
IP-based Communication in Wireless Sensor Network

Christian Fuchs

Betreuer: Dr. Alexander Klein

Seminar Sensorknoten: Betrieb, Netze und Anwendungen SS2011

Lehrstuhl Netzarchitekturen und Netzdienste, Lehrstuhl Betriebssysteme und Systemarchitektur

Fakultät für Informatik, Technische Universität München

Email: fuchsch@in.tum.de

ABSTRACT
IP is the standard communication protocol in the Internet.
Several attempts have been made to port the TCP/IP to
Wireless Sensor Networks, because it would ease data ac-
quisition from external applications. This would make it
possible to integrate applications more easily into existing
networks. On the other hand, IP was initially designed for
non resource constraint systems. This causes a significant
decrease in bandwidth mostly because of its large header
data. This paper will look first at the 6loWPAN specifica-
tion and afterwards at two widespread implementations of
the IP stack for sensor nodes, uIP and BLIP, and compare
their compatibility with other implementations as well as
their impact on the bandwidth in an example setup.

Keywords
IP over 802.15.4,WSN,uIP,BLIP,6loWPAN

1. INTRODUCTION
Handling communication e�ciently and with low energy con-
sumption is one of the most important tasks, when it comes
to the programming of nodes that are to be used in Wireless
Sensor Networks(WSNs). Up to date there are di↵erent ap-
proaches on how to handle communication in such networks,
like protocols specifically designed for the use on resource
constraint nodes. Despite this there are also urges to use
TCP/IP on these nodes to make them directly accessible
via the Internet[9][5][14].
Using IP in Wireless Sensor Networks holds many oppor-
tunities for reasons of direct communication with WSNs
over the Internet as well as remote access to the Sensors’
data. On the other hand, most platforms used in WSNs
are highly resource constraint in terms of memory as well
as computing power. These constraints pose various chal-
lenges when implementing IP on these platforms, because
IP was initially developed for platforms without these con-
straints. Therefore, the standard IP-Stack implementations
used in Linux or Windows can not be directly adapted for
the use in WSNs[7], since they require RAM in order of
some megabytes, an amount that is not available on typi-
cal sensor motes. Also TCP/IP communication consists of
point-to-point flows between arbitrary nodes, whereas most
tra�c in WSNs is for collecting data from the sensors and
sending it to a remote server.
Also most WSNs use IEEE 802.15.4 radio for communication
which only o↵ers a limited bandwidth compared to other
WLAN technologies. Again, IP was not designed with such
constraints in mind leading to IP headers, which seem to be

too large to be e�ciently used in environments with limited
bandwidth. Due to this, the IETF has presented 6loWPAN
in [15] which describes techniques to cut down the large over-
head caused by using IPv6, to enable its usage in the context
of an IEEE 802.15.4 environment.
This leads to di↵erent approaches on how to bring TCP/IP
to WSNs ranging from the use of a proxy server and smaller
versions of the IP protocol to the development of smaller IP
stacks [2].
In the following sections this paper will take a closer look
at two well known implementations of this standard, uIP
which has been created by Adam Dunkels as a part of the
Contiki operating system[7] and BLIP which was created for
TinyOS [5]. The paper will continue in the following way:
Section 2 will give a brief overview of the IEEE 6loWPAN
standard for IPv6 in Wireless Sensor Networks. Section 3
and 4 will discuss the uIP and BLIP implementations in
greater detail. After this there will be some Case Studies
with these protocol stacks in Section 5 and finally section 6
concludes the paper.

2. 6LOWPAN
Since Wireless Sensor Networks consist of mostly battery
powered motes, energy e�ciency is a very important require-
ment for the used hard- and software. Therefore, the IEEE
802.15.4 standard for data transmission in low power wire-

