useless for each
sink, as they are not able to derive both original packets A
and B from it. Therefore sink S1 receives packet A and sink
S2 receives packet B, as this enables both sinks to derive the
other packet by using XOR on A � B and A, respectively
B. Now each arc is only used once and the total cost are 24.
Just like in routed networks, the multicast depends greatly
on the network’s structure. Increasing the costs of arcs (1, 3)
and (2, 3) again to 4, the optimal solution would be once
more a unicast connection per sink. The advantage of using
multicast in coded packet networks is not only the possibly
lower cost of sending packets, but also the time to calculate
those solutions. As finding the Steiner tree in a routed net-
work was not solvable in polynomial time, network coding
enables us to find optimal solutions for multicast in poly-
nomial time, making it interesting for real world networks.
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Figure 3: Multicast in coded packet networks exam-

ple
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3. MULTICAST AS OPTIMIZATION PROB-
LEM

On the way of finding a solution to the problem of minimiz-
ing cost in a coded packet network, we first have to state our
goal as an optimization problem in order to provide suitable
algorithms capable of solving it. As we already have declared
the capacity of an arc as c

ij

with (i, j) 2 A, we denote z
ij

as
actual rate at which packets are injected into the arc. As the
costs of a transmission in a network emerge from even those
rates z

ij

– because only used arcs lead to costs – we can
state the monotonous increasing cost function depending on
the vector ~z:

f(~z) : R|A| ! R+ := [0,1). (1)

Minimizing this function as it stands would lead to a not us-
able solution, as we haven’t modeled our network correctly.
Therefore, we develop some constraints, which help us to
state our conditions for the network. As above stated, z

ij

is the rate at which packets are injected into arc (i, j) and
c

ij

is the capacity of arc (i, j). Therefore we state our first
constraint, the capacity constraint :

c

ij

� z

ij

, 8(i, j) 2 A. (2)

Sending some information over an arc (i, j) 2 A does not
necessarily mean that this information is new and also does
not show which sink it is provided for. Therefore, we intro-
duce x

(t)
ij

as the rate of new information intended for sink
t 2 T . As the rate of new information for a single sink can
not be greater than the overall rate of information at arc
(i, j) and the rate of information must not be negative, as
it would mean that information could be destroyed or lost,
we state the coupling constraint :

z

ij

� x

(t)
ij

� 0, 8(i, j) 2 A, 8t 2 T . (3)

Our third constraint describes the fact, that our network
only has one source node s 2 N that is providing informa-
tion and multiple sink nodes t 2 T that are consuming even
that information. No inner node is allowed to either pro-
duce or consume information. This constraint is the flow
conservation constraint :

X

{j|(i,j)2A}

x

(t)
ij

�
X

{j|(j,i)2A}

x

(t)
ji

= �

(t)
i

, 8i 2 N , 8t 2 T (4)

where

�

(t)
i

:=

8
><

>:

R, if i = s

�R, if i 2 T
0, otherwise.

R means the real, positive rate at which packets are trans-
mitted to the sink nodes. For dedicated unicast this is easy
to see, as the source node is producing information, the inner
nodes forward every received information without tampering
with it and sink nodes consume the information. In routed
networks using multicast it is not that easy to see, as inner
nodes are permitted to copy information and therefore a sin-
gle packet may be of use for more than one sink. Therefore,
the amount of incoming and outgoing packets does not have
to be the same. In Figure 2, node 4 is an example for that.
It receives packets A and B once but transmits them twice.
To see that our third constraint (4) is still valid, we have
to look at the actual information being hold by the packets
received by node 4. As both A and B hold information for

sinks S

1

and S

2

, the received and the transmitted amount
of information is equal. To make it easier to see, we take a
closer look at the example of Figure 2 in numbers (only a
look at node 4): Each packet’s information rate from node

3 to 4 is x

(S1)
3,4

= x

(S2)
3,4

= 1

2

since both sinks S1 and S2 are
equally interested in packet A’s as well as in packet B’s infor-
mation. Each packet provides half of the overall information
each sink is interested in. Therefore, the incoming informa-
tion is 2 · ( 1

2

+ 1

2

) = 2. The outgoing information to both

sinks S
i

is x(Si)
4,Si

= 1
2 for packet A as well as B, which results

in an outgoing amount of information of 2 · (2 · 1

2

) = 2 as
well. This holds also for the case of a coded packet network.

