
Dissertation
Network Architectures
and Services
NET 2011-06-1

Strategic Resource Management
Decisions in Computer Networks

Marc Fouquet

Network Architectures and Services
Department of Computer Science
Technische Universität München

TECHNISCHE UNIVERSITÄT MÜNCHEN
Institut für Informatik

Lehrstuhl für Netzarchitekturen und Netzdienste

Strategic Resource Management
Decisions in Computer Networks

Marc Fouquet

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Univer-
sität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. rer. nat. Felix Brandt
Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Georg Carle

2. Univ.-Prof. Dr. rer. nat. Gabrijela Dreo Rodosek
Universität der Bundeswehr München

Die Dissertation wurde am 20.12.2010 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 03.05.2011 angenommen.

Cataloging-in-Publication Data
Marc Fouquet
Strategic Resource Management Decisions in Computer Networks
Dissertation, June 2011
Network Architectures and Services, Department of Computer Science
Technische Universität München

ISBN 3-937201-21-1
ISSN 1868-2634 (print)
ISSN 1868-2642 (electronic)
Network Architectures and Services NET-2011-06-1
Series Editor: Georg Carle, Technische Universität München, Germany
c© 2011, Technische Universität München, Germany

Abstract

Resource management problems play an important role in technology and economy.
In general, resource management tries to use an enterprise’s resources as efficiently
as possible to maximize a (potentially financial) benefit. This thesis addresses two
specific resource management problems in computer networks.

Resource Management during Denial-of-Service Attacks

During a denial-of-service (DoS) attack, an attacker exhausts the resources of one or
multiple Internet services by sending large amounts of requests, making the service
unavailable. Besides filtering of attack traffic, overprovisioning is a common defense
against this attack: The victim tries to have enough resources available to stay
operational despite the DoS attack. Traditional resource management techniques
like load balancing are not sufficient here, as an attacker does not just create load,
but acts strategically to maximize damage to the victim.
Modern computer networks are complex meshes of services that depend on each
other. Back end services like DNS or databases are often required to provide the
front end services that users are interested in. Such dependencies may create capacity
bottlenecks that can be exploited by a DoS attacker to cause more damage with less
effort.
In this thesis, we develop methods to uncover such vulnerabilities and to help fix
them. To do this, we investigate game-theoretic models of the interaction between
attacker and defender. We designed and implemented a network simulator to quickly
simulate denial-of-service attacks and use it together with optimization algorithms
to find good strategies for attacker and defender. We further show that virtualization
of services gives the defender an advantage, as he is able to re-configure his network
during an attack. Since the attacker can observe the new network configuration only
indirectly, he needs time to adapt his attack strategy.
We also investigate a novel defense mechanism against denial-of-service attacks based
on a layer of proxy servers between the clients and the server. This defense can be
set up quickly even after the attack has started.
Further we present a feasibility study of a worm, which performs denial-of-service
attacks against cellular mobile networks. We show that overloading individual cells
with user data is a serious threat if the attacker coordinates it correctly. A possible
countermeasure, is a resource management system that moves users to less-loaded
cells.

Resource Management in mobile Networks

Mobile Networks today consist of different access technologies. Besides traditional
cellular networks like GSM and UMTS, modern mobile networks often incorporate

IV

wireless LAN hotspots. Today, usually the mobile phone or the user himself decides,
which access technology to use. However, this is not optimal as only local knowled-
ge is available for the decision. Network operators want to decide based on many
parameters like radio conditions, network load and the user’s demands, which user
should be served by which access network. This could optimize the usage of the
air-interface, which is a scarce resource.

For these complex decisions, measurement data has to be collected at the base
stations and evaluated in the operator’s core network. Unfortunately, the backhaul
links that have to transport these mesaurements are another scarce resource.

In this thesis we introduce a publish/subscribe system which can efficiently collect
and transport measurement data in mobile networks. Our system reduces data vo-
lume on the backhaul and allows flexible configuration of measurement jobs. We
present simulation results that evaluate different measurement strategies. Our simu-
lations also show the trade-off between the volume of the measurement data and the
quality of the resulting handover-decisions.