less personal area networks(loWPAN) was developed. Be-
cause typical packets sent in such a network are quite small
and for the reason that most power is consumed by send-
ing packets, this standard proposes a data rate of only 250
kbit/s. While this is perfectly satisfactory for specifically
designed protocols, which add only a small overhead to the
transmission, it issues a challenge to the use of IP in WSNs.
Especially IPv6 would consume most of the available band-
width just with its headers, if used unmodified. To face
this challenge 6loWPAN, an adaptation layer between the
link and network layer, was introduced by the IETF in [15].
Its main contribution is the introduction of an alternative
header format which supports header compression as well as
fragmentation of IPv6 packets into multiple link-level frames
[12].
6loWPAN consists of several distinct headers, each serving a
di↵erent purpose. The headers can be stacked on each other,
making it possible to skip the unneeded headers. The dis-
patch header indicates which network layer protocol is used,
like plain IPv6 or 6loWPAN. The fragmentation header is
used if a single IPv6 packet is too large to be sent over ra-
dio in one step. It contains information on how the packet

doi: 10.2313/NET-2011-07-1_10Seminar SN SS2011,
Network Architectures and Services, July 2011

67

was fragmented and should be reassembled. And the mesh
addressing header serves for layer 2 routing.

2.1 Header Compression
The most important step to e�ciently use IPv6 in WSNs is
to cut down the transmission overhead caused by the seem-
ingly large IPv6 headers. The standard IPv6 header without
any extension headers is 40 bytes large. The largest part of
this header are the source and destination addresses, hav-
ing 16 bytes each. To reduce header sizes either stateless or
stateful compression techniques could be used. Using states
takes advantage of the fact that certain fields do not change
their value in a communication flow between two senders[13].
On the other hand, stateless header compression uses com-
mon values of certain fields and information that is stored
redundantly across layers to reduce header sizes[15]. Hui and
Culler explained in [12] that compression techniques using
states are not very e↵ective in loWPANs, since it only pays
of in long transmission flows, which typically do not occur in
loWPANs. This is the major reason why 6loWPAN uses the
stateless header compression format HC1. To denote what
kind of header is used for the particular packet, an 1 byte
large dispatch header is inserted before the layer-3 header.
One major technique is the use of common values in certain
fields[19]. For example, in most packets only TCP,UDP and
ICMP are used as upper layer protocols. With this knowl-
edge it is possible to reduce the size of the next header field
to only two bits. To manage cases where fields do not carry
such a common value, there are reserved values to denote
an uncompressed field in the header[12].
To further lessen the header size, 6loWPAN exploits the fact
that some information carried in the header can be derived
from fields in other layers. For example, the payload length
field or the interface identifiers can be determined by the
fields in the 802.15.4 header. The only field which must al-
ways be carried inline is the 8-bit hops-left field[15], to avoid
packets circulating in the network infinitely.
With the exploitation of all these redundancies and common
values the IPv6 header can be cut down to 2 bytes only, 1
byte denoting the common values in the original header and
1 byte for the hops-left field. Additionally, an 1 byte large
dispatch header is added before the IP header, to denote
if the following header is a compressed IP header or native
an IPv6 header. If, however, some of the fields cannot be
compressed they must be carried inline. For example, when
the interface identifier cannot be derived from the layer-2
address, it must be carried inline. In these cases the com-
pressed header would be bigger than 2 bytes. Figure 1 shows
the HC1 header with inline IP fields.
By eliding the length field 6loWPAN can also compress UDP
to 4 bytes, if source and destination port have a predefined
well known value.

2.2 Fragmentation
IPv6 also relies on a Maximum Transmission Unit(MTU)
of at least 1280 Bytes, which means that packets smaller
than this can be sent without fragmentation. On the other
hand, the maximum length of 802.15.4 frames is 127 bytes
due to the 7-bit length field in the 802.15.4 frame header.
This means there has to be a mechanism for fragmentation
on link-layer transparent to higher layers.
As described in [15] 6loWPAN achieves this by splitting up
the packets in several frames. Each of these frames has an

additional fragmentation header, containing the actual size
of the packet, an unique identifier, which is the same for all
frames that belong to the same packet, and an o↵set field,
denoting which part of the packet the frame contains. To
further reduce the size of the header, the first frame elides
the o↵set field[12]. This results in an additional overhead
of 4 Bytes for the first frame respectively 5 bytes for each
following frame.

