
Understanding the key-independent cryptanalysis
technique used to break the RC4 based Office Encryption

stream cipher

Elias Tatros
Betreuer: Heiko Niedermayer

Seminar Future Internet WS10/11
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: elias.tatros@cs.tum.edu

ABSTRACT
Stream ciphers are still widely used to efficiently encrypt
large amounts of data. Contrary to asymmetric encryption,
stream ciphers are easy to implement in hardware and of-
fer a high encryption speed. Using information theory, it
is possible to proof that an arbitrary level of security can
be achieved. However small flaws in the implementation of
stream ciphers can lead to severe weaknesses. These can
cause even unconditionally secure stream ciphers, like the
one-time pad (Vernam system), to become totally insecure.
This can be demonstrated in a cryptanalysis of the Microsoft
Office encryption up to the 2003 version. Office employs a
flawed implementation of the widely used RC4 algorithm,
exposing a severe vulnerability, which can be exploited to
recover the plaintext from the encrypted documents.

Keywords
stream ciphers, data encryption, code breaking, applied cryp-
tography, RC4

1. INTRODUCTION
Many cryptographic solutions, that are considered secure in
a theoretical sense, do not necessarily offer the same secu-
rity when implemented in a real cryptosystem. It is fairly
common that the key size alone serves as the most impor-
tant security argument. A cryptosystem based on AES-256
might not be secure if its implementation is flawed. It is
most probably not secure, if intended implementation back-
doors were deliberately introduced into the system. Thus,
in practice, an argument like “AES-256 inside” can only be
considered a necessary, but not a sufficient condition for a
secure solution.

A different problem, that can have a dramatic impact on the
security, lies in the misuse of a cryptosystem. When users ig-
nore basic rules for handling the system, then even informa-
tion theoretically secure cryptosystems can become totally
insecure. One prominent example for such a misuse occurred
in the 1940s, when US intelligence under the VENONA
project was able to break the one-time pad encryption on
many high-level soviet diplomatic messages. The successful
cryptanalysis of many of those encrypted messages was pos-
sible, because the people handling the encryption process
for the soviets made mistakes using the cryptosystem. They
reused some of the secret keys (called pads, because at that

time they were printed on pads of paper) on different mes-
sages, thus ignoring a basic rule for handling one-time pad
systems stating that a secret key must never be used more
than once. When a cryptosystem is labeled (information
theoretically) secure its users tend to have high confidence
in the system and may therefore be less likely to thoroughly
question their own actions when handling it.

From these issues two problems immediately arise. For users
of a cryptosystem the problem is to detect implementation
weaknesses or trapdoors within the system without reverse
engineering. Reverse engineering is not a viable solution
to the problem because in general it is too time consuming
and quite often also illegal. For an attacker the problem
is to identify, among a large number of ciphertexts, those
that were generated by a weak or misused cryptosystem and
then to recover the corresponding plaintexts in a reasonable
amount of time. This needs to be done without knowledge
of the cryptographic algorithm. For example, in satellite
transmissions it can be assumed that the attacker is able
to intercept the ciphertexts but doesn’t know the algorithm
used for encryption.

2. SYMMETRIC ENCRYPTION BASICS
Whenever the confidentiality of data is of concern encryp-
tion must be used. For large amounts of data it is better to
use symmetric encryption. Advantages over asymmetric en-
cryption include faster encryption speed and in most cases
a high level of error resilience, while still offering an arbi-
trary level of security. Symmetric encryption solutions can
be categorized into stream ciphers and block ciphers.

When using stream ciphers bits (or bytes) are enciphered
and deciphered on-the-fly. This enables the cryptosystem to
rapidly encrypt large quantities of data. They are also very
error resilient since transmission errors do not propagate
during the decipherment. For these reasons they are widely
used for satellite communications protection, telephony en-
cryption (e.g. A5/1) and Bluetooth encryption (e.g. E0)
[1].

Contrary to stream ciphers, bits are not enciphered or de-
ciphered on-the-fly when using block ciphers. Instead data
is first split into blocks of a certain size (the standard is
128-bit blocks). Each of these blocks is then enciphered or

doi: 10.2313/NET-2012-04-1_1Seminar FI & IITM WS2011/2012,
Network Architectures and Services, April 2012

1

deciphered using the same secret key. Block ciphers can
operate in a number of modes which can provide authenti-
cation, enable different encryption properties and limit er-
ror propagation. The most common modes are ECB, CBC,
CFB, PCBC, OFB [2]. It is worth noting that block ciphers,
except in OFB mode, are not naturally transmission error
resilient. Block ciphers in output feedback mode (OFB) em-
ulate stream ciphers and thus are susceptible to stream ci-
pher attacks and misuses (e.g. key reuse) [1].

2.1 Stream Ciphers in Detail
A stream cipher bitwise combines a truly random or pseudo-
random sequence (σt)t≥0 with the plaintext (mt)t≥0 using
the xor operation which results in the ciphertext (ct)t≥0:

ct = mt ⊕ σt

Since the xor operation is involutive, it is sufficient to apply
the same random bit σt to ciphertext bit ct for the time
instant t and thus recover the deciphered plaintext bit mt:

mt = ct ⊕ σt

where ct, mt and σt denote a ciphertext, plaintext and ran-
dom sequence bit at time instant t respectively. The se-
quence (σt)t≥0 is called the running-key. In the case of Ver-
nam ciphers (one-time pad) the running-key is truly random
and independent from plaintext or ciphertext (i.e. produced
by hardware methods). The one-time pad encryption has
been proven to be information theoretically secure, mean-
ing that the ciphertext C provides no information about the
plaintext M to a cryptanalyst.