Zusammenfassung

Ressourcenmanagement spielt in Technik und Wirtschaft eine wichtige Rolle. All-
gemein versucht man dabei, die Ressourcen eines Unternehmens so effizient wie
möglich zu nutzen, um einen (typischerweise finanziellen) Gewinn zu maximieren.
In dieser Arbeit werden zwei spezielle Ressoucenmanagement-Probleme untersucht,
die für Computernetzwerke relevant sind.

Ressourcenmanagement während Denial-of-Service Angriffen

Bei einem Denial-of-Service (DoS) Angriff versucht ein Angreifer, die Ressourcen
von einem oder mehreren Internetdiensten aufzubrauchen, indem er große Mengen
von Anfragen stellt. Neben dem Filtern des Angriffsverkehrs ist das so genannte
Overprovisioning eine verbreitete Gegenmaßnahme. Das Opfer versucht dabei, ge-
nug Ressourcen zur Verfügung zu haben, um seine Dienste trotz des Angriffs funk-
tionsfähig zu halten. Traditionelles Lastmanagement ist hierbei nicht ausreichend,
da der Angreifer keine gutartige Last erzeugt, sondern strategisch agiert, um den
Schaden zu maximieren.
Moderne Computernetze bestehen aus komplex miteinander verwobenen Diensten,
mit vielfältigen Abhängigkeiten. Häufig werden Hilfsdienste wie DNS oder Daten-
bankserver benötigt, um die Benutzerdienste bereitzustellen. Solche Abhängigkeiten
können Engpässe bei den Dienstkapazitäten erzeugen, die ein DoS-Angreifer aus-
nutzen kann, um mit wenig Aufwand viel Schaden anzurichten.
In dieser Arbeit entwickeln wir Methoden, um solche potenziellen Schwachstellen zu
erkennen und dabei zu helfen, sie zu beheben. Dazu untersuchen wir spieltheoreti-
sche Modelle der Interaktion zwischen Angreifer und Verteidiger. Außerdem nutzen
wir einen speziell zur Simulation von DoS-Angriffen entwickelten Netzwerksimulator
in Verbindung mit Optimierungsalgorithmen, um gute Angreifer- und Verteidiger-
strategien zu finden. Wir zeigen außerdem, dass die neue Technik der Virtualisierung
einem Verteidiger während eines Angriffes Vorteile bringt, da sie es erlaubt, das Netz
im laufenden Betrieb umzukonfigurieren. Der Angreifer kann diese Änderungen nur
indirekt beobachten und benötigt daher Zeit, um seinen Angriff anzupassen.
Darüber hinaus untersuchen wir einen neuen Verteidigungsmechanismus, der auf
Proxy-Servern basiert, die die Server von den Benutzern abschirmen. Diese Technik
hat den Vorteil, dass sie auch während eines laufenden Angriffes schnell eingerichtet
und aktiviert werden kann.
Außerdem untersuchen wir die potenzielle Bedrohung durch einen hypotethischen
Wurm, der DoS-Angriffe gegen die Zellen eines Mobilfunknetzes durchführt. Wir
zeigen, dass das Überladen einzelner Zellen mit Nutzerdaten eine ernsthafte Gefahr
darstellt, sofern der Wurm entsprechend koordiniert wird. Eine Instanz, die Ressour-
cenmanagement betreibt, indem sie Benutzer in weniger belastete Zellen verschiebt,
ist eine mögliche Gegenmaßnahme.

VI

Ressourcenmanagement in Mobilfunknetzen

Mobilfunknetze bestehen heute häufig aus unterschiedlichen Zugangstechnologien.
Neben traditionellen Zugangsnetzen wie GSM und UMTS gehören den Netzbetrei-
bern häufig auch WLAN-Hotspots. Heute wird die Entscheidung über die aktive
Netzkonnektivität meistens vom Endgerät oder vom Benutzer getroffen. Dies ist
allerdings nicht optimal, da hierbei nur lokales Wissen zur Verfügung steht. Netz-
betreiber würden gerne basierend auf vielen Parametern, wie Funkbedingungen,
Netzauslastung und Nutzungsverhalten, entscheiden, welcher Benutzer von welcher
Zugangstechnologie versorgt werden soll. Dies könnte die Nutzung der Luftschnitt-
stelle optimieren.