2.3 Routing
Another issue that has to be considered when using IPv6 in
a loWPAN, is that sometimes link layer routing is required.
Normally, routing would be done on the network layer(layer
3). Since the HC1 format for header compression is opti-
mized for link-local communication[12], it is desirable to do
the routing on layer 2.
To solve this issue 6loWPAN has a concept named mesh
under. It adds the mesh addressing header, which simply
holds the packets source and destination address as well as
an hops-left-counter that is decreased by every forwarding
node[15]. With this it is possible to route packets over the
link layer transparently to the upper layers. In this case the
network topology looks like all nodes are in a single broad-
cast domain to the network layer. Hence, only link-local ad-
dresses are needed for communication within the network.
This header adds another 5 bytes of overhead.

2.4 Compressed Header Sizes
6loWPAN compresses the IPv6 header to only 2 bytes. On
the other side it adds only an 1-2 byte dispatch header. This
means an IPv6 packet using UDP as a transport protocol,
which would add 44 bytes overhead to the raw payload, if
transmitted uncompressed, is compressed by 6loWPAN to
only 7 bytes(1 dispatch + 2 compressed IPv6 + 4 UDP)[12].
Even if the other headers for fragmentation and mesh ad-
dressing are added, the overhead would not exceed 17 bytes,
which means still half of the overhead size can be saved.
Figure 1 shows a frame with mesh routing, fragmentation
and header compression.

3. UIP
uIP was developed by Adam Dunkels[7] along with the Con-
tiki operating system for tiny sensor networks[8] in 2003. It
was one of the first fully working IP stacks for resource con-
straint systems. In the first version uIP already supported
all mandatory IPv4 features as requested by [17], and omits
only some of the lesser used features like IP options, thus
being fully compatible to any other IP-Stack like the BSD
stack implementation[7]. In 2008 uIP has been extended to
support IPv6 as well[10]. Up to now uIP is the smallest
implementation of a complete IP stack.

3.1 Attributes
In order to cut down memory consumption to an absolute
minimum, the uIP implementation uses a shared bu↵er for
incoming and outgoing packets. This bu↵er is only big
enough to hold one packet of maximum size. uIP holds
one packet in the bu↵er at a time and overwrites the bu↵er
every time a new packet arrives, but not before the appli-
cation has processed the data. As most radio or ethernet

doi: 10.2313/NET-2011-07-1_10Seminar SN SS2011,
Network Architectures and Services, July 2011

68

Figure 1: 802.15.4 frame with all 6loWPAN headers references [12]

controllers have internal memory to bu↵er about 5 packets,
this behavior will not lead to packet loss, if more than one
packet arrives, before the application is able to process the
data[7]. Another consequence is that outgoing packets may
be overwritten right after being sent. Furthermore, uIP does
absolutely no dynamic memory allocation.
uIP consists of an implementation of IP as a network layer
and UDP or TCP as a transport layer. The link layer is not
specified and can be chosen independently. It is possible to
use 6loWPAN as well as any other implementation.
uIP is fully compatible with other TCP/IP implementations
since it supports all features that are needed for host-to-host
communication as required by RFC 1122[3]. Additionally,
uIP can reassemble only one fragmented packet at a time,
for the reason that reassembling has to be done in a separate
bu↵er. On the other hand, not all features for interfacing
between the application and the network stack are imple-
mented. As a result of this uIP does not support soft error
reporting or dynamically configurable type-of-service bits[7].
For routing uIP uses the RPL protocol explained in the next
section.
For ICMP just the minimal subset of operations, that are
mandatory for interoperability, is supported. Meaning that
uIP is solely capable of sending echo reply messages, by
swapping the source and destination address[7] of incom-
ing echo request messages.
As a transport layer uIP supports both TCP and UDP.
Like any other part of the uIP stack the TCP implemen-
tation is done to ensure full interoperability, while it omits
all features, which are not mandatory, to save memory and
quicken the network operations. Listening and connecting
ports are supported as well as sending data works normally.
But there is no support for a sliding window mechanism,
because as mentioned above the packet bu↵er can only hold
a single packet at a time. Additionally, as no sent packets
are bu↵ered and any incoming packet would overwrite the
packet bu↵er, retransmission has to be done manually. This
means that TCP reports to the application, if a packet was
not acknowledged correctly and the application then has to
ensure the packet is retransmitted. Congestion Control is
elided as it is not needed, too[7].