2.2 Perfect Secrecy
Perfect secrecy, as defined in [3], means that after the in-
terception of a ciphertext the a posteriori probabilities of
this ciphertext representing various plaintexts be identical
to the a priori probabilities of the same plaintext before the
interception, implying that intercepting ciphertexts doesn’t
provide the cryptanalyst with any information about the
plaintexts. It is possible to achieve perfect secrecy, but it
requires that there is at least one key k transforming any
plaintext M into any ciphertext C. Obviously any key from
a fixed M to a different C must be different (as shown in

Figure 1: a perfect system as described in [3]

figure 1), therefore the number of unique keys must be at
least as high as the number of plaintexts.

More precisely, if a finite key was used for encryption and a
ciphertext consisting of N letters is intercepted, there will
be a set of possible plaintexts with certain probabilities that
this ciphertext could represent. C. E. Shannon has shown
in [3] that as N increases the probabilities for all possible
plaintexts except for one will approach zero. It is now pos-
sible to define a quantity H(N) that measures by statistical
means how near the average ciphertext of N letters is to
the unique solution (i.e. how uncertain a cryptanalyst is of
the plaintext after intercepting N letters of ciphertext). As
shown in [4], this quantity can be measured by means of
entropy. For a given set of possibilities with probabilities
p1, p2, ..., pn the entropy H is given by:

H = −
∑

pi log pi

The perfect secrecy property can then be expressed as:

H(M) = H(M |C)

Intuitively this means that the uncertainty about the plain-
text remains constant with each interception of a new ci-
phertext. The same holds true when applying the entropy
function to the key:

H(K) = H(K|C)

As previously mentioned, it is necessary to have

H(K) ≥ H(M)

in order to achieve perfect secrecy. If the key bits are truly
randomly produced (i.e. by a true random number gen-
erator) then H(K) = |K|, meaning that the running-key
(σt)t≥0 must be at least as long as the message to encipher.
From a practical point of view, this property becomes very
difficult to handle for large-scale operations (e.g. soviets
reused keys for one-time pad encryption and thus enabled
cryptanalysis in VENONA project) because the hardware
based generation of truly random sequences is somewhat
complex and doesn’t scale very well. This is the reason
why one-time pads are generally used for short messages or
strategic use only. Usually in stream ciphers the running-key
is produced by a PRNG (pseudorandom number generator)
as an expansion of a secret key that is reduced in size (up to
256-bits). The secret key only serves for the initialization of
the algorithm at time t = 0. But now H(K) ≥ H(M) is no
longer true. Yet, as stated in [1], in practice the number of
messages enciphered by a cryptosystem using |K|-bit keys is
always far lower than 2|K| (the number of secret keys), thus
it can be assumed that during the lifetime of the cryptosys-
tem

H(K) ≥ H(M)

holds true. However, like in one time pad systems, it is
very important not to reuse secret keys. The security of
stream ciphers becomes void whenever a secret key is reused
to initialize the system.

2.3 Describing the Attack
The preceding chapters served as a basic introduction to
symmetric encryption. In the following chapters the attack

doi: 10.2313/NET-2012-04-1_1Seminar FI & IITM WS2011/2012,
Network Architectures and Services, April 2012

2

itself will be explained. At first in a general theoretical way
applicable to any stream cipher and then specifically applied
to the Microsoft Office 2003 RC4 encryption. Chapters 3
and 4 explain how to detect ciphertexts in which the key
has been reused. These chapters correspond to sections 6.2
and 6.4 which highlight the vulnerability in the MS Word
case. Here the IV is reused in revised versions of Word
documents which leads to parallel ciphertexts that can be
obtained from temporary files in Windows. Chapter 5 de-
scribes a general algorithm to recover the plaintexts from
the ciphertexts by statistical means. The cryptanalysis con-
sists of a language specific frequency analysis of character
sequences. This chapter corresponds to section 6.5, which
shows and evaluates the results obtained in tests performed
on french texts in MS Word documents.

3. PARALLEL CIPHERTEXTS
As shown by C.E. Shannon in [4] the security of stream ci-
phers and block ciphers in OFB mode is nullified if the secret
key is reused. In order to clarify why key reuse compromises
the security of any such cipher, it is necessary to take a look
at what exactly happens when the same secret key is used to
encipher multiple plaintexts. Let m1 and m2 be plaintexts
and let σ be the single secret key used to encipher both of
them into the resulting ciphertexts c1 and c2:

c1 = m1 ⊕ σ

c2 = m2 ⊕ σ

Then the ciphertexts c1 and c2 are said to be parallel.

More generally, as defined in [1], two (or more) ciphertexts
are said to be parallel if they are produced either by a
stream cipher (Vernam cipher or finite state machine) or
by a block cipher in OFB mode using the same running-key.
Furthermore the parallelism depth of k parallel ciphertexts
c1, c2, ..., ck is k. Whenever a key is reused and parallel ci-
phertexts occur, the perfect secrecy as defined by Shannon
in [3] has been violated and the parallel ciphertexts should
be susceptible to cryptanalysis.

The first step necessary in order to perform a successful
cryptanalysis is to detect groups of these parallel cipher-
texts among a large number of ciphertexts. Detection needs
to work without knowledge of the underlying cryptosystem
(other than that it is indeed a stream cipher or block cipher
in OFB mode), meaning the algorithm used for encryption
can remain unknown. This is important because, as covered
in the introduction, when ciphertexts have been intercepted
the crypotsystem is usually still unknown and most of the
time it is not feasible to uncover the algorithm using re-
verse engineering. It is also very interesting to note that
whenever parallel ciphertexts will be detected, one can as-
sume that either a serious misuse has occurred or that an
implementation flaw, or worse, trapdoor exists within the
program.

Once parallel ciphertexts have been detected, the logical
follow up step is to perform a cryptanalysis to break the
encryption and recover the plaintexts. This needs to be
done using the ciphertexts alone, meaning the underlying
cryptosystem and the key used for encryption may remain
unknown. Since there is no preliminary key recovery, this

technique is described in [1] as a key-independent cryptanal-
ysis.

4. DETECTING PARALLELCIPHERTEXTS
As explained in the previous chapter, parallel ciphertexts
come into existence when multiple plaintexts are encrypted
with the same secret key. They can then be exploited to
break the encryption and recover the plaintexts without
knowledge of the key or algorithm used. This chapter ex-
plains how to detect groups of parallel ciphertexts (if any)
among a large number of ciphertexts.