Für solch komplexe Entscheidungen müssen Messdaten an den Basisstationen gesam-
melt und in das Kernnetz des Netzbetreibers transportiert werden. Leider sind die
so genannten Backhaul-Links, die diese Daten transportieren müssen, eine weitere
knappe Ressource.

In dieser Arbeit führen wir ein Publish/Subscribe System ein, das effizient Daten
in Mobilfunknetzen sammeln und transportieren kann. Unser System reduziert das
Datenvolumen auf den Backhaul-Links und lässt sich sehr flexibel konfigurieren.
Wir evaluieren verschiedene Messstrategien und zeigen Simulationsergebnisse, die
veranschaulichen, wie sich die Menge der Messdaten auf die Qualität der Handover-
Entscheidungen auswirkt.

Acknowledgements

I believe, a doctoral thesis is not possible without the support of many people.

Ralph Holz and Liane Int-Veen both read the whole thesis and provided lots of
valuable feedback. Christian Hoene and Heiko Niedermayer also shaped the thesis
as it exists today. Prof. Georg Carle supervised this work and gave me the initial
input upon which my ideas developed.

I also want to thank my parents and my girlfriend Renata for always supporting me,
even in times when I was too busy with writing and could not care for them in the
way they deserve it.

Many more people who contributed to this thesis are mentioned in the “Acknowl-
edgements” sections of the individual Chapters.