3.2 Routing
uIP uses the Routing Protocol for Low Power and Lossy
Networks(RPL) [1]. This protocol is especially designed
for large networks of resource constraint nodes managed by
a few central supernodes and optimized for multipoint-to-
point tra�c[4]. RPL is a distance vector protocol that uses
a destination orientated directed acyclic graph(DODAG) for
routing. One of the supernodes serves as the root of the
DODAG and all other nodes build up multipoint-to-point

routes to this root. Every node in the DODAG has a rank,
denoting its distance from the root node, and a set of par-
ent nodes, which are closer to the root. One of this parents
serves as the preferred parent.
To create the DODAG each node that is part of the DODAG
sends DODAG information objects(DIO) via link-local mul-
ticast containing its own rank. A new node, which has re-
ceived some of this messages, can determine its own rank,
which has to be greater than its parents rank, and starts
itself sending DIOs. To avoid count-to-infinity problems a
node that is part of the DODAG can only lower its rank if
it receives a DIO from a parent with a lower rank.
After the DODAG has been formed, messages can be sent
to the root by forwarding to the nodes preferred parent.
To send messages from the root to nodes in the networks
DODAG advertisement objects(DAO) are sent towards the
root, while every node that forwards the object adds its ad-
dress. With this the root node has a source route to the
node, that issued the DAO, once it arrives at the root. For
node to node communication messages are sent first to the
root from where the messages are sent towards the destina-
tion nodes via the source routes.

3.3 Usage
Since uIP is designed for the use together with Contiki as
an operating system, there are two ways of programming
applications that use uIP for communication.
The first way to program with uIP is the event driven in-
terface, which was initially the only way to program with
uIP. Here the application is invoked every time an event on
the IP stack occurs, like incoming data or a new connection
request[7]. After processing the incoming data the program
has to hand control back to the uIP stack, so that outgo-
ing packets can be sent and new arriving packets can be
processed. This means that the application has to be built
like a state-machine, testing on each incoming event what
caused the event to be posted. For the purpose of testing
which event has occurred the API defines functions such as
uip newdata(), uip acked() or uip connected(). On every
new event each of this functions has to be called to deter-
mine which is the appropriate action to be taken. While this
is perfectly su�cient for small programs, it would cause too
much overhead in more complex applications. These would
be easier to develop and more e�cient with an API that al-
lows sequential code. Listing 1 shows a short example code
using the event driven API.

void example () {
example s tate s t a t e ;
i f (u ip connected ()) {

uip send (”Welcome\n” , 9) ;
}

doi: 10.2313/NET-2011-07-1_10Seminar SN SS2011,
Network Architectures and Services, July 2011

69

i f (u ip acked ()) {
i f (s t a t e == WELCOMESENT) {

s t a t e = WELCOMEACKED;
}

}
i f (uip newdata ()) {

uip send (”ok ” , 2) ;
}

}

Listing 1: example program with event driven API
references[1]

For this purpose protosockets, which can be thought of as
lightweight versions of the BSD sockets, were provided[1].
With this API the networking code can be written sequen-
tially, similar to networking applications on a PC. Like with
normal sockets every connection is associated with an pro-
tosocket and the protosocket has to be handed over to the
underlying operating system every time an action like send-
ing or receiving data has to be carried out. In opposite to
the event driven API, where control must be handed back to
the stack after processing a packet, protosockets also support
blocking calls for receiving data, which is shown in listing 2.