4.1 Statistical Features in Languages
In order to understand the following steps it is important to
know that plaintexts exhibit strong statistical features which
depend on the language and encoding of the text. As ex-
plained by C.E. Shannon in [3] a language can be described
as a stochastic process that produces a certain sequence of
symbols according to a system of probabilities. He defines
the parameter D as the redundancy of the language. Intu-
itively speaking, D measures how much text in a language
can be reduced without losing any information. For exam-
ple, in the English language the letter u may be omitted
without loss of information when occuring after the letter q.
This is possible because u always follows the letter q, thus it
is sufficient to keep the q and discard u. Due to the statis-
tical structure of the English language (i.e. high frequency
of certain letters or words) many such reductions are possi-
ble. In fact, given a certain language with parameter D it
is possible to calculate the number of intercepted ciphertext
letters required to obtain a statistical solution:

H(K)
D

where H(K) is the size of the key space, which for n possible
messages that are all a priori equally likely cannot exceed
log

2
n bits. For example, in a very simple monoalphabetic

substitution of letters H(K) = log2(26!) ≈ 88.3 and D ≈ 3.2
for the English language, hence about 28 letters are sufficient
to break the encryption.

Furthermore it is interesting to note that encodings can hide
or amplify certain statistical features and thus the choice
of encoding is of importance when considering a trapdoor
design. The next step is to build a statistical hypothesis test
that serves as our general detection method and determines
whether two ciphertexts are parallel or not.

4.2 Forming the Statistical Hypotheses
Consider the stream cipher xor encryption and let all oper-
ations be bitwise or bytewise as usual. Let

C1 = M1 ⊕ σ1

C2 = M2 ⊕ σ2

where M1, M2 are plaintexts, σ1, σ2 are the keys and C1,
C2 are the resulting ciphertexts. From the previous chapter
it is known that plaintexts M1 and M2 exhibit very strong
statistical features depending on language and encoding (i.e.
each character - letter, number, punctuation - has a different
frequence of occurrence). Considering the ciphertexts C1

and C2 this frequence of occurrence is different. When using

doi: 10.2313/NET-2012-04-1_1Seminar FI & IITM WS2011/2012,
Network Architectures and Services, April 2012

3

ASCII encoding the probability for each character is 1

256
.

Therefore the quantity

M1 ⊕M2

exhibits a very special statistical profile that can be detected
and identified, whereas the quantity

σ1 ⊕ σ2

exhibits a totally random statistical profile. The xor of the
two ciphertexts C1 and C2 gives:

C1 ⊕ C2 = M1 ⊕ σ1 ⊕M2 ⊕ σ2

If σ1 "= σ2 the quantity C1⊕C2 will exhibit a totally random
profile. But if the secret key has been reused (i.e. C1 and
C2 are parallel and σ1 = σ2) then:

C1 ⊕ C2 = M1 ⊕ σ1 ⊕M2 ⊕ σ2

= M1 ⊕M2

Therefore the quantity C1⊕C2 exhibits a very strong statis-
tical profile whenever σ1 = σ2 and a totally random statisti-
cal profile otherwise. Since this quantity behaves differently
whenever key reuse occurs, it can be used to form statisti-
cal hypotheses in the statistical test for detection of parallel
ciphertexts. The two hypotheses can now be defined as:

• Null hypothesis (H0): σ1 "= σ2. Ciphertexts C1 and
C2 are not parallel, since the key has not been reused.
Therefore the quantity C1⊕C2 exhibits a random sta-
tistical profile.

• Alternative hypothesis (H1): σ1 = σ2. Ciphertexts C1

and C2 are parallel, the key has been reused. Thus
the quantity C1 ⊕C2 is exactly equal to M1 ⊕M2 and
therefore exhibits the same special statistical profile.

4.3 Choosing a Suitable Estimator
With the two hypotheses, established in the previous chap-
ter, it is now possible to build an estimator that behaves
differently in the cases (H0) and (H1) and therefore is suit-
able to detect whether two ciphertexts are parallel or not.
Detecting parallel ciphertexts among a large number of ci-
phertexts is now as easy as detecting non-random files from
random files. The chosen estimator in [1] performs a bitwise
xor operation on each pair of ciphertexts and then counts
the number of bits equal to null in the resulting sequence.
Let n be the common part of the length of the two cipher-
texts C1 and C2 in bits, while ci1 and ci2 represent ciphertext
bits of C1 and C2 at time instant i respectively, then the
number of nullbits in the xor of C1 and C2 is denoted as Z:

Z =
n
∑

i=0

(ci1 ⊕ ci2 ⊕ 1)

Now let p be the probability that a bit in the sequence C1⊕
C2 is equal to zero:

p = P [ci1 ⊕ ci2 = 0]

Since every bit in the sequence C1 ⊕ C2 is either null or
one with a certain probability, p or (1− p) respectively, and
each xor result is independent from the previous one, Z has
a binomial distribution with parameter n and p. For large
n the binomial distribution can then, by application of the

de Moivre-Laplace theorem [5], be approximated by a nor-
mal distribution with mean value np and standard deviation
√

np(1− p). Therefore, assuming large enough n, Z has nor-
mal distribution:

Z ∼ N (np,
√

np(1− p))

Using this result it is possible to detect parallel ciphertexts
from non-parallel ciphertexts, since the probability p is dif-
ferent with respect to hypotheses H0 and H1. For non-
parallel ciphertexts, because of their random statistical pro-
file, p = 1

2
. For parallel ciphertexts p depends on language

and encoding. As stated by E. Filiol in [1], one can assume
p > 0.6 for most languages. Therefore the setup for the
statistical hypotheses test is now complete:

• If Z ∼ N (n
2
,
√

n

2
) then assume H0: The key has not

been reused (σ1 "= σ2), consequently the ciphertexts
C1 and C2 are not parallel.

