
TCP/IP communication in a WSN

Oliver Gasser
Betreuerin: Corinna Schmitt

Seminar Sensorknoten: Betrieb, Netze und Anwendungen SS2011
Lehrstuhl Netzarchitekturen und Netzdienste, Lehrstuhl Betriebssysteme und Systemarchitektur

Fakultät für Informatik, Technische Universität München
Email: gasser@in.tum.de

ABSTRACT
In this paper, the current state of TCP/IP adaption in wire-
less sensor networks (WSNs) is surveyed. WSNs are becom-
ing more and more ubiquitous for all kinds of monitoring
applications and also for ad-hoc networking. TCP/IP on
the other hand is the de-facto networking standard. In its
pure form, however, the protocol suite does not perform well
in a WSN in terms of energy consumption and other factors.
Fortunately there are several approaches that try to adapt
TCP/IP to sensor networks which will be presented in this
paper.

Keywords
TCP, TCP/IP, WSN, Sensor Network, Caching, Energy
E�ciency, Link Quality, MSS

1. INTRODUCTION
Wireless Sensor Networks are becoming ubiquitous not only
in the scientific world but also more and more in your home
(e.g. monitoring the temperature of rooms, alerting of an
upcoming rain shower, etc.). Thus the communication be-
tween sensor networks and other networks is getting more
important too. The de-facto networking standard protocol
suite is TCP/IP. While it is possible to run TCP/IP on
sensor nodes [7] it is not feasible (in terms of energy con-
sumption) to run pure TCP/IP on them. The main factor
for this is that TCP/IP was not designed to be used in wire-
less environments but rather in wired ones. The error rate
in wireless environments is much higher and TCP cannot
distinguish between losses due to congestion and losses due
to bit errors. Another drawback of TCP/IP in WSNs are
end-to-end retransmissions which are a huge energy waster
if they are not kept to a minimum. That is why TCP/IP
can and should be adapted to sensor networks. In this pa-
per approaches to tailor TCP/IP to the characteristics of a
WSN are presented.
The remainder of this paper is structured as follows. Section
2 explains in more detail the specifics of TCP/IP and wire-
less sensor networks. Section 3 surveys the challenges which
are faced when making sensor nodes TCP/IP-ready and Sec-
tion 4 lists and analyzes proposed approaches to solve the
problems discussed in the previous section. Finally, this pa-
per is concluded in Section 5, where the proposed approaches
are rated.

2. TCP/IP IN A WSN
2.1 Wireless Sensor Networks
Wireless Sensor Networks (WSNs) are becoming more and
more omnipresent. Nodes in WSNs are mainly used for mon-
itoring purposes such as environment monitoring (air pollu-
tion, temperature, humidity etc.) and machine monitoring
(observing a machine’s condition or health). Another ap-
plication are mobile ad-hoc networks, where two computers
(or similar devices) communicate with each other via WSN
nodes without a router or any other kind of access point.
Due to their compact nature nodes in these networks have
certain characteristics and constraints:

• Nodes should function unattendedly (except changing
the battery every year or so).

• Energy consumption (CPU, sending, receiving) needs
to be kept at a minimum to save battery power.

• Resources (CPU power, memory, energy) are scarce.

• The network must adapt to churn (i.e. nodes joining
and leaving due to failure).

• A node’s location can possibly change a↵ecting the net-
work’s topology.

These characteristics on the other hand limit the nodes’ uni-
versal applicability, i.e. sensor nodes are not able to run
resource-consuming software as a generic PC would be able
to. That is why the software for sensor needs to be specifi-
cally tailored to their abilities.

2.2 TCP/IP
For communication in the Internet and many other networks
the Internet Protocol Suite is most often used. The two
most important protocols from this family are the Trans-
mission Control Protocol (TCP)[18] and the Internet Pro-
tocol (IP) [17]. Those two protocols are commonly referred
to as TCP/IP and they are the de-facto standard protocols
for Internet communication. TCP/IP is one reason why the
Internet has become a big success story and is nearly ubiq-
uitous today.
However, due to various design issues laid out in detail in
Section 3, TCP/IP is not mainly used for WSN commu-
nication. Instead nodes run other WSN specific protocols.
Despite that fact there are certain scenarios where it would
be preferable to use TCP/IP in a WSN. The main gain of

doi: 10.2313/NET-2011-07-1_11Seminar SN SS2011,
Network Architectures and Services, July 2011

75

running TCP/IP on sensor nodes is the ability to easily com-
municate from any other TCP/IP compatible device with
any single node. This could be used to download gathered
sensor data, reconfigure the node without directly attaching
it to a PC or updating the software running on the node
“over the air”. Another scenario could be to use the WSN
as an ad-hoc network to connect two TCP/IP devices which
are otherwise unable to communicate with each other as they
are not directly connected and have no access to the internet.