These three constraints are enough to tackle the problem
of minimizing the cost in a multicast network. However,
there are some di↵erences between the optimization prob-
lem in routed and coded packet networks. This is dealt with
in the two forthcoming sub chapters.

3.1 Optimizing multicast in a routed network
As we are now able to formulate the optimization problem,
we first have a look at minimizing the cost for multicast
in routed networks with one source node and multiple sink
nodes. Of course, we still assume that the rates of new infor-
mation x

(t)
ij

for sink t are greater than or equal to 0. Also,
constraint (4), introduced as flow conservation constraint,
and the capacity constraint (2), shall be valid in this net-
work. Since we want to minimize a given cost function like
(1) our optimization problem reads as follows:

minimize f(~z)

subject to c

ij

� z

ij

8(i, j) 2 A,

z

ij

�
X

t2T

x

(t)
ij

, x

(t)
ij

� 0 8(i, j) 2 A , 8t 2 T ,

X

{i|(i,j)2A}

x

(t)
ij

�
X

{i|(j,i)2A}

x

(t)
ji

= �

(t)
i

8i 2 N , 8t 2 T .

Note, that the second constraint has changed a little bit in
comparison to (3), as we now explicitly have a routed net-
work in which packets cannot be coded. Now, as we have
upper and lower bounds for the optimal vector ~z, namely the
capacity (2) and coupling constraint (3), we see that our op-
timal vector ~z lies within the positive orthant1 of a bounded
polyhedron. Being monotonically increasing, our cost func-
tion f(~z) can only be minimized by minimizing each of it’s
components z

ij

. This, on the other hand, is reached when

the coupling constraint z

ij

�
P
t2T

x

(t)
ij

, x(t)
ij

� 0, 8(i, j) 2

A, 8t 2 T holds with equality.

3.2 Optimizing multicast in a coded packet net-
work

We now consider a coded packet network. Nodes are able to
apply arbitrary causal functions on multiple incoming pack-
ets like A � B. The problem looks nearly the same as in
a routed network, but since nodes are able to use network

1An n-dimensional vector lies within the positive orthant,
i↵ all it’s components are positive.
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coding, the coupling constraint changes accordingly:

minimize f(~z) (5)

subject to c

ij

� z

ij

8(i, j) 2 A,

z

ij

� x

(t)
ij

� 0 8(i, j) 2 A , 8t 2 T ,

X

{i|(i,j)2A}

x

(t)
ij

�
X

{i|(j,i)2A}

x

(t)
ji

= �

(t)
i

8i 2 N , 8t 2 T .

As nodes are now able to code packets, they also become able
to send the same amount of information with less packets.
As Figure 3 shows, arc (3,4) only has to be used once but
still carries the same amount of information for sinks S1 and
S2 (assuming S1 received A and S2 received B already). The
coupling constraint is less restrictive. ~z is now optimal i↵
the following equality holds for every component of ~z [2]:

z

ij

= max
t2T

{x(t)
ij

} = ||x(t)
ij

||1,(t), 8(i, j) 2 A, 8t 2 T . (6)

As we have not specified the cost function f(~z) yet, the next
section deals with solving the optimization problem for a
specific class of cost functions.

4. SOLVING THE OPTIMIZATION PROB-
LEM IN CODED PACKET NETWORKS

This section deals with a specific class of cost functions.
We now only consider linear, separable cost functions, and
separable constraints for each arc (i, j) 2 A. Separable
constraints mean in this case that each arc’s capacity is
subject to a separate constraint, bounding it to a positive
value independent from the other arcs’ bounded capacities.
Linear means, that the cost of transmitting data over arc
(i, j) 2 A grows linear with the amount of data transmit-
ted. For instance, this is the case if the cost represent mon-
etary cost, such as a fixed value per kilobyte. We also de-
mand that the cost of transmitting data is non-negative.
These constraints lead to a cost function f(~z) looking as
follows:

f(~z) :=
X

(i,j)2A

a

ij

z

ij

(7)

with a

ij

� 0 8(i, j) 2 A.