• If Z ∼ N (np,
√

np(1− p)) with p > 1

2
then assume

H1: The key has been reused (σ1 = σ2), consequently
the ciphertexts C1 and C2 are parallel.

In all experiments carried out by E. Filiol in [1], large peak
values for Z (usually above 0.6) were observed whenever
ciphertexts were parallel. Therefore this test has also been
empirically verified.

4.4 Detection Algorithm and Error Reduction
To find and further reduce any errors during detection, it is
possible to apply an equivalence relation over the set of par-
allel ciphertexts. Let Ci, Cj and Ck be any ciphertexts and
R the relationship“be parallel to”. Then R is an equivalence
relation over the set of parallel ciphertexts, i.e. it is:

• reflexive: Ci R Ci, since obviously any ciphertext is
parallel to itself.

• symmetric: Ci R Cj → Cj R Ci, meaning the direction
of the parallel relation is not relevant.

• transitive: Ci R Cj ∧ Cj R Ck → Ci R Ck, which can
be used as a consistency check in the detection process.

The equivalence relation R partitions the set of parallel ci-
phertexts into equivalence classes. Any such class forms a
group of parallel ciphertexts. This can be used for consis-
tency checks, since any ciphertext in a certain equivalence
class can never be in a different equivalence class at the same
time. Furthermore, using the transitivity property of R, if
C1 is detected to be parallel with C2 and C2 is parallel with
C3, then C1 must also be parallel to C3 and all three cipher-
texts must be exclusively in the same equivalence class. Any
violation of these rules would point to an error in the detec-
tion process and require further decision making by either
the algorithm or the user.

The general detection algorithm only requires a set of cipher-
texts as the input. It then simply compares all ciphertexts
pairwise, using the statistical hypotheses test. Finally it
builds groups of parallel ciphertexts using the R relation to
check for consistency.

doi: 10.2313/NET-2012-04-1_1Seminar FI & IITM WS2011/2012,
Network Architectures and Services, April 2012

4

Letter Frequency Letter Frequency
A 6.09 N 5.44
B 1.05 O 6.00
C 2.84 P 1.95
D 2.29 Q 0.24
E 11.36 R 4.95
F 1.79 S 5.68
G 1.38 T 8.03
H 3.41 U 2.43
I 5.44 V 0.97
J 0.24 W 1.38
K 0.41 X 0.24
L 2.92 Y 1.30
M 2.76 Z 0.03

Table 1: relative frequency of English letters

5. RECOVERING THE PLAINTEXTS
The question, how to detect parallel ciphertexts, may they
be caused by key misuse, implementation flaws or intentional
trapdoors, has been taken care of in the previous chapter.
The next logical step is to proceed with a cryptanalysis in
an effort to recover the plaintexts by exploitation of the de-
tected flaws. As mentioned in chapter three and four, the
cryptanalysis technique used by Filiol in [1] will recover the
plaintexts without the key. In fact the algorithm and key
used for encryption are irrelevant. It is however very impor-
tant to generate a reliable and conclusive statistical model
of the target language. The term language is considered
in the general, formal sense and not limited to natural lan-
guages. Consequently this approach works for all languages
generated by any of the four grammar types in the Chomsky
hierarchy. Furthermore, when building the model, it is also
important to consider the encoding used (ASCII, Unicode,
...).

5.1 Constructing the Corpus
The concept of a corpus is defined in [1] as the set of all pos-
sible n-grams with their respective frequency of occurrence
in the target language. An n-gram is simply understood as
a string of n characters of that language. The corpus will
serve as a qualitative and quantitative model of the target
language. Any language can be described by the frequency
of occurrence of its characters. One can easily select a few
relevant texts and build a table with single letters (or other
characters) and their frequency of occurrence in those texts.
As an example, table 1 shows the english letter frequency
taken from a large text, as determined in [6].

The same can be done for all possible n-grams and their
respective frequencies in order to build the final corpus. Fil-
iol has shown in [1], that 4-grams are the best choice when
considering memory, time and accuracy of the model.

The quantitative aspect obviously lies in its size N , which
is given by the number of n-grams and in their assigned fre-
quencies. But there is also an important qualitative aspect
of the corpus, which must be considered carefully. The cor-
pus must be representative of the target language. In order
to build the corpus a set of text is searched and frequen-
cies of the n-grams are extracted. The choice of those texts
must be made wisely. There’s a large number of texts from

a b c d e f g h i j
k l m n o p q r s t
u v w x y z A B C D
E F G H I J K L M N
O P Q R S T U V W X
Y Z 0 1 2 3 4 5 6 7
8 9 . , ; : ? ! ! (
) { } + - * / = \ à
â é ç è é ê ı̂ ô ù

Table 2: French language character space

many different times using different levels of language (i.e.
common, technical, political, diplomatic, military, ...) that
must be considered. It is therefore a good idea to build
a number of different corpora, which model these different
levels of language very precisely and then choose whatever
corpus is best suited for the cryptanalysis, depending on the
operational context at hand. A further requirement is that
the texts contain a statistically significant amount of char-
acters. It is interesting to note, that the corpus of n-grams
is generally compliant to Zipf’s law when considering nat-
ural languages [7]. This means, that the frequency of any
n-gram is inversely proportional to its rank in the corpus.

In order to limit the resources required for the corpus, it is
important to limit the character space as much as possible
without omitting critical characters needed to describe the
language effectively. This step is especially crucial for lan-
guages that contain a large amount of characters (e.g. due
to their accentuation). This is true for languages modeled in
ASCII encoding, such as French, Turkish and several north-
ern european languages. When considering Asian or Arabic
languages the same approach can be used, but a different
encoding must be considered. Table 2 shows the character
space chosen by Filiol in [1] for the French language.