Internet Protocol

The Internet Protocol is an unreliable, connectionless layer 3
(i.e. network layer) protocol. That means that no connetion
setup is performed and it is not guaranteed that packets ar-
rive at the destination. The Internet Protocol exists in two
versions: IPv4 and IPv6 [6]. Version 4 is predominantly used
as of 2011, but the adoption of IPv6 is continuously increas-
ing. IPv6 was primarily introduced to solve the problem of
the exhaustion of IPv4 addresses. Since IPv4 addresses are
32 bits long therer are around 4 billion possible addresses.
IPv6 on the other side features 128 bit long addresses which
makes a total of 1038 di↵erent addresses. This increase in
addresses, however, did not come for free: The IPv6 header
is double the size of an IPv4 header, without extensions or
options: 40 bytes vs. 20 bytes. In wireless sensor networks
where most of the time only a few bytes are transferred and
the link layer segment size is limited to a little more than 100
bytes, the 40 bytes of the IPv6 header alone would be too
great of an overhead. Fortunately compression algorithms
can reduce the IPv6 header’s size to about 20 bytes [13].
Should the packet still not fit in a link layer frame it can be
fragmented using the LoWPAN protocol layer [14].

Transmission Control Protocol

The Transmission Control Protocol is a reliable, connection-
oriented protocol, in contrast to IP. It operates on layer 4
(transport layer) and establishes a connection between two
TCP endpoints. Once the connection is established it needs
to be managed. This management e↵ort consists of mak-
ing sure that all TCP segments are reliably transmitted
from source to destination (retransmission on loss), detect-
ing transmission errors, potential reordering of packets be-
fore delivering them to the destination process, detecting
and reacting to network congestion, etc. Although these op-
erations work very well on wired information systems and on
wireless systems with no energy scarcitiy (e.g. home WiFi
network), they do not work well in WSNs. The reasons for
that are the sensor nodes’ limited resources and the high er-
ror rates in wireless networks. An end-to-end retransmission
after a bit error wastes too much energy since the packet has
to be sent and received over the whole path again. TCP’s
reaction to packet loss is not optimal as it is interpreted as
network congestion and the sending rate is reduced. This
are just two of the problems, which will be discussed in the
following section, of operating TCP in a WSN.

3. ISSUES OF ADOPTING TCP/IP IN A WSN
There are several issues which need to be solved, before
TCP/IP is a viable protocol combination to be used in a

WSN.
One issue is the header overhead. TCP and IP headers com-
bined have a minimal size of 40 bytes: 20 bytes TCP header
plus 20 bytes IPv4 header, without any additional options.
If we look at the maximum size of link layer frames a sig-
nificant part of the message is being occupied by header
data. The IEEE 802.15.4 standard [11] for example limits
the maximum size of link layer frames to 127 bytes. That
leaves a mere 87 bytes of TCP payload even without taking
the link layer header into account. The headers therefore
occupy more than 30 % of the total maximum possible data
which can be sent in one frame. The nodes’ scarce energy
resources are thusly not utilized in an optimal way. Addi-
tionally it should be noted that larger payloads can be frag-
mented into many packets. Fragmentation and reassembly,
however, are themselves energy consuming processes.
The greatest hurdle which hinders TCP/IP from being widely
adopted in wireless sensor networks is TCP’s flow and con-
gestion control mechanism. TCP is unable to di↵erentiate
between a lost segment due to congestion and a lost segment
due to bit errors. Whenever a segment is lost, i.e. no ac-
knowledgment is received for that particular segment and a
timeout event is triggered, this loss is believed to be due to
congestion in the network. Consequently the sending rate is
reduced to avoid further segment losses. While this might
be a good strategy in wired networks it certainly is not ap-
propriate for wireless sensor networks, where bit error rates
are orders of magnitude higher (up to double digit percent-
age package error rates [1]). Despite the fact that the loss
occured due to bit errors the sending rate is reduced never-
theless. This leads to a less than ideal throughput.
Another issue with TCP in WSNs is TCP’s connection man-
agement. Connections are maintained between the two end-
points of communication. If a packet gets lost in transit, a
timeout occurs at the senders side or a duplicate acknowl-
edgemt is received. The sender then retransmits the original
packet to the receiver and hopes that it will go through this
time. This behaviour is wasting the nodes’ energy by forcing
expensive retransmission on the whole path from sender to
receiver.
In traditional IP networks unique IP addresses are assigned
to each network interface based on the network’s topology.
This process of address assignment is either done manually
or automatically (e.g. via DHCP). Assigning addresses this
way is not very practical for sensor nodes. Furthermore sen-
sor networks often prefer data-centric routing mechanisms
instead of traditional address based routing [5]. A receiver
simply announces its interest in a certain kind of data in-
stead of nodes directly addressing a data sink.
Finally the energy, memory and CPU resources of a sensor
node are very limited and it may be unfeasible to run a full
TCP/IP stack on them. This, however, was proven to be
possible [3, 7].