VIII

Contents

1 Introduction 1

1.1 Denial-of-Service Attacks . 2

1.2 Ressource Management in Future Mobile Networks 3

1.3 Structure of this Thesis . 4

I Fundamentals and Background 7

2 Denial-of-Service Attacks 9

2.1 Notable DoS attacks . 10

2.1.1 Early Denial-of-Service Attacks 10

2.1.2 Botnet Attacks as a Business Model 10

2.1.3 Denial-of-Service Attacks related to online Gaming 11

2.1.4 Denial-of-Service Attacks due to political Conflicts 11

2.1.5 Denial-of-Service Attacks related to Wikileaks 12

2.1.6 Summary . 13

2.2 Taxonomy of DoS Attacks . 13

2.2.1 Attacked Resources . 13

2.2.2 Semantic vs. Brute-Force Attacks 14

2.2.3 Source Address . 15

2.2.4 Attack Rate Dynamics . 16

2.2.5 DoS or DDoS? . 16

2.3 DoS Defense Mechanisms . 16

2.3.1 Overprovisioning . 16

2.3.2 Filtering . 17

2.3.3 Traceback and Pushback . 18

2.3.4 Attack Detection . 18

2.3.5 Overlays and Proxies . 18

X Contents

2.3.6 Proof-of-work and Captchas 19

2.3.7 Capability-based Approaches 20

2.3.8 DoS Resistant Protocol Design 20

2.4 Evaluation of DoS Defenses . 20

2.5 Conclusions . 22

3 Service Dependencies 23

3.1 Types of Service Dependencies . 24

3.2 Detecting Service Dependencies . 25

3.3 Conclusions . 25

4 Game Theory 27

4.1 Introduction . 27

4.1.1 What is a Game? . 28

4.1.2 Nash Equilibria in Pure Strategies 29

4.1.3 Nash Equilibria in Mixed Strategies 29

4.1.4 Dynamic Games . 30

4.2 The Colonel Blotto Game . 31

4.2.1 Scenario . 31

4.2.1.1 Equilibrium Example 31

4.2.2 Blotto as a Zero-Sum Game 32

4.2.3 Non-existence of pure-strategy Nash Equilibria 32

4.2.4 Variants of the Colonel Blotto Game 32

4.2.5 Consequences for Denial-of-Service Investigations 33

4.3 Conclusions . 33

II DoS Attacks as a Problem of Strategic Resource Allocation 35

5 Overview 37

5.1 Scenario and Actors: Introducing Attacker, Defender and Good Client 38

5.2 Resources and the Relative Strength of Attacker and Defender 39

5.3 Outline of Part II . 39

Contents XI

6 The Flones Network Simulation Environment 41

6.1 Related Work . 42

6.2 Development Goals . 42

6.3 Design . 42

6.3.1 Message Aggregates . 43

6.3.2 Queue . 43

6.3.3 Service . 45

6.3.4 Scheduler . 46

6.3.5 Node . 48

6.4 Additional Features . 49

6.5 Correctness and Performance . 50

6.6 Conclusions . 51

6.7 Acknowledgements . 51

7 Attacks against a Static Defender 53

7.1 Related Work . 54

7.2 A DoS Model based on the Colonel Blotto Game 54

7.2.1 Resources and Payoff . 54

7.2.2 Strategies of Attacker and Defender 55

7.2.3 Experimental Verification . 56

7.3 Multiple Services per Server . 58

7.4 Finding DoS-Weaknesses using Flones 60

7.5 Simulation Results . 62

7.6 Hardening the Network: The Defender Side 65

7.7 Practical Considerations . 72

7.8 Conclusions . 73

7.9 Outlook . 73

7.10 Acknowledgements . 74

8 Attacks against a Dynamic Defender 75

8.1 Related Work . 76

8.2 Motivating Experiments . 77

8.3 Scenario and Assumptions . 78

8.3.1 Information . 79

8.3.2 Dynamics . 80

XII Contents

8.3.3 Scheduling . 81
8.4 Strategies . 81

8.4.1 Simple Strategies . 81
8.4.2 Heuristic Strategies . 82
8.4.3 Advanced Strategies . 82

8.5 Results . 83
8.6 Conclusions . 87
8.7 Acknowledgements . 88

9 Protection of Webservers using Proxies 89
9.1 Related Work . 89
9.2 Scope . 90
9.3 Approach . 90

9.3.1 Using the System to defend against a DoS Attack 91
9.3.2 Processing a Client’s Request 91

9.4 Analysis of the System . 93
9.4.1 Replay Attacks . 93
9.4.2 Evaluation of lifetime-based Replay-Protection 97
9.4.3 Protection from Replay Attacks 99
9.4.4 Content of the encrypted Parameter 99
9.4.5 DoS Weakness of the Scheme 101

9.5 Simulation . 102
9.6 Testbed Experiments . 107

9.6.1 Practical Aspects . 109
9.7 Conclusions . 110
9.8 Acknowledgements . 111

10 Mobile Worms 113
10.1 Related Work . 114
10.2 Threat Analysis . 114

10.2.1 Direct Threats for the User 114
10.2.2 DoS Attacks on the Infrastructure 115

10.3 Simulations . 116
10.3.1 Attacker Strategy . 118
10.3.2 Simulation Results . 119
10.3.3 Load Balancing . 121

10.4 Countermeasures . 122
10.5 Conclusions . 122
10.6 Acknowledgements . 123

Contents XIII

III Metering and Resource Management in Future Mobile Networks125

11 Overview 127

11.1 Problem Statement . 127
11.2 Analysis . 128

11.2.1 Granularity Periods . 129
11.3 Requirements . 129

12 GMI — Concepts and Implementation 131

12.1 Related Work . 132
12.2 Design . 133

12.2.1 GMI Event-Service: Overview and Signalling 133
12.2.2 Positioning of the MMCEs . 134
12.2.3 Late Duplication . 135
12.2.4 Addressing . 136
12.2.5 GMI Subject-Tree . 136
12.2.6 Measurements and Events . 137
12.2.7 Tracking mobile Sources of Data 138
12.2.8 Generic Measurements . 139
12.2.9 Interface towards the Clients 139

12.3 Implementation . 139
12.4 Data Accuracy of Periodic Measurements and Triggers 141
12.5 Conclusions . 142
12.6 Acknowledgements . 143