Another important criterion is the length of the n-grams,
i.e. the choice of n. This choice directly influences the size
of the corpus. Obviously for larger n more combinations of
characters will be possible, thus significantly increasing size
and memory requirements of the corpus while also increas-
ing search times. As experimentally verified by Filiol in [1],
the best choice for n is n = 4, since using tetragrams over
trigrams (n = 3) greatly improved results but using penta-
grams (n = 5) did not further improve results. Considering
a character space with 95 characters (ASCII) will produce a
corpus of 954 different tetragrams.

5.2 Algorithm for Plaintext Recovery
Assuming that a number of ciphertexts were intercepted of
which p are detected to be parallel, let C1, C2, ..., Cp be the
p parallel ciphertexts and M1,M2, ...,Mp be the correspond-
ing plaintexts. Then using a corpus of N n-grams and the
algorithm given by Filiol in [1], it is possible to recover the
plaintexts M1,M2, ...,Mp, without knowledge of the encryp-
tion algorithm or key. Before applying the algorithm the p
ciphertexts are split into a succession of x n-grams. This
algorithm will result in xN p-tuples, meaning N p-tuples
for each n-gram at position j in the ciphertexts. Each such
p-tuple is of the form (M j

1
,M j

2
, ...,M j

p) and contains possi-
ble plaintext candidates for the n-grams at position j within

doi: 10.2313/NET-2012-04-1_1Seminar FI & IITM WS2011/2012,
Network Architectures and Services, April 2012

5

the plaintext messages M1,M2, ...,Mp.

The first step is to make an assumption for the plaintext
n-gram M j

1
which corresponds to the ciphertext n-gram Cj

1
.

This assumption is added to a p-tuple as the first element.
Then the key n-gram at position j is given as

Kj = Cj
1
⊕M j

1
.

In the next step Kj is combined with every Cj
i in the (p−1)

remaining ciphertexts, using the xor operation thus gener-
ating the remaining (p− 1) M j

i of the p-tuple.

M j
i = Cj

i ⊕Kj , for i ∈ [2, p]

These resulting M j
i represent possible plaintext n-gram so-

lutions at position j for the remaining (p-1) ciphertexts and
are added to the p-tuple. These steps are done for every po-
sition j, meaning j ∈ [1, x]. Then the complete set of steps
is exhaustively repeated N times, meaning each of the N
n-grams in the corpus needs to serves as a guess for M j

1
.

After completion the algorithm will have generated xN p-
tuples. N p-tuples for each n-gram at position j. Therefore
the results are p-tuples of the form (M j

1
,M j

2
, ...,M j

p), j ∈
[1, x] being the position of the n-grams within the plaintexts
and i ∈ [1, p] denoting the plaintext. N such p-tuples exist
for every position j:

j = 1 (M1
1 ,M

1
2 , ...,M

1
p), (M

′
1

1 ,M
′
1

2 , ...,M
′
1

p),

(M
′′
1

1 ,M
′′
1

2 , ...,M
′′
1

p), ...

j = 2 (M2
1 ,M

2
2 , ...,M

2
p), (M

′
2

1 ,M
′
2

2 , ...,M
′
2

p),

(M
′′
2

1 ,M
′′
2

2 , ...,M
′′
2

p), ...
...

j = x (Mx
1 ,M

x
2 , ...,M

x
p), (M

′x
1 ,M

′x
2 , ...,M

′x
p),

(M
′′x
1 ,M

′′x
2 , ...,M

′′x
p), ...

The next step is to select the most probable of theN p-tuples
for each position. In order to do that a p-tuple of proba-
bilities (P [M j

1
], P [M j

2
], ..., P [M j

p]) is associated with each of
the corresponding xN p-tuples generated by the algorithm.
In order to find the most probable plaintext n-grams p-tuple
one has to determine the p-tuple that maximizes the p-tuples
of probabilities. For that purpose a suitable function must
be chosen that can compute those probabilities in the most
significant way:

Zj = f(P [M j
1], P [M j

2], ..., P [M j
p])

As explained by Filiol in [1], this step is where the ability
and experience of the cryptanalyst becomes important, since
the choice of this function strongly depends on the nature
and contents of the texts. This function is named the fre-
quency cumulative function [1] and must always be strictly
increasing and positive. The probability of success depends
strongly on the frequency function and a few other param-
eters (n-gram processing mode and decryption mode) that
will be explored later on.

Let fi be the frequency of occurrence of n-gram i in the
corpus, then the most efficient choices for the frequency cu-
mulative function are the additive function given by

p
∑

i=0

fa
i

and the multiplicative function given by
p
∏

i=1

(fa
i + 1).

For texts containing many low frequency words, meaning
low values of fi (e.g. proper names, technical terms), the
multiplicative function should be preferred, since it is much
more efficient in this case. The optimal value for the param-
eter a is given by Filiol [1] as a = 0.3.

Another important factor for the successful recovery of the
plaintexts is the n-gram processing mode. This refers to how
the ciphertexts are split into n-grams. The first mode and
most obvious solution is to simply split the ciphertext into
a number of non-overlapping n-grams. This means that two
consecutive n-grams have a void intersection. For example,
using n = 4 this mode would produce the following framed
n-grams:

This is the non- over lapp ing mode

In this mode n-grams do not share any characters which is
not optimal if one wants to check for consistency. An ad-
vantage is that such a mode is very easy to implement. The
disadvantage however is that whenever a wrong plaintext
candidate is chosen, this error cannot be detected, since the
n-grams are all independent. Therefore a different mode is
introduced that splits the texts into n-grams by shifting one
character position at a time: The overlapping mode allows

for consistency checks, since two consecutive n-grams always
share (n− 1) characters. Using this property, one can verify
that every n-gram candidate at position j + 1 has (n − 1)
common characters with the n-gram candidate at position j.
This offers a huge help in selecting the correct plaintext n-
gram candidates. However, this mode is a bit more complex
to implement than the non-overlapping mode.

So far only the best plaintext n-gram candidate for every
ciphertext n-gram at position j was kept (i.e. n-grams from
the tuple that maximized the frequency cumulative func-
tion). This approach is called hard decoding. A further
optimization can be made in keeping the b best candidates
(soft decoding). This allows the use of backtracking, thus
enabling the correction of wrong decisions.