In the forthcoming sub sections, we formulate the optimiza-
tion problem in two di↵erent ways, as a di↵erent formulation
of the problem may lead to a di↵erent way of solving the op-
timization.

4.1 A first approach to stating the optimiza-
tion problem

In this approach, the optimization problem looks nearly the
same as the previous stated general optimization problem
(5). We just rewrote the coupling constraint, so that z

ij

is no longer bounded explicitly above. However, it is still
bounded above implicitly by the characteristics of a coded
packet network (6), that limits z

ij

by the maximum of the

arc’s flows x(t)
ij

.

minimize
X

(i,j)2A

a

ij

z

ij

(8)

subject to c

ij

� z

ij

� 0 8(i, j) 2 A,

z

ij

� x

(t)
ij

8(i, j) 2 A , 8t 2 T ,

X

{i|(i,j)2A}

x

(t)
ij

�
X

{i|(j,i)2A}

x

(t)
ji

= �

(t)
i

8i 2 N , 8t 2 T .

Although solving this problem would lead to the optimal
solution, we are not satisfied with this form of the prob-
lem, as it cannot be solved in a distributed manner. This
might seem a little strange as it does look a lot like a normal
minimum-cost flow problem for which a variety of algorithms
exist [8]. Unfortunately our flow conservation constraint (4)

is referring to the flows x(t)
ij

and not to the vector ~z. This is a
result of network coding, as flows can now share bandwidth
instead of competing for it. Hence, as it stands, this prob-
lem has a major disadvantage: it requires full knowledge of
the network and is only solvable in a centralized manner.

4.2 The optimization as dual problem
Dualizing a problem has the benefit of reducing the amount
of constraints. Those constraints are not be lost, but are
dualized into the problem’s function. We therefore have to
formulate the Lagrangian of the primal problem (8) to ob-
tain the dual function, which will be maximized in order to
obtain the dual problem. However, it is possible that op-
timizing the dual problem may lead to a di↵erent solution
than the primal problem, wherefore the equality of this case
will be shown.

Dualizing the coupling constraint z

ij

� x

(t)
ij

forms the fol-
lowing Lagrangian:

L(~x, ~z,~�) = f(~z) +
X

(i,j)2A

X

t2T

�

(t)
ij

(x(t)
ij

� z

ij

)

=
X

(i,j)2A

a

ij

z

ij

+
X

(i,j)2A

X

t2T

�

(t)
ij

(x(t)
ij

� z

ij

)

=
X

(i,j)2A

a

ij

z

ij

+
X

(i,j)2A

X

t2T

(�(t)
ij

x

(t)
ij

� �

(t)
ij

z

ij

)

=
X

(i,j)2A

a

ij

z

ij

�
X

(i,j)2A

X

t2T

�

(t)
ij

z

ij

+
X

(i,j)2A

X

t2T

�

(t)
ij

x

(t)
ij

=
X

(i,j)2A

z

ij

·
 
a

ij

�
X

t2T

�

(t)
ij

!
+

X

(i,j)2A

X

t2T

�

(t)
ij

x

(t)
ij

.

Since we dualized the coupling constraint, it is no longer
an explicit constraint of our optimization problem. The
remaining constraints, the capacity and flow conservation
constraint are transformed into a set X that contains all
vectors ~x fulfilling even these constraints. Towards stat-
ing the dual problem, the dual function ⇥(~�) has to be
found first by minimizing the Lagrangian L with respect
to �

(t)
ij

� 0 8(i, j) 2 A, 8t 2 T . As z

ij

is no longer bounded
above, it is allowed to take any value in order to minimize
the Lagrangian L, wherefore

min
~x2X ,~z

X

(i,j)2A

z

ij

·
 
a

ij

�
X

t2T

�

(t)
ij

!
+

X

(i,j)2A

X

t2T

�

(t)
ij

x

(t)
ij

(9)
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evaluates to �1, if a

ij

�
P
t2T

�

(t)
ij

is either greater or less

than 0. In case
P
t2T

�

(t)
ij

= a

ij

it is exactly zero and the min-

imized Lagrangian (9) evaluates to min
~x2X

P
(i,j)2A

P
t2T

�

(t)
ij

x

(t)
ij

.