PT THREAD example () {
PSOCK BEGIN(s) ;
PSOCKREADTO(s , ’ \n ’) ;
i f (strcmp (inputbu f f e r , ”HI”) != 0) {
PSOCK CLOSE(s) ;
PSOCK EXIT(s) ;

}
PSOCK SEND(s , ”ok ” , 2) ;
PSOCK CLOSE(s) ;
PSOCK EXIT(s) ;

}

Listing 2: example program with protosocket API
references[1]

3.4 Memory Footprint
uIP is highly scalable at compile time. The programmer
can for example decide on the number of maximum simul-
taneously open connections as well as the amount of RAM
reserved for the packet bu↵er. Furthermore, support for
TCP, UDP and IPv6 can be deactivated, if not needed, to
save further memory.
In a minimal configuration it is possible to run uIP with only
200 bytes of RAM but with this configuration throughput is
very low and it is usable only in simple environments that
send only very small packets. A configuration that is usable
in a more generic scenario would consume about 2 kbytes of
RAM. The stack implementation needs about 5.1 kbytes of
ROM[7].

4. BLIP
BLIP stands for Berkley low power IP and is a IPv6 stack
developed for TinyOS by David Culler[11]. It was first de-
veloped under the name b6loWPAN and later renamed to
BLIP, because BLIP was at this time already more than just
an implementation of 6loWPAN but instead a fully working

IP stack. As a part of TinyOS it was written in nesC, an en-
hancement to the language C especially written for TinyOS.
There are implementations of BLIP for micaZ, TelosB and
iMotes[16].

4.1 Attributes
Unlike uIP BLIP implements not only network and trans-
port layer, but it also uses b6loWPAN as an adaptation layer
between link and network layer. Therefore, BLIP must al-
ways use IPv6 for communication. BLIP also supports mesh
under routing, explained in section 2.3, meaning that rout-
ing is done transparently by the adaptation layer[18].
The network layer uses a routing protocol called HYDRO,
which is explained in the following section. Additionally,
the network layer is able to do neighbor discovery, using
ICMPv6, which is fully supported, as opposed to uIP, which
only supports echo messages. Also BLIP can configure link-
local addresses and global addresses, either via stateless auto-
configuration or via DHCPv6, if a router is reachable[18][11].
The network layer is additionally responsible for retransmit-
ting packets that get lost over a single hop. This enables the
stack to reroute the packet if the network topology changed
during transmission.
BLIP defines basic Quality of Service(QoS) classes. The
most important are to indicate high priority data and con-
trary to denote latency-tolerant packets, which can be bu↵ered
and sent in large bulks of packets for energy e�ciency[11].
As a transport protocol it currently supports UDP, but there
is already a prototype for TCP[16].

4.2 Routing
BLIP uses the HYDRO routing protocol[6]. It was designed
to combine the support for many-to-one tra�c, which is
needed for data collection, and one-to-one tra�c, needed
to propagate commands in the network. For the HYDRO
protocol there are two kinds of communication points. The
sensor nodes, which acquire data and send them to a remote
server or communicate in the network, and at least one bor-
der router, which connects the network to the outside world.
The border router has to store an overview over the complete
network and should install routes onto the nodes. This net-
work overview is created from topology reports it gets from
the nodes. To hold tra�c for creating and maintaining the
network overview as little as possible, the topology reports
are sent piggybacked with the sensor data. Such a topology
report holds information about the node’s neighbors and the
estimated transfer costs to this neighbor. However, the con-
struction of this global network topology is complicated, due
to the fact that the sensor nodes have not enough memory
to hold a complete list of their neighbors. This means that
the created network topology does not represent the com-
plete network with all its links, but only a subset, which is
nevertheless su�cient for routing.
The border router stores this subset of the complete net-
work topology in the so called link state database. If there
is more than one border router, they have to be connected
in order to share their particular link state database. From
this database a best e↵ort route between every two nodes in
the network can be derived. This routes are installed in the
corresponding node to improve point-to-point communica-
tion.
The nodes on the other hand are to constraint in terms of
memory to hold a complete routing table. Instead they use

doi: 10.2313/NET-2011-07-1_10Seminar SN SS2011,
Network Architectures and Services, July 2011

70

a distributed DAG(directed acyclic graph) to provide them
with a reliable route to the next border router. In this dis-
tributed DAG every node holds the address of a node nearer
to the border router. In practice more than one route to the
border router is stored to improve reliability[6]. The nodes
also maintain flow tables, which hold the installed routes
from the border router.
The nodes can forward packets in 3 steps:

1. If the packet contains a valid source route it is used

2. If there is an entry in the flow table for the desired
destination, the previously installed route is used

3. If neither a source route is provided nor a matching
entry in the flow table exists, the packet is redirected
to the border router, from where it is sent to the correct
node

4.3 Usage
The BLIP API is closely related to programming with sock-
ets on UNIX systems. The structs containing the address
are defined like in Linux:

struct in6 addr
{

union
{
u in t 8 t u6 addr8 [1 6] ;
u i n t 16 t u6 addr16 [8] ;
u i n t 32 t u6 addr32 [4] ;
} in6 u ;

#define s6 addr in6 u . u6 addr8
#define s6 addr16 in6 u . u6 addr16
#define s6 addr32 in6 u . u6 addr32

} ;

struct sockaddr in6 {
u in t16 t s i n 6 po r t ;
struct in6 addr s in6 addr ;

} ;

Listing 3: structs for IPv6 addresses and port

For programming with UDP BLIP provides the three func-
tions. error t bind(uint16 t port) is for binding a socket
to a specific port and the functions error t send to() and
error t recv from() serve for sending and receiving data.
The TCP implementation is still experimental and cannot
accept more than one connection. The API is similar to
BSD sockets, with functions to actively connect to an port
and passively listening for incoming connection requests.

4.4 Memory Footprint
Together with the HYDRO routing protocol BLIP needs
about 2.5 kilobytes of RAM and 9.4 kilobytes of ROM[6][11].
Especially in code size BLIP is significantly bigger than
uIP. This is because BLIP also contains the underlying link
layer, whereas uIP only implements the network and trans-
port layer. Furthermore, BLIP fully supports ICMPv6 and
DHCPv6. Table 1 briefly compares the features supported
by uIP and BLIP and table 2 shows the memory usage of
both stacks.

uIP BLIP
OS Contiki TinyOS
IP IPv4 and IPv6 IPv6 only

TCP YES Prototype
UDP YES YES
ICMP echo only YES

Mesh Under NO YES
Route over NO YES

Table 1: Comparison between the main features of
uIP and BLIP references [18]

uIP BLIP
RAM 200 byte - 2 kbyte 1 kbyte
ROM 5.1 kbyte 9.4 kbyte

Table 2: Memory footprint of uIP and BLIP

5. EVALUATION
This section will show the usage of IP in two simple network
environments, to examine its impact on throughput and the
e↵ectively available bandwidth. For the evaluation we as-
sume typical IEEE 802.15.4 standard parameters, namely a
bandwidth of 250 kbit/s and all frames should be of maxi-
mum frame length, hence 127 byte. In the following sections
plain IPv6 without any compression is compared against
compression according to the 6loWPAN standard. UDP is
used as transport protocol.
The following formula is used to compute the maximal achiev-
able data rates: (1 � headersize

127byte) · 250 kbit
s . The term 1 �

headersize
127byte is the percentage of the frame that can be used

for the payload. Multiplied with the available maximum
data rate this gives us the data rate for payload transfers.

5.1 Single Hop
The first network layout simulates a link-local transmission
from node 1 to node 2. Figure 2 depicts this scenario. Plain
IPv6 together with UDP headers add 48 bytes of overhead to
every transferred frame. This equals to 37.7 % of the whole
frame. Thus the total available data rate is reduced by 34.6
% leaving a total of 155 kbit/s for payload transfer. Opposed

Figure 2: First setup with just two nodes

to this transmission with 6loWPAN adds only 7 bytes of
overhead as discussed in section 2.4. This is only 5.5 % of the
total frame length, meaning that a data rate of 236 kbit/s is
still available for payload transmission. Considering a packet
larger than 127 bytes, the packet must be fragmented, which
adds the 5 bytes fragmentation header to each frame. With
this there are 226 kbit/s left for payload transmission.
These values show that using 6loWPAN pays o↵ even in
a single hop transfer, since uncompressed IPv6 consumes
nearly one third of the available frame length.

doi: 10.2313/NET-2011-07-1_10Seminar SN SS2011,
Network Architectures and Services, July 2011

71

5.2 Multi Hop
In this scenario we consider 4 nodes in a string connection,
as shown in figure 3, and we assume a message is sent from
node 1 to node 4 over two hops(nodes 2 and 3). In this setup
the node’s bandwidth is not only consumed by them-selves
but also by the next node, which blocks the communication
medium while it transmits the message to the next hop. Fur-
thermore, interference plays a role as two nodes may not be
close enough to directly communicate with each other, but
one node sending may still cause interference on the other
node. This leads to another limitation of the e↵ectively us-
able bandwidth.