The last effective optimization presented in [1] is to use the
chosen character space as a limiting factor in the plaintext
candidate selection. For example, if the plaintexts are known
to contain only common language, one can allow only for p-
tuples that contain printable characters exclusively to be
accepted as candidates. This optimization is easy to imple-
ment, speeds up the plaintext recovery in general and also
potentially prevents many wrong decisions. Since it is very
likely that many p-tuples contain n-gram candidates with
non-printable characters this increases the chances of a suc-
cessful recovery greatly.

doi: 10.2313/NET-2012-04-1_1Seminar FI & IITM WS2011/2012,
Network Architectures and Services, April 2012

6

Finally, the best approach utilizes all the optimizations pre-
sented using parameters that were experimentally verified
by Filiol in [1]. This means that the final cryptanalysis
algorithm uses a multiplicative frequency function F with
parameter a = 0.3:

F (f1, f2, ..., fp) =
p
∏

i=1

(fa
i + 1),

the overlapping n-gram processing mode with consistency
checks and a soft decoding, keeping the b best candidates
with b ∈ [5, 10].

6. BREAKING THEWORD ENCRYPTION
Now all the theoretical concepts needed for detecting a vul-
nerability (e.g. parallel ciphertexts caused by key misuse,
implementation flaw or intentional trapdoor) and the crypt-
analysis itself to recover the plaintexts from those parallel
ciphertexts without a preliminary key recovery have been
established. These concepts can be applied to the Microsoft
Word encryption (up to Office version 2003). A number of
different encryption methods are offered by Word, the very
simple constant XOR encryption, the Office 97/2000 com-
patible encryption, which is a proprietary Office encryption,
derived from the Microsoft Internet Explorer CryptoAPI
method and several encryption services that are based on
the RC4 stream cipher.

6.1 Word Encryption Methods
The default encryption method used by Office is the con-
stant xor. In this encryption method the plaintext is com-
bined with a constant 16-character string, derived from a
user specified password, using the xor operation. The char-
acter string is simply repeated to cover all the plaintext.
From a security point of view, this encryption method is very
weak and in fact there already exist many tools that are ded-
icated to breaking this type of encryption in minutes (e.g.
several products by the company Elcomsoft, which interest-
ingly is also a Microsoft certified partner now). Although
it might not be as efficient as dedicated software, it is also
possible to utilize the previously discussed key-independent
cryptanalysis, developed by Filiol, to break this type of en-
cryption.

However this approach really shines when trying to break the
RC4 based encryption methods offered by Word and other
Office applications. These consist of several encryption stan-
dards (e.g. Diffie-Hellman with DSS and SHA-1), which the-
oretically offer adequate confidentiality, accountability and
integrity. The strongest security is allegedly provided by
the RC4, Microsoft Enhanced Cryptographic Provider ser-
vice. Microsoft Enhanced Cryptographic Prover provides the
same services as the Microsoft Base Cryptographic Provider
services, but offers additional security through the use of
longer keys and additional algorithms. In the RC4 case the
key length of the enhanced provider is 128-bits, whereas the
base provider only offers a 40-bits key. The Microsoft En-
hanced Cryptographic Prover encryption (using RC4 with a
128-bit key and SHA-1) is the target of the attack described
in [1].

RC4 is a stream cipher (symmetric key algorithm) that was
developed by Ronald Rivest in 1987. It is still widely used in

many applications that utilize stream ciphers. As usual for
stream ciphers, RC4 uses a cryptographic bit stream that is
combined with the plaintext using the xor function to pro-
duce the ciphertext. In the Office case the cryptographic
bit stream is generated by a proprietary algorithm. A secret
128-bit key initializes a so called state table that is used to
generate pseudo-random bytes, which are then utilized to
generate a pseudo-random bit stream [8]. The 128-bit key is
derived by a function F that takes the hash of a user spec-
ified password, concatenated with a “randomly” produced
initialization vector (IV), to generate 128-bit values. Let
F be the key generating function, H a cryptographic hash
function (e.g. SHA-1) and IV the initialization vector, then
the key K is given by:

K = F (H(IV ||password))

This is a fairly standard approach to generate a key from a
password (though usually an iterated hash is recommended)
and a first step towards a strong encryption, since the key
does not depend on the user’s password alone. This is due
to the randomly produced IV that is concatenated with the
password, thus preventing the reuse of a key, even if the
same password is used more than once. As stated by Filiol
in [1] the IV plays the same role as a session key.

6.2 The Office Vulnerability
As discussed in chapter two, when using stream ciphers, it is
imperative, not to reuse a secret initialization key, ever. One
must assume, that many users will use the same password
more than once, especially when considering the same docu-
ment. Since Office generates the secret initialization key by
the formula

K = F (H(IV ||password)),

the security of the entire encryption becomes void whenever
the initialization vector (IV) is reused. The vulnerability,
first identified in [9], now lies in the fact, that Word 2003
(and Office 2003 in general) reuses the same IV for every re-
vised version of a Word document. Since only multiple ver-
sions of a single document are considered, one can assume
that the user will keep the same password for this document.
Altogether this means, that the same secret key will be used
for initialization of the RC4 stream cipher, whenever a re-
vised (modified) version of a Word document is saved. As
shown by Filiol in [1], this is the case even when a new file
name is used to save the modified document. Thus all the
revised versions of any single Word document form a set of
parallel ciphertexts. Once detected by means of the detec-
tion method discussed in chapter four, these parallel cipher-
texts can then be subjected to the cryptanalysis described in
chapter five and finally the plaintexts can be recovered with-
out any knowledge of the key. The vulnerability is caused by
a flawed implementation of the RC4 algorithm in Microsoft
Office, not by RC4 itself.