4. POSSIBLE SOLUTIONS
In this section possible solutions to the challenges faced in
TCP/IP and WSN, which were discussed in Section 3, are
presented.

4.1 Different scenarios and approaches
Dunkels et al. [8] listed three possible ways to connect sen-
sor networks with TCP/IP networks: (1) via a proxy, (2)
via DTN overlays or (3) implementing TCP/IP directly on

doi: 10.2313/NET-2011-07-1_11Seminar SN SS2011,
Network Architectures and Services, July 2011

76

sensor nodes.
With the first method (see Figure 1) a proxy which resides
on a gateway machine “translates” all TCP/IP packets di-
rected to the sensor network to conform to the sensor net-
work protocols. The exact opposite is done for packets sent
from the WSN to the TCP/IP networks. Although this ap-
proach does not implement TCP/IP on the sensor nodes
themselves it still makes it possible to access WSNs from a
TCP/IP network. This approach has the advantage of being
relatively simple to set up. Moreover security policies can
easily be enforced on the gateway proxy. Drawbacks of this
setup are the single point of failure nature of the proxy ma-
chine and the fact that di↵erent WSNs need di↵erent proxy
implementations.

Figure 1: Proxy architecture.

Delay Tolerant Networks (DTNs) [10] are especially designed
for environments with high bit error rates, long and chang-
ing delays, high churn and asymmetrical data connections.
DTNs implement a network overlay and transmit messages
(called “bundles”) based on store-and-forward switching, i.e.
a bundle is held available until the next hop confirms its
reception. This avoids costly end-to-end retransmissions. A
DTN is partitioned into regions and each region has one
DTN gateway. This gateway is responsible for sending mes-
sages to other regions and to nodes in its own region. The
DTN architecture can be seen as a generalization of the
proxy approach.
To enable seamless integration between a TCP/IP network
and a WSN the TCP/IP protocol stack should directly run
on each sensor node. No gateways or other special nodes are
needed in this approach. A visual representation can be seen
in Figure 2. This approach, however, faces some issues which
need to be addressed: Host-centric routing and addressing,
large header overhead for TCP/IP, bad performance over
links with a high bit error rate, end-to-end retransmissions.
Possible solutions for these issues will be presented in the
rest of this section.

Kuorilehto et al. [12] also list three di↵erent possibilities of
integrating TCP/IP into WSN: (1) direct TCP, (2) proxy
TCP and (3) native TCP.
The first approach is the same as the last method mentioned
by Dunkels et al., Kuorilehto’s second method corresponds
to the first method by Dunkels et al. (see above).
Lastly the native TCP architecture transports TCP/IP traf-
fic as a payload of the WSN protocols (see Figure 3). Their
implementation called TUTWSN uses Time Division Multi-
ple Access (TDMA, sending is only allowed in dedicated time
slots) to avoid collisions which would lead to expensive re-

Figure 2: Direct TCP/IP implementation on sensor

nodes.