Figure 3: Message being sent over 3 Hops

Normal Interference Radius

Here we assume that transmission and interference radius
are the same and a node only blocks the communication
channel for the nodes it can directly communicate with. In
this scenario the bandwidth for the initial sending node is
halved, because for every packet, the node sends, the next
hop also has to transmit the packet. Therefore, the node
can e↵ectively use only half of its original bandwidth, hence
125 kbit/s.
At the nodes that serve as hops, but not as communication
endpoints, each packet consumes three times the bandwidth
that one transmission of the packet would cost. This is be-
cause at first the packet must be transferred from the pre-
vious hop to the node. After that the node has to forward
the packet and at last the next hop is also retransmitting
the packet, blocking the communication channel for another
length of the packet.
Using IPv6 and UDP without any compression would con-
sume 37.7 % of the total frame length. Leaving a data rate
of only 78 kbit/s for the payload. With 6loWPAN 118 kbit/s
remain. A fragmented packet consumes another 5 bytes for
overhead as well as a packet that is routed on the link layer.
In this case the data rate e↵ectively available for payload
transmission is 113 kbit/s. If both cases, fragmentation and
mesh under routing, apply the needed headers consume 13.3
% if the frame length, leaving a data rate of 108 kbit/s.

Double Interference Radius

In a more realistic scenario interference would not only oc-
cur between nodes, which could directly communicate with
each other, but have a far wider influential radius. For this

example setup we consider the sphere of interference to be
twice as big as the radius in which actual communication is
possible. As shown in figure 4 this would mean that node 1
would not only block the communication channel for node 2
but also for node 3, despite there is no direct communication
possible between node 1 and 3. In this scenario the initially

Figure 4: Example for doubled interference radius

sending node has only one third of its original bandwidth for
transmission available, because the communication channel
is not only blocked from the next node sending, but also
from the node hereafter. This means the node has only 83
kbit/s of e↵ective usable bandwidth.
Here plain IPv6 would leave only 51 kbit/s for payload trans-
mission. 6loWPAN on the other hand leaves 78 kbit/s for
not fragmented packets, 75kbit/s for fragmented packets and
71 kbit/s for fragmented packets that are routed mesh un-
der.
The di↵erent data rates achievable with and without 6loW-
PAN are summarized in table 3.

6. CONCLUSION
Since the usage of IP in WSNs and their integration into the
Internet brings many advantages, a lot of e↵ort has been put
to overcome the challenges that using IP in WSNs poses.
The 6loWPAN standard made it feasible to use IPv6 in low
throughput environments by compressing the relatively large
overhead of IPv6 to a few bytes.
Another issue was that most IP stacks were too big to be
used on resource constraint nodes with less than 100 kilo-
bytes of RAM. Here uIP and BLIP have shown that it is
possible to implement a complete IP stack, which uses only
a few kilobytes of RAM and ROM, while being fully inter-
operable with other IP stacks.
Since tra�c in WSNs happens to be mostly multipoint-to-
point tra�c, in opposite to classic networks, where most
tra�c is point-to-point, there is still a need for specialized
routing protocols. Recently there has been some work in this
area, especially by the IETF which has brought up RPL to
create a standard routing protocol for WSNs.