13 Using the GMI for Resource Management in Future Mobile Net-
works 145

13.1 Related Work . 145
13.2 Setup for N-RM Experiments . 146

13.2.1 The User and Radio Network Simulator 146
13.2.1.1 Map and Radio Access Networks: 147
13.2.1.2 Users: . 147

13.2.2 The MMCEs . 148
13.2.3 N-RM . 149

13.2.3.1 Triggers and threshold values 150
13.2.4 Simulation Flow . 151

XIV Contents

13.3 Results of N-RM Experiments . 152

13.4 Data Volume . 154

13.5 Relation to Mobile Botnets . 156

13.6 Conclusions . 156

13.7 Acknowledgements . 157

IV Conclusion 159

14 Conclusions 161

14.1 Denial-of-Service Attacks and Defenses 161

14.2 Data Collection for Heterogeneous Handover Decisions 165

Appendices 169

A Flones 1 169

A.1 Reasoning vs. Simulation . 169

A.2 Basic Concepts . 170

A.3 Resources . 171

A.4 Knowing the Previous state . 172

Bibliography i

1. Introduction

Resource management and resource allocation problems are common in many dif-
ferent contexts. In business economics, resources like equipment and human skill
are assigned to projects for maximizing revenue. In investment, financial resources
are allocated. In recent years it has become clear, that the resources that nature
provides on earth are not endless and humanity has to make efforts to conserve
them.
In computer science, resource allocation often refers to scheduling decisions. Re-
sources like computing cycles of a CPU, memory or network bandwidth are always
limited and in modern multitasking operating systems, different processes compete
for these resources. In networked environments, such processes on a machine often
act as servers, that answer requests from other machines.
Service providers who offer services — for example on the public Internet — need to
make sure that their servers have sufficient resources to process the incoming requests
from their customers. Large websites usually use server farms and load-balancers to
assure this.
During a denial-of-service attack, an attacker tries to exhaust the resources that are
available for a service by sending large numbers of requests. The attacker’s goal is to
make the service unavailable, it is overwhelmed with requests and can therefore no
longer answer the requests of legitimate users. The service provider again can use
resource management techniques like load balancing — either in advance or during
the attack — to mitigate the attack’s consequences. The difference of these scenarios
to normal load-balancing is the presence of a strategic attacker who will exploit
vulnerabilities. Part I and Part II of this thesis focus on resource management
during denial-of-service attacks.
In mobile networks, the air-interface between the mobile device and the base station
is the most scarce resource. Sophisticated algorithms care for scheduling decisions
that not only depend on the desired Quality-of-Service and the current resource

2 1. Introduction

usage, but also on the radio conditions. Further, the backhaul-links that connect
the base stations to the core network are another scarce resource — mobile net-
work operators currently face the problem that the backhaul can not keep up with
the increased data rates that technologies like HSPA and LTE offer. Introducing
handovers between different radio access technologies — i.e. UMTS and WLAN —
can improve the situation on the air interface but comes at the cost of requiring
measurement data which has to be transmitted over the backhaul links. In Part III
of this thesis, this trade-off is investigated.

1.1 Denial-of-Service Attacks
Denial-of-service attackers try to make services unavailable. The most common
technique to achieve this is resource exhaustion. The attacker sends so many requests
to the attacked systems that they do no longer respond to legitimate requests.
Such attacks first received public attention February 2000. A 15-yer old Canadian
highschool student who called himself “Mafiaboy” attacked major new economy
websites like Amazon, eBay and Yahoo, causing severe financial losses for these
companies.
Today denial-of-service attacks are common on the Internet and seen as a major
threat by Internet service providers ([1]). For example, several large-scale attacks
with political backgrounds were conducted during the last few years. The victims
of these attacks often use the term “cyberwar”, expressing that they regard these
attacks as being equivalent to real-world attacks on their sovereignty.
Denial-of-service attacks can be seen as a resource management problem. If the
owner of the attacked network distributes his resources in the right way, he can serve
more requests and therefore make his systems more resilient against DoS attacks.
In this aspect, DoS attacks are similar to the management of legitimate load, i.e. by
using load balancers.
The difference to normal resource management is the presence of a strategic attacker
who will exploit any weaknesses in the attacked network that he becomes aware of.
For example an attacker may target a company’s DNS servers instead of the web
servers — this attack strategy would bypass the load balancing mechanisms and
have a similar effect as a direct attack since the provision of a web service depends
on working domain name resolution.
Also seen from the attacker’s side, DoS attacks are a resource allocation problem.
Even if the attacker has a large botnet of virus-infected PCs at his disposal, his
resources are not infinite. The right resource allocation may be the deciding factor
when the attacker and the victim are “equally strong”1.
The possibility of using the same bots for spam distribution or phishing instead of
denial-of-service creates costs of opportunity. Sending unnecessarily large amounts
of traffic to a victim is also undesirable for the attacker as it increases the chance of
the bots being discovered.
The goal of the denial-of-service part of this thesis is, to develop new methods to
defend networks. Looking at the problem as strategic resource allocation, we can
increase the effectiveness of the defender’s resource usage under DoS conditions. The
defender can use the new techniques to find and fix vulnerable spots in his network.