transmissions. This setup allows for communications of two
or more TCP/IP endpoints over a WSN with a gateway at
each entry point. Direct TCP/IP communication with sen-
sor nodes is not possible. In TUTWSN the sensor network is
clustered, each cluster having one“cluster headnode”. These
headnodes control the communication within the cluster and
cluster-to-cluster communication. The other nodes are called
“subnodes”and cannot communicate directly with each other
but rather via a cluster headnode. Each cluster communi-
cates on a dedicated cluster channel which does not overlap
with neighboring clusters. Routing decisions are made based
on cost-gradients to a gateway. These costs could depend on
the number of hops, remaining energy, number of associated
nodes, power necessary to send a packet to the next hop,
etc. Kuorilehto et al. suggest that the TDMA’s idle periods
could also be used for sending data which would result in
a higher throughput. This, however, leads to more energy
being consumed.

Figure 3: Native TCP/IP implementation trans-

porting TCP/IP packets as payload (marked by a

star).

4.2 Distributed TCP Caching
In this subsection and the following one, two similar ap-
proaches to make TCP in sensor networks more energy e�-
cient [5] are presented: Distributed TCP Caching (DTC) [9]
and TCP Support for Sensor networks (TSS) [4] which are
both inspired by the Snoop protocol [2]. These approaches
reduce the number of retransmissions by allowing interme-
diate nodes to cache packets and in case of packet loss do
local retransmissions. The performance of both approaches
is discussed in Section 4.4.

The basic idea in DTC is that intermediate nodes cache seg-

doi: 10.2313/NET-2011-07-1_11Seminar SN SS2011,
Network Architectures and Services, July 2011

77

ments on their way and retransmit them locally to avoid
costly end-to-end retransmissions. In the best case each
node would cache all bypassing segments. In reality, how-
ever, this cannot be achieved as the nodes have only a very
limited amount of storage. Thusly it is vital that the nodes
very carefully select which segment to cache, hopefully caching
those which will be lost. If a node receives a segment with
the highest segment number seen until then it caches this
segment with a certain probability. If the segment number
is lower it is not cached. That behavior assures that not only
the newest but also older segments are kept in the cache. If
a TCP segment gets lost in transit to the next hop, the
segment is locked in the cache. It will therefore not be over-
written by TCP segments with a higher sequence number.
Link layer acknowledgements are used in order to detect seg-
ment loss. This could also be done with “overhearing”, i.e.
listening if the next hops forwards the segment. A cached
segment is unlocked as soon as a TCP ACK acknowledging
this very segment is received or when the segment times out.
To avoid that a packet loss triggers a end-to-end retransmis-
sion DTC detects the loss before the TCP endpoint does.
Each node maintains a soft state for passing TCP connec-
tions. This state saves the round-trip time (RTT) to the
receiving node and sets the local retransmission timeout
to 1.5 · RTT . The local retransmission timeout values are
smaller for nodes close to the TCP receiver and get larger
the nearer you come to the TCP sender. Since the local re-
transmission timeout is believed to be smaller than the TCP
sender timeout local retransmissions kick in as a packet is
lost and end-to-end retransmissions are avoided. Whenever
a sensor node locks a segment in the cache the local re-
transmission timer is started. If it ends before the packet is
unlocked, the segment is retransmitted.
To detect packet loss and for signaling purposes DTC uses
the TCP selective acknowledgement (SACK) option [15]. If
a node receives a TCP ACK there are two possibilities:

1. The acknowledged segment number is larger or equal
to the cached segment, then the cache can be cleared.

2. The acknowledged segment number is smaller than
the cached sequence number, then there are two sub-
possibilities:

(a) If the cached segment’s sequence number (cached)
is not in the SACK block, the cached segment is
retransmitted and cached is added to the SACK
block. If all sequence numbers in the SACK block
are contiguous the TCP ACK is dropped alto-
gether, as all missing segments have been retrans-
mitted and forwarding the ACK to the sender
would trigger an unnecessary retransmission. If
the SACK block is not contiguous the ACK is
forwarded in the direction of the TCP sender.

(b) If cached is in the SACK block, the node’s cache
can be cleared since the TCP receiver either al-
ready got this segment or it is locked in the cache
by a node which is closer to the TCP receiver.
Finally the TCP ACK is forwarded in direction
to the TCP sender.

DTC has the ability to locally regenerate TCP acknowledge-
ments without caching or otherwise storing them. If a node

receives a TCP segment for which it already saw a TCP ACK
the TCP segment is dropped and a TCP ACK is locally re-
generated using the TCP connection’s state information.