Therefore the dual function ⇥(~�) looks as follows:

⇥(~�) := inf
~x2X ,~z

L(~x, ~z,~�)

inf
~x2X ,~z

L(~x, ~z,~�) =

8
<

:
min
~x2X

P
(i,j)2A

P
t2T

�

(t)
ij

x

(t)
ij

, if
P
t2T

�

(t)
ij

= a

ij

,

�1, otherwise.

Although �1 would be a correct mathematical solution,
it holds no meaning in reality, wherefore we eliminate that
possible solution by adding a constraint concerning the La-
grangian multipliers �, leading to the dual problem:

maximize ⇥(~�) (10)

with ⇥(~�) := min
~x2X

X

(i,j)2A

X

t2T

�

(t)
ij

x

(t)
ij

,

subject to
X

t2T

�

(t)
ij

= a

ij

,�

(t)
ij

� 0 8(i, j) 2 A, 8t 2 T .

To see that the optimal solution to the dual problem is equal
to the primal problem’s (8) optimal solution, we have to
show that strong duality2 holds. This can be done by rewrit-
ing the primal problem’s dualized constraint (the coupling
constraint) as constraint functions:

h

(t)
ij

(z
ij

) := x

(t)
ij

� z

ij

 0.

It is obvious that each h

(t)
ij

is less than or equal to zero,

because z

ij

is equal to or greater than x

(t)
ij

(6). Slater’s

condition3 holds in case all constraint functions are less than
or equal to zero and at least one h

(t)
ij

< 0 exists. Since each
sink needs at least one raw packet to retrieve the information
of the coded packet, it is guaranteed that such an h

(t)
ij

exists
and strong duality is proven [7].

We rewrite our problem to make di↵erences to the primal
problem (8) more obvious:

maximize ⇥(~�)

with ⇥(~�) :=
X

t2T

⇣

(t)
, (11)

⇣

(t) := min
~x

(t)2X (t)

X

(i,j)2A

�

(t)
ij

x

(t)
ij

(12)

subject to
X

t2T

�

(t)
ij

= a

ij

,�

(t)
ij

� 0 8(i, j) 2 A, 8t 2 T .

Note, that the set X has now been separated by flows into
multiple sets X (t). Since we broke the coupling between the
flows by dualizing the coupling constraint, we can now use
distributed methods to solve the optimization problem. As
mentioned in section 4.1, the primal problem looked a lot like
a normal minimum-cost flow problem. By reformulating the

2Strong duality holds, i↵ the di↵erence between the pri-
mal problem’s and the dual problem’s solution is 0. Here,
(minimize f(~z))� (maximize ⇥(~�)) = 0.
3Slater’s condition is a constraint qualification guaranteeing
equality of primal and dual optimal solutions.

dual problem (10), we defined a ⇣

(t)(12), which is in fact a
standard minimum-cost flow problem and can therefore be
solved e.g. by using the ✏-relaxation method. The overall
optimization (11) can then be done by using subgradient-
optimization. Both techniques will not be covered at this
point. Subgradient-optimization of even this optimization
problem is to be found in [1], whereas the ✏-relaxation is
discussed in [5].

5. CONCLUSION
As we have seen by comparing the di↵erent methods for de-
livering data from a single source to multiple sinks, solving
the optimization problem strongly depends on the network’s
capabilities. In case of a routed network with unicast ca-
pabilities, the optimization problem is even NP-complete.
Hence, we concentrated on minimizing the cost in coded
packet networks wherefore we first had a look at how to
state the optimization problem with respect to the three con-
straints (capacity, coupling and flow conservation) in gen-
eral. Afterwards we specified a linear cost function in order
to see, that the first approach of solving the problem would
not have been solvable in polynomial time. However, by
dualizing the coupling constraint, and abbreviating the ca-
pacity and flow conservation constraint by the set X , we
were able to obtain the dual problem by maximizing the
Lagrangian and adding an additional constraint in order to
exclude a not meaningful solution. It was also crucial to
show that the dual problem’s optimal solution was the same
as the optimal primal problem’s solution by showing that
strong duality holds with help of Slater’s condition. In the
end, we rewrote the dual problem to see that a part of it
is a standard minimum-cost flow problem for which a vari-
ety of algorithms exist. Having solved that particular sub-
problem, the whole problem became solvable by employing
subgradient-optimization.
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