1What equal strength means in this case will be defined in Section 5.2.

1.2. Ressource Management in Future Mobile Networks 3

If services are placed in virtual machines, the defender can even re-configure his
network during the attack.

To make sure that the investigated methods are in fact effective, we also have to
look at the resource management decisions of the attacker. Often we will assume
the attack to be carried out in a smart way, by an attacker who is aware of the
defender’s new possibilities. Sometimes we will even assume that the attacker has full
knowledge of the attacked network, an assumption that would simply be unrealistic
in reality. This is done because there is no point in developing a defense against an
attacker that does not act optimally. When optimizing the defense against a weak
attacker model, the result might have vulnerabilities that a real attacker can exploit.
Our goal is not to simulate realistic attackers, but to find an strong defense — and
to do this, strong attackers are necessary.

The final chapter of the denial-of-service part will study the possibility of denial-
of-service attacks against mobile networks originating from mobile botnets. This
scenario is unusual since until today, worms on mobile phones have not yet been
very successful. Currently malware on mobile phones exists, but it rather spies on
the user or tries to achieve a direct financial benefit for the attacker. DoS attacks
by mobile botnets have not been discussed yet and if they happened today, mobile
network operators would probably be as unprepared as Amazon and eBay were in
February 2000.

1.2 Ressource Management in Future Mobile Networks

Today’s mobile networks provide almost ubiquitous connectivity. In cellular network
like the Global System for Mobile Communications (GSM) and the Universal Mobile
Telecommunications System (UMTS), sophisticated algorithms decide which user
should be served by which cell of the network.

Handovers between different access technologies, i.e. between UMTS and WLAN
are a problem though. The decision how to serve a user best can be made locally
close to the cells or even by the mobile device, but this is sub-optimal as only local
information is available. It is advantageous when global knowledge about network
load, radio conditions and user locations is available to assign the users optimally.

Often this knowledge is not available in today’s mobile networks. For example per-
formance monitoring of UMTS cells still relies on uploading files by FTP every few
hours, there are no realtime capabilities. Also, transmitting additional measurement
data from the cells to the core network creates load on the backhaul links between
the cells and the core network and therefore introduces new costs.

With the introduction of the Long-Term Evolution (LTE) radio access technology,
the data rates on the air-interface are increasing rapidly. The backhaul links can
barely keep up with the new load and will be a major bottleneck during the next
few years. Mobile network operators find it desirable to use the air-interface in
more efficient ways by optimizing handovers, but they are not willing to sacrifice
bandwidth on the backhaul for the required monitoring.

A goal of this thesis is the investigation of the trade-off between gains on the air-
interface by using global knowledge for handovers and the required extra bandwidth
on the backhaul for the necessary measurement data. We will further develop an
efficient system for transmitting measurement data on the backhaul.

4 1. Introduction

1.3 Structure of this Thesis
This thesis is structured as follows:

Part I provides some background information. Chapter 2 gives an introduction to
denial-of-service attacks and the corresponding defense mechanisms. It also includes
a brief history of notable attacks that happened on the Internet. Chapter 3 shows,
how dependencies between services can be exploited by a DoS-attacker. Game theory
is introduced in Chapter 4; the science of strategic interaction gives some insight
into the attacker’s and defender’s options.