Figure 4: DTC example sending 3 packets over 4

nodes.

DTC example

The DTC example in Figure 4 shows the principle of the
local recovery mechanism combined with the selective ac-
knowledgement. The first packet gets lost in the network
between node II and III but before that happens it gets
cached by node II. Since node II does not receive a link
level ACK from node III for the first packet, it gets locked
in the cache. When the second packet arrives at node 2
it is not even considered to be cached as the cache is al-
ready occupied by a locked packet (the first packet). The
second packet then gets cached at node III and is lost in
transit from III to IV. With no link level ACK received,
node III locks the second packet in its cache. The third
packet arrives at the final node IV without being lost (it
did not get cached at any node since all intermediate nodes
had their caches locked). As node IV receives the third
packet it sends the following TCP acknownledgement in di-
rection to node I: ACK 1 (SACK 3). Node IV is still waiting
for the first packet but it already received the third packet.
Upon reception of this TCP ACK message node III finds
out that the ACK number is lower than its cached packet’s
and its cached packet’s sequence number is not present in
the SACK block either. In consequence node III restrans-
mits the cached second packet, adds 2 to the TCP ACK and
forwards it: ACK 1 (SACK 2, 3). When node II receives the
TCP ACK it does the same reasoning as node III did and re-
stransmits its cached first packet. However, the TCP ACK
is discarded as the SACK block now forms a contiguous se-
quence. As node IV receives the first packet it sends a TCP
acknowledgement to node I indicating it is now waiting for
the fourth packet: ACK 4.

4.3 TCP Support for Sensor Nodes
As DTC TCP Support for Sensor nodes tries to reduce the
number of retransmissions by caching packets, retransmit-
ting them locally, regenerating TCP acknowledgements and

doi: 10.2313/NET-2011-07-1_11Seminar SN SS2011,
Network Architectures and Services, July 2011

78

a mechanism that avoids forwarding packets if the successor
node has not received previously sent packets. Overhear-
ing is used to notice if packets are received by the successor
node, link level acknowledgements are not needed. As an-
other benefit TCP segments arrive in sequence, hence no
reordering or selective acknowledgements are required.
Unlike DTCs caching decision, TSS’ is not based on a prob-
ability but completely deterministic. A segment which has
not yet been forwarded or acknowledged by the successor
is always cached. Nodes are listening to their neighbors’
transmissions. If a node overhears that a packet has been
forwarded by its successor it can remove this packet from the
cache. The same holds if a TCP ACK sent from the TCP re-
ceiver to a neighboring node and acknowledging the cached
packet is overheard. In addition to the bu↵er to store cached
packets another packet bu↵er for temporal packet storage is
needed. This bu↵er holds packets which have not yet been
forwarded to the successor node but need to wait for the
confirmation that the previously sent packet was received.
Local retransmissions are triggered by timeouts. The time-
out is set to 1.5 · RTT and is started after a package was
completely sent. Then the node listens if the successor for-
wards the packet (overhearing). If it does not overhear any-
thing before the timeout is triggered, the packet is locally
retransmitted from the cache. To avoid unnecessary retrans-
missions during network problems the number of local re-
transmissions is limited to four. If the timeout is triggered
by mistake (e.g. due to a bit error in the packet forwarded
by the successor) and the TCP segment is retransmitted lo-
cally, the successor filters and drops this packet. End-to-end
retransmissions are not to be filtered.
It is crucial for TSS that TCP ACKs are not lost since RTT
estimation, retransmssions and caching depend on them.
Therefore as with DTC TCP ACKs are regenerated locally
and additionally an aggressive TCP acknowledgement re-
covery mechanisms is in place. For this mechanism to work
each node measures the time between sending of an ACK
and forwarding by the successor node. If after twice this
average value the successor did not forward the ACK, it is
recovered using the highest acknowledgement number stored
in the TCP connection’s state information.
TSS avoids packet forwarding in congestion situation and
waits until a bit-error packet has been recovered. Hence
a node does not forward more packets until it knows that
the successor has received and forwarded all previously sent
packets. Consequently, if this situation occurs not only does
this node stop forwarding packets but all its predecessor
nodes too. This is called the backpressure mechanism. The
additional packet bu↵er avoids packets from being lost be-
cause the other bu↵er is full. When the successor of the
head of the line node recovers the packet and forwards it,
all other nodes will resume their usual modus operandi.