6.3 Word Document Specifics
Before detection of parallel ciphertexts can occur, one must
find the encrypted data within the Word documents. As
determined by Filiol in [1], the beginning of the encrypted
text in any Microsoft Word document is always located at
offset 0xA00. The size S of the encrypted text in bytes is
calculated from two values x and y, located at offsets 0x21D
and 0x21C. Surprisingly those values are never encrypted,

doi: 10.2313/NET-2012-04-1_1Seminar FI & IITM WS2011/2012,
Network Architectures and Services, April 2012

7

even if document properties encryption is enabled, thus the
size in bytes can be calculated using the following formula:

S = 256x + y − 2048.

6.4 Detecting Parallel Word Documents
In order to apply the key-independent cryptanalysis described
in chapter five, it is first necessary to locate several en-
crypted Word documents and determine whether their con-
tents constitute a parallel group of ciphertexts. The flaw in
the implementation of RC4 in Office is further amplified by
the way the Windows operating system handles temporary
files. Creating or modifying an Office document also cre-
ates temporary files, each containing a previous version of
the document. The files will be deleted after closing Word.
But as typical under Windows, this is done in an insecure
way and the data still remains on disk and can be recovered
(e.g. by using dedicated recovery software). Using these
temporary files, by either intercepting them while the user
is working on the document with Word opened or by re-
covering them from the disk after Word is closed, a parallel
depth greater than one is achievable with relative ease. In
fact, in the experiments conducted by Filiol [1], up to 4 tem-
porary files were recovered. Any parallel depth above two
is more than sufficient for a highly successful cryptanalysis.
With an additional semantic validation step even two paral-
lel ciphertexts are usually enough to recover the plaintexts.

Filiol has conducted many experiments for documents in
almost all main languages. For example, a set of twenty en-
crypted 1500-character Word documents, of which the first
five had the same password, were used in the detection test,
resulting in the output shown in figure 2. The first column

Figure 2: Detection result of Filiol’s experiment [1]

denotes which of the documents were compared for paral-
lelism, for example z[1-2] means document number 1 and 2

were compared. The second column lists the number of com-
pared bits and the third column shows the zero bits divided
by the total number of bits, as used by the estimator devel-
oped in chapter four. The result clearly shows that peaks for
files one to five, thus detection of parallel ciphertexts worked
very well in this test.

6.5 Testing the Cryptanalysis Algorithm
In further tests to verify the functionality of the cryptanaly-
sis algorithm, multiple texts from different times and back-
grounds were considered. These consisted of extracts from
Jules Verne novels with a total length of 1200 bytes each,
1500 byte extracts from a speech of the Chief of Staff of the
Army held in 2008, containing many technical terms, proper
names and diplomatic language and finally extracts from a
speech of the president of the French Republic, each 9700
bytes long. In this case the cryptanalysis was done using a
multiplicative frequency cumulative function with parame-
ter a = 0.3. For further optimization, as discussed in chapter
five, overlapping mode, the printable characters only option
and a hard decoding were used. The tests were conducted
for different depths of parallelism. For a parallelism depth
of

• two, about 40% of the plaintexts were recovered.

• three, above 80% of the plaintexts were recovered.

• four and five, above 90% of the plaintexts were recov-
ered.

If soft decoding and semantic analysis were used Filiol [1]
would expect a success rate of nearly 100% for the plain-
text recovery, when dealing with more than two parallel ci-
phertexts. A linguist-driven analysis would be necessary to
recover all the missing characters in the case of only two
parallel ciphertexts.

6.6 The Excel Case
The application of the cryptanalysis technique to Microsoft
Excel is more tricky than in the Word case. The detec-
tion part of the algorithm is harder because the structure
of Excel files is somewhat more complex than the structure
of Word documents. For example whenever an Excel docu-
ment is modified the new content is located at the end of the
data, not at the location where the modification occurred.
Despite these complications it is, as shown in [1] and [9],
still fairly easy to locate the data within the encrypted Ex-
cel document. The vulnerability is the same as for Word
documents. When encrypting an Excel document the same
IV will be used for all modified versions and thus, as long
as the users password doesn’t change, the key for the RC4
stream cipher will be reused, just like in the Word case. Par-
allel ciphertexts can then be detected from temporary files
or separately saved versions of the same document.

The cryptanalysis part is also somewhat more difficult than
in the Word case. Since usually Excel files deal with nu-
merical data, one cannot expect sentences or semantically
structured data. Therefore certain optimization features
of the cryptanalysis algorithm, such as semantic analysis,
might not be possible to the full extend in the Excel case.

doi: 10.2313/NET-2012-04-1_1Seminar FI & IITM WS2011/2012,
Network Architectures and Services, April 2012

8

This means a very particular corpus, which is specifically
constructed to model the context of the Excel spreadsheet,
must be used. Usually a higher parallelism depth than in
the word case is required. However Excel spreadsheets also
offer an advantage over Word documents. Data in Excel files
are located between cell separators, which in the binary file
are denoted as XX 00 00, where XX is the size of the data
inside the next cell [1]. These separators constitute proba-
ble plaintext and therefore enable a more efficient recovery
process, as described in [3] by the probable word method.
According to Filiol, if all these Excel specifics are taken into
account, the recovery of Excel plaintexts is as efficient as in
the Word case.

6.7 Recap of the Office Attack
Clearly the vulnerability of the Office 2003 encryption lies
in the reuse of the IV for revised documents. This leads to
key-reuse in these revised documents which form a set of
parallel ciphertext files. Through a weakness in the Win-
dows operating system these files can be obtained even after
their supposed deletion. This satisfies all the conditions for
the application of the cryptanalysis algorithm described in
chapter five. The test results show that by means of a lan-
guage specific frequency analysis of character sequences it is
generally possible to recover large parts of the plaintexts. It
is possible to further enhance these results, for example by
performing a linguist driven analysis subsequently.

The test results show that good results (over 80% recovery)
can be expected when at least three parallel documents are
obtained. It is also vital to know the language and general
context of the texts in order to obtain satisfactory results.
Furthermore the attack is only possible if the user does not
change their password for every revised version of a doc-
ument, since IV and password must be reused to produce
the same key. It is however very unlikely that a user would
change their password after making any modification to the
document, meaning the attack would be applicable in most
cases.