Part II models the interaction of attacker and defender during denial-of-service
attacks. First, the Flones Network Simulator, a tool that was developed during the
research for this thesis, is described in Chapter 6. In the following Chapter 7, Flones
is used to harden networks against attacks by finding potential weaknesses which
an attacker could expoit. Chapter 8 extends this work by allowing the defender to
re-configure his network during the attack using virtualization.

Victims of denial-of-service attacks are often small businesses or even private per-
sons. In many cases they are completely unprepared when an attack starts and use
web-applications that are not designed to scale when adding additional servers. In
Chapter 9 we investigate a proxy mechanism to defend such networks.

Finally Chapter 10 discusses denial-of-service threats which are caused by possible
future botnets on mobile phones. A feasibility study for one specific attack scenario
is conducted. Resource management by moving users to other cells is one possible
countermeasure.

Part III continues at this point a different resource allocation problem. The goal
is to improve the assignment of mobile devices to the cells of different radio access
technologies, i.e. LTE, UMTS and WLAN, in future mobile networks. Collecting
measurement data and transporting it from the base stations to the operators’ core
networks is necessary for this task.

In Chapter 12 a publish/subscribe system is developed, which can efficiently trans-
port measurement data from the mobile base stations to the core network and there-
fore enables central decisions for heterogeneous handovers. In the following Chap-
ter 13, a mobile network is simulated to determine the benefit and the costs of this
mobility management solution.

Investigations in this thesis use different methodologies. If possible, models of the
scenarios are solved analytically. However in most cases this is not feasible as the
situations are too complex, therefore different simulations are the most common
analysis method in this thesis. Where applicable and possible, models were verified
using testbed experiments. An overview of the different Chapters’ contents is given
in Table 1.1.

1.3. Structure of this Thesis 5

Chapter Content Software Analytical Simulation Testbed
Description Model Results Experiments

Part II: DoS Attacks as a Strategic Resource Allocation Problem
Chapter 6
Description of the Flones
Network Simulator

X

Chapter 7
Detecting DoS-weaknesses
in Networks

X X (X)

Chapter 8
Dynamic Defense using
Virtual Machines

X (X)

Chapter 9
A DoS Protection Scheme
for Web Servers

X X X (X)

Chapter 10
Study on DoS-attacks by
Mobile Botnets

X

Part III: Metering and Resource Management in Future Mobile Networks
Chapter 12
Description of the Generic
Metering Infrastructure

X (X)

Chapter 13
Simulation of GMI-based
Handover Management

(X) X

Table 1.1: Overview of the thesis chapters.

6 1. Introduction

Part I

Fundamentals and Background

2. Denial-of-Service Attacks

CERT CC, a computer security coordination center run by the US department of
defense and Carnegie Mellon University, defines a denial of service attack (DoS
attack) as an explicit attempt by attackers to prevent legitimate users of a service
from using that service1.
Generally DoS attacks are carried out over a network, the attacker has no physical
access to the services. To render the service unusable, the attacker sends attack
traffic which either overloads the destination (flooding attack) or uses protocol or
implementation weaknesses to affect the destination (semantic attack) — or com-
bines both approaches. The difference between semantic and flooding attacks is
discussed in more detail in Section 2.2.2.
An example for a purely semantic attack is the classic “ping of death”2, an implemen-
tation vulnerability that was present in many operating systems in the late 1990s.
It allowed to crash a machine with a single fragmented ICMP packet that exceeded
the maximum allowed IP packet size and therefore caused a buffer overflow. Similar
vulnerabilities sometimes still appear today3 and have to be handled by security-
aware programming, timely publication and installation of security patches and also
by firewalling unnecessary network access.
In this thesis we rather investigate “flooding” DoS attacks like the attacks on Ama-
zon, eBay and other large web companies that took place in 2000 and 2001.
A history of such DoS attack will be presented in Section 2.1. Section 2.2 provides
an overview of different types of DoS attacks, while Section 2.3 describes defense
mechanisms. As novel DoS defenses are developed within this thesis, Section 2.4
focuses on how to evaluate them. Section 2.5 concludes this Chapter.