TSS example

Figure 5 shows the main principle of TSS’ local retransmis-
sions. While the first packet is received by node V without
any problems (resulting in the ACK), a transmission error
occurs with the second packet between node III and node IV.
Node II, however, overheard node III forwarding the second
packet and thusly forwards the third packet to node III. This
is where the additional packet bu↵er comes into play: Node

Figure 5: TSS example sending 4 packets over 5

nodes.

III stores the third packet received from node II in the addi-
tional bu↵er and does not forward any more packets. This
leads to the so called backpressure mechanism: Node II does
not forward any more packets itself, as it did not overhear
node III’s forwarding of the third packet. Only when the
timeout at node III is triggered the packet forwarding con-
tinues. Node III retransmits the second packet to node IV,
overhears node IV forwarding the same packet right away
and continues with forwarding the third packet (which was
stored in the additional packet bu↵er). Node II on the other
hand overhears node III’s forwarding of the third packet and
forwards the fourth packet. From there on all packets are
received by node V, the TCP endpoint, which then sends
TCP ACKs for all received packets.

4.4 DTC and TSS performance
For high packet error rates (10 – 15 %) normal TCP per-
forms extremly poor. DTC’s and TSS’ performance is simi-
larly well, while DTC is doing slightly better with high error
rates. For a packet error rate of 15 %, 500 TCP segments
and 11 hops DTC transmitted about 14,500 TCP segments
and ACKs and TSS 13,500 segments and ACKs. Generic
TCP on the other hand used over 45,000 TCP transmis-
sions. Assuming that transmission and reception of packets
is the main source of energy consumption DTC as well as
TSS can reduce that energy consumption of TCP/IP in wire-
less sensor networks by nearly 70 %.
Despite the di↵erences between TSS and DTC (SACK vs.
overhearing, 1 bu↵er vs. 2 bu↵ers, etc.) both approaches
perform similarly well. It should be noted that overhear-
ing should not have a big impact on energy consumption as
most packets are forwarded right away and the overhearing
period is thusly very short [5].

4.5 Link Quality Estimated TCP
Link Quality Estimated TCP is another variation to the
Snoop protocol [2] presented by Ponmagal et al. [16]. The
Snoop protocol needs theoretically infinite bu↵er space at
the gateway where all packets are cached. To address this is-
sue Link Quality Estimated TCP employs a selective caching
policy thus utilizing the gateway’s bu↵er space more e�-
ciently. TCP segments and ACKs flowing through the gate-
way to the TCP destination are cached only if the channel’s

doi: 10.2313/NET-2011-07-1_11Seminar SN SS2011,
Network Architectures and Services, July 2011

79

condition is thought to be bad, i.e. when the probability of
a transmission error is high. If this probability exceeds a
certain threshold the packet is cached. The probability of a
transmission error can be calculated as

Perr = 1� (1� P1)F · (1� P2)F

when transmitting a packet in two fragments with F be-
ing the fragment size and P1 and P2 being the expected
bit-error rate for the first fragment and the second frag-
ment respectively. It is left unexplained [16] why the two
fragments would have di↵erent bit-error rates. Furthermore
there is no indication on how to estimate the bit-error rate.
This could be done through monitoring previous transmis-
sions and averaging the loss rate. This mechanism, however,
would be very slow in reacting to sudden changes in channel
conditions. If a duplicate TCP ACK from the TCP desti-
nation is received at the gateway the corresponding packet
(if cached) is retransmitted locally and all following packets
are discarded. If the local retransmission is triggered by a
timeout following packets are not discarded.
The rate-controlled wireless link selects its link rate accord-
ing to some performance objective taking into account the
current channel conditions. That means that the highest
possible link rate which is below a specified bit-error rate
threshold is selected.
Moreover the TCP window which is calculated as the min-
imum of the congestion window and the receiver window is
modified. Along the way of ACKs returning from the re-
ceiver to the sender intermediate nodes adjust the receiver
window to be as close to the bandwith-delay product as pos-
sible. This makes the TCP window adaptable to bottleneck
situations in the network.
Ponmagal et al. [16] claim that their approach reduces TCP
data transmission times by 5 % compared to normal TCP.
Also end-to-end retransmissions are reduced from 18 to 4.
This comes at a cost, however, as the gateway needs to
store 14 packets whereas with normal TCP no storing is
needed. Unfortunately the performance analysis setup (net-
work topology, error rates, file sizes, number of runs,. . .) is
not specified which makes it very hard to draw a consistent
conclusion.