7. CONCLUSION
Filiol has designed a very interesting and operational tech-
nique to detect and break any type of misused or wrongly
implemented stream cipher and block cipher in OFB mode.
One can imagine many uses for such a technique, that go
beyond the simple scenario of an attacker, who wants to de-
tect and break weak ciphertexts. Advanced users might be
interested in running such a detection method for parallel
ciphertexts against their encrypted documents, in order to
make sure that no key reuse has occurred. On the other
hand, since this works with any stream cipher, the detec-
tion technique can be of interest to companies, who want to
employ it as an additional experimental check for the correct
implementation of their stream cipher encryption algorithm.
Furthermore the key-independent cryptanalysis really shines
when one needs to identify and break messages encrypted by
an unknown proprietary cipher. Using an USB-key, malware
programs or a trojan horse an attacker could possibly detect
and gather parallel plaintexts without direct access to the
system in question and employ this technique to break them
without the need for a time consuming key recovery or any
knowledge about the underlying cryptosystem.

Considering the gravity of such an attack, it is surprising
that after so many versions of Microsoft Windows and Of-
fice, a serious flaw like this still exists in the most widely
used office application. However it is worth noting, that
Microsoft Office 2007 SP2 and 2010 apparently have experi-
enced a large rework of their security features. These newer
versions support any encryption algorithm offered by the Mi-
crosoft Cryptographic Application Programming Interface
(CryptoAPI), such as AES, DES, ESX, 3DES, and RC2.
They also offer a wide selection of cryptographic hashing
functions and use much more secure defaults (usually AES
with 128-bit key in CBC mode and SHA-1 hashing) than
the constant XOR of Office 2003 and previous versions.

Interestingly Microsoft openly acknowledges many of the
short comings in previous Office versions in the Office Docu-
ment Cryptography Structure Specification [10]. For example
the constant XOR encryption is more fittingly called “XOR
Obfuscation”. This document also highlights the flaws of the
Office RC4 implementation. In fact in this specification it
is said that “The Office binary document RC4 CryptoAPI
encryption method is not recommended, and ought to only
be used when backward compatibility is required” [10]. Not
only is the implementation of this encryption method sus-
ceptible to the key-independent cryptanalysis described by
Filiol but also to several other attacks, as outlined by the
specification itself. For example the password may be sub-
ject to rapid brute-force attacks, because of the weak key
derivation algorithm, using a single hash function instead
of an iterated hash, which is recommended by RFC2898.
Furthermore the key is derived from an input only 40-bits
in length, thus the encryption key may be subject to brute
force attacks even on current hardware. It is also stated that
“some streams might not be encrypted”and“document prop-
erties might not be encrypted”, which would explain several
plain values that were found in [1] and [9] when analyzing
the encrypted Office documents. Finally it is also said that
“key stream reuse could occur”, which is the flaw that al-
lowed for the key-independent cryptanalysis, after detection
of the parallel ciphertexts.

Filiol also touches the subject of how such implementation
flaws can be used in a trapdoor design. While one flaw
alone might not be sufficient for the recovery of plaintexts,
it can, when combined with another flaw become a huge se-
curity issue and in fact also act as an intended trapdoor.
Although the Office case is probably not an intended trap-
door it demonstrates how a combination of flaws can lead
to a security problem. 50% of the flaw is at the applica-
tion level (i.e. incorrect RC4 implementation, reuse of key
streams) and the other 50% at the operating system level
(i.e. Windows temporary files are insecurely deleted). How-
ever it is unlikely that the Office RC4 flaw is an intended
trapdoor, since several other serious flaws exist in the Office
encryption, which are documented by Microsoft themselves.
Still, Filiol’s hints on trapdoor design give very interesting
insight on how such trapdoors might be build by distributing
the security breach over several layers.

Conclusively, it can be said that any product labelled with
“X-encryption secure”, where X is a well known and ap-
proved encryption algorithm or even said to be information
theoretically secure (e.g. Vernam system), might in reality

doi: 10.2313/NET-2012-04-1_1Seminar FI & IITM WS2011/2012,
Network Architectures and Services, April 2012

9

not be secure at all. Implementation flaws or even intended
trapdoors, that may consist of flaws distributed across mul-
tiple levels and above all misuse of the system by its users
may nullify any means of security.

8. REFERENCES
[1] E. Filiol: How to operationally detect misuse or flawed

implementation of weak stream ciphers (and even block
ciphers sometimes) and break them - Application to
the Office Encryption Cryptanalysis, Black Hat
Europe 2010, April 12-15th

[2] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone:
Handbook of Applied Cryptography, CRC Press, 1996

[3] C.E. Shannon: Communication Theory of Secrecy
Systems, Bell System Technical Journal 28, 1949, p.
679-683

[4] C.E. Shannon: A Mathematical Theory of
Communication, Bell System Technical Journal 27,
1948, p. 379-423 July, p. 623-656 October

[5] A. Papoulis, S.U. Pillai: Probability, Random
Variables, and Stochastic Processes, 4th Edition,
McGraw-Hill Europe, 2002, p. 72-123

[6] E.S. Lee: Essays about Computer Security, Centre for
Communications Systems Research Cambridge, p. 187

[7] W. Li: Random Texts Exhibit Zipf ’s-Law-Like Word
Frequency Distribution, IEEE Transactions on
Information Theory, 38(6), 1842-1845, 1992

[8] Changes in encryption file properties in Office 2003
and Office 2002,
http://support.microsoft.com/kb/290112

[9] H. Wu: The misuse of RC4 in Microsoft Word and
Excel, Preprint IACR, 2005

[10] Office Document Cryptography Structure Specification,
Microsoft Corporation, 2011

doi: 10.2313/NET-2012-04-1_1Seminar FI & IITM WS2011/2012,
Network Architectures and Services, April 2012

10