7. REFERENCES
[1] http://www.sics.se/contiki/.
[2] J. A. H. R. Adam Dunkels, Thiemo Voigt and

J. Schiller. Connecting wireless sensornets with tcp/ip
networks. In Proceedings of the Second International

Conference on Wired/Wireless Internet

Communications (WWIC2004), 2004.
[3] R. T. Braden. Rfc 1122: Requirements for internet

hosts — communication layers, Oct. 1989. Status:
STANDARD.

doi: 10.2313/NET-2011-07-1_10Seminar SN SS2011,
Network Architectures and Services, July 2011

72

Single Hop Multiple Hops Multiple Hops Double Interference Radius
IPv6 155 kbit/s 78 kbit/s 51 kbit/s

6loWPAN 236 kbit/s 118 kbit/s 78 kbit/s
6loWPAN & Fragmentation 226 kbit/s 113 kbit/s 75 kbit/s
6loWPAN & Mesh Under / 113 kbit/s 75 kbit/s

6loWPAN & Mesh Under & Fragmentation / 108 kbit/s 71 kbit/s

Table 3: Comparison of data rates in di↵erent environments

[4] T. Clausen and U. Herberg. Multipoint-to-point and
broadcast in rpl. In Proc. 13th Int Network-Based

Information Systems (NBiS) Conf, pages 493–498,
2010.

[5] P. A. C. da Silva Neves and J. J. P. C. Rodrigues.
Internet protocol over wireless sensor networks, from
myth to reality. Journal of Communications, 5(3),
March 2010.

[6] S. Dawson-Haggerty, A. Tavakoli, and D. Culler.
Hydro: A hybrid routing protocol for low-power and
lossy networks. In Proc. First IEEE Int Smart Grid

Communications (SmartGridComm) Conf, pages
268–273, 2010.

[7] A. Dunkels. Full tcp/ip for 8-bit architectures. In
Proceedings of The First International Conference on

Mobile Systems, Applications, and Services, May 2003.
[8] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a

lightweight and flexible operating system for tiny
networked sensors. In First IEEE Workshop on

Embedded Networked Sensors, November 2004.
[9] A. Dunkels, T. Voigt, and J. Alonso. Making tcp/ip

viable for wireless sensor networks. In Proceedings of

the First European Workshop on Wireless Sensor

Networks (EWSN2004), January 2004.
[10] M. Durvy, J. Abeillé, P. Wetterwald, C. O’Flynn,

B. Leverett, E. Gnoske, M. Vidales, G. Mulligan,
N. Tsiftes, N. Finne, and A. Dunkels. Making sensor
networks ipv6 ready. In Proceedings of the Sixth ACM

Conference on Networked Embedded Sensor Systems

(ACM SenSys 2008), poster session, Raleigh, North
Carolina, USA, Nov. 2008. Best poster award.

[11] J. W. Hui, A. R. Corporation, and D. E. Culler. Ip is
dead, long live ip for wireless sensor networks. In The

6th International Conference on Embedded Networked

Sensor Systems (SENSYS’08), pages 15–28. ACM,
2008.

[12] J. W. Hui and D. E. Culler. Extending ip to
low-power, wireless personal area networks. Internet
Computing, IEEE, 12(4):37–45, July-Aug. 2008.

[13] V. Jacobson. Rfc 1144: Compressing tcp/ip headers
for low-speed serial links, Feb. 1990. Status:
PROPOSED STANDARD.

[14] W. F. Karl Mayer. Ip-enabled wireless sensor networks
and their integration into the internet. In May, editor,
Proceedings of the first international conference on

Integrated internet ad hoc and sensor networks, 2006.
[15] G. Montenegro, N. Kushalnagar, J. Hui, and

D. Culler. Transmission of ipv6 packets over ieee
802.15.4 networks. RFC 4944 (Proposed Standard),
Sept. 2007.

[16] K. Nithin. Blip: An implementation of 6lowpan in
tinyos, November 2010.

[17] J. Postel. Rfc 791: Internet protocol, Sept. 1981.
Status: STANDARD.

[18] F. B. Ricardo Silva, Jorge S Silva. Evaluating 6lowpan
implementations in wsns. In CRC ’09: Proceedings of

the 9

ˆ

A l Confer

˜

A lncia sobre Redes de Computadores,
2009.

[19] C. Westphal and R. Koodli. Stateless ip header
compression. In Proc. IEEE Int. Conf.

Communications ICC 2005, volume 5, pages
3236–3241, 2005.

doi: 10.2313/NET-2011-07-1_10Seminar SN SS2011,
Network Architectures and Services, July 2011

73