4.6 MSS Tuning
The link layer frame size limit in WSNs is relatively small
(e.g. 127 bytes in IEEE 802.15.4 [11]). Therefore a TCP/IP
packet may have to be fragmented before it can be trans-
mitted in the network. Ayadi et al. are surveying the im-
pact of fragmentation and other TCP parameters on energy
consumption [1]. IETF’s 6LoWPAN [14] introduces a new
protocol layer between the IPv6 layer and the MAC layer.
The 6LoWPAN layer compresses the IPv6 header and frag-
ments the IPv6 packet to fit shorter MAC frames. The main
source of energy consumption in a WSN is the transmission
and reception of data. Thence it directly depends on the
total number of bits sent by the whole network. The total
number of bits sent depends on several factors: the num-
ber of hops between TCP source and TCP destination, the
bit-error rate, the TCP maximum segment size (MSS), the
maximum number of attempts on the link layer and forward
error correction (FEC) redundancy ratio. FEC adds addi-
tional information to sent packets which helps recover the
original packet if only a few bits are flipped. Therefore a
retransmission can be avoided. However, adding FEC data

adds an overhead to the packet.
When looking at one-hop transmissions there are three pos-
sible outcomes:

1. Failure: The data frame is lost. The sender will initiate
a retransmission after a timeout.

2. Partial failure: The data frame is received correctly,
but the ACK frame is lost. The sender will (uselessly)
initiate a retransmission after a timeout.

3. Success: Both data and ACK frame are received cor-
rectly.

The expected total number of bits sent can be calculated
analytically by applying probability theory to the di↵erent
variables [1].
In multi-hop scenarios there are two potential outcomes:

1. End-to-end failure: After the maximum number of at-
tempts on the link layer a node was still unable to
forward a frame to the next hop.

2. End-to-end failure: The frame arrives at the TCP des-
tination. Partial failures (i.e. less than the maximum
number of retransmissions on the link layer) are pos-
sible.

In experiments Ayadi et al. compared the energy footprint
of two di↵erent TCP maxium segment size choices: MSS =
64 bytes and MSS = 512 bytes. With the former no fragmen-
tation is needed, whereas with the latter MSS the 6LoWPAN
layer divides each segment into 8 frames. Using compression
an IPv6 header can be shrunk to 2 bytes (from its initial 40
bytes) [13]. Their results showed that for a high bit-error
rate it is recommended to use short TCP segments. This is
due to the fact that when a segment is lost (due to the high
error rate) all of its fragments need to be retransmitted from
end to end. If the bit-error rate is rather low it is better to
use larger MSS sizes. This leads to fewer acknowledgement
messages sent which reduces energy consumption. If pack-
ets are fragmented due to a large MSS it is also advisable to
increase the maximum number of link layer retransmissions.
Thusly the number of costly end-to-end retransmissions can
be reduced. On the other side, however, network or node
problems are then not detected as quickly as with fewer re-
transmissions.
When looking at forward error correction they found that an
optimal value for the FEC ratio exists [1]: Below this value
adding redundancy reduces the loss probability leading to
a lower energy consumption. Above this value the redun-
dancy overhead is greater than the expected reduction in
data loss. With a high FEC ratio packets with a large MSS
perform better than with a small MSS (due to the reduction
in transmission errors).
Finally their last finding is that with an increasing number
of hops it is better to use small MSSs. This is due to the fact
that the overall probability of a transmission error increases
with a longer source to destination path.

doi: 10.2313/NET-2011-07-1_11Seminar SN SS2011,
Network Architectures and Services, July 2011

80

5. CONCLUSION
In this paper an overview of the current status of TCP/IP
in WSNs was given. Optimizing TCP/IP in a WSN is a
very active research topic as TCP/IP faces many challenges
before being fully adoptable in a sensor network. Various
proposals exist for di↵erent scenarios. The most promis-
ing seem to be Distributed TCP Caching (DTC) [9] and
TCP Support for Sensor networks (TSS) [4]. Those two ap-
proaches try to make TCP more energy e�cient by tweaking
the caching process, local retransmissions and introducing
additional mechanisms. DTC as well as TSS can reduce the
number of sent TCP segments by up to 70 % in respect to
normal TCP. Fragmentation is also crucial in lossy networks
and should be kept to a minimum when the error rate is high
and the end-to-end path is rather long.
Since TCP/IP is the de-facto networking standard it is un-
doubtful that this protocol suite will be further adapted in
such ways that small sensor nodes can cope with it. It is,
however, unclear how long it will take to make the final push
for TCP/IP adaption in WSNs.

6. REFERENCES
[1] A. Ayadi, P. Maillé, and D. Ros. TCP over low-power

and lossy networks: tuning the segment size to
minimize energy consumption. In New Technologies,
Mobility and Security (NTMS), 2011 4th IFIP
International Conference on, pages 1–5. IEEE.

[2] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz.
Improving TCP/IP performance over wireless
networks. In Proceedings of the 1st annual
international conference on Mobile computing and
networking, pages 2–11. ACM, 1995.

[3] blip authors. blip — Berkeley IP implementation for
low-power networks. http://smote.cs.berkeley.edu:
8000/tracenv/wiki/blip, 2011.

[4] T. Braun, T. Voigt, and A. Dunkels. TCP support for
sensor networks. In Wireless on Demand Network
Systems and Services, 2007. WONS’07. Fourth
Annual Conference on, pages 162–169. IEEE.

[5] T. Braun, T. Voigt, and A. Dunkels. Energy-e�cient
TCP operation in wireless sensor networks. PIK
Journal Special Issue on Sensor Networks,
28(2):93–100, 2005.

[6] S. Deering and R. Hinden. Internet protocol, version 6
(ipv6), 1995.

[7] A. Dunkels. Full TCP/IP for 8-bit architectures. In
Proceedings of the 1st international conference on
Mobile systems, applications and services, pages
85–98. ACM, 2003.

[8] A. Dunkels, J. Alonso, T. Voigt, H. Ritter, and
J. Schiller. Connecting wireless sensornets with
TCP/IP networks. Wired/Wireless Internet
Communications, pages 583–594, 2004.

[9] A. Dunkels, T. Voigt, J. Alonso, and H. Ritter.
Distributed TCP caching for wireless sensor networks.
In Proc. of the Mediterranean Ad Hoc Networking
Workshop (MedHoc-Net). Citeseer, 2004.

[10] K. Fall. A delay-tolerant network architecture for
challenged internets. In Proceedings of the 2003
conference on Applications, technologies, architectures,
and protocols for computer communications, pages
27–34. ACM, 2003.

[11] IEEE Computer Society. 802.15.4 IEEE Standard for
Information technology — Telecommunications and
information exchange between systems — Part 15.4:
Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks (LR-WPANs), 2003.

[12] M. Kuorilehto, J. Suhonen, M. Kohvakka,
M. Hannikainen, and T. Hamalainen. Experimenting
TCP/IP for low-power wireless sensor networks. In
Personal, Indoor and Mobile Radio Communications,
2006 IEEE 17th International Symposium on, pages
1–6. IEEE, 2006.

[13] N. Kushalnagar, G. Montenegro, D. Culler, and
J. Hui. Transmission of IPv6 Packets over IEEE
802.15. 4 Networks. 2007.

[14] N. Kushalnagar, G. Montenegro, C. Schumacher, et al.
6lowpan: Overview, assumptions, problem statement
and goals. draft-ietf-6lowpan-problem-01. txt, IETF
Internet Draft (Work in progress), 2005.

[15] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow.
TCP selective acknowledgment options: RFC 2018.
Internet Request For Comments, 1996.

[16] R. Ponmagal and V. Ramachandran. Link quality
estimated TCP for wireless sensor networks.
International Journal of Recent Trends in
Engineering, 1(1):495–497, 2009.

[17] J. Postel. Internet protocol. RFC 791, IETF,
September 1981.

[18] J. Postel. Transmission control protocol. RFC 793,
IETF, September 1981.

doi: 10.2313/NET-2011-07-1_11Seminar SN SS2011,
Network Architectures and Services, July 2011

81