1http://www.cert.org/tech_tips/denial_of_service.html
2http://insecure.org/sploits/ping-o-death.html
3http://www.h-online.com/security/news/item/One-false-ping-and-Solaris-is-in-a-panic-732224.

html

http://www.cert.org/tech_tips/denial_of_service.html
http://insecure.org/sploits/ping-o-death.html
http://www.h-online.com/security/news/item/One-false-ping-and-Solaris-is-in-a-panic-732224.html
http://www.h-online.com/security/news/item/One-false-ping-and-Solaris-is-in-a-panic-732224.html

10 2. Denial-of-Service Attacks

2.1 Notable DoS attacks
The 1997 PhD. Thesis of John D. Howard [2] appears to be the first scientific source
that describes DoS attacks on the Internet. He predicted that DoS attacks might
become a serious problem in the future, though they were not during the time of
his study. He names the “Internet Worm” of 1988 which exhausted the resources
of many network nodes as the first Internet DoS attack. According to CERT data,
there were 143 reported DoS incidents in the time between 1989 and 1995, 63 of those
belonged into the “process degradation” category that is closest to the definition of
flooding attacks. All DoS attacks following the “Internet Worm” until 1995 were far
less serious.

2.1.1 Early Denial-of-Service Attacks

In the late 1990s, DoS tools like Stacheldraht and Tribe Flood Network were de-
veloped4. Such tools allowed a 15 year old Canadian Student who called himself
“Mafiaboy” to successfully attack various major websites, i.e. Amazon, Dell, Ebay
and CNN in the year 20005,6. These DoS attacks received a huge amount of public
attention and can even today be regarded as the most spectacular attacks of this
type.

In 2002 the DNS root servers were hit by a coordinated DoS attack7 which affected
all 13 servers but made only some of them unavailable. The DNS is a critical
infrastructure and the DNS root servers can be considered the closest thing to a
“single point of failure” of the Internet. They were attacked various times since
then, however they are well-defended (see [3]). Until today, all attacks on the DNS
root servers have had only very limited effects8.

In the year 2003 computers infected with the W32/Blaster worm9 launched a TCP
SYN-Flood attack against http://windowsupdate.com. This attack can be consid-
ered a predecessor of modern botnet attacks, as it was performed by a large number
of infected machines. However there was no direct control by a botmaster, but
the attack’s target and time were hard-coded in the worm. Even though the worm
spread widely, the attack’s effect was limited, as windowsupdate.com contained only
a redirect to the real windows update server.

2.1.2 Botnet Attacks as a Business Model

Also starting in 2003 cyber criminals discovered DoS attacks as a business model.
Web sites like the Malta-based online betting site “betfair” were attacked. The
attackers intended to threaten the website owners to pay protection money for not
attacking them10,11.

In the following years, modern botnets appeared. Windows-hosts were infected by
worms that turned the PCs into “zombies” (sometimes also called “drones”) and
connected them to a central command and control server. The so-called “bots” on

4http://www.cert.org/archive/pdf/DoS_trends.pdf
5http://archives.cnn.com/2001/TECH/internet/02/08/ddos.anniversary.idg/index.html
6http://www.fbi.gov/libref/factsfigure/cybercrimes.htm
7http://c.root-servers.org/october21.txt
8http://www.heise.de/netze/meldung/Grossangriff-auf-DNS-Rootserver-143116.html (German)
9http://www.cert.org/advisories/CA-2003-20.html

10http://www.information-age.com/channels/security-and-continuity/it-case-studies/
284366/how-to-survive-a-denial-of-service-attack.html

11http://www.csoonline.com/read/050105/extortion.html

http://windowsupdate.com
windowsupdate.com
http://www.cert.org/archive/pdf/DoS_trends.pdf
http://archives.cnn.com/2001/TECH/internet/02/08/ddos.anniversary.idg/index.html
http://www.fbi.gov/libref/factsfigure/cybercrimes.htm
http://c.root-servers.org/october21.txt
http://www.heise.de/netze/meldung/Grossangriff-auf-DNS-Rootserver-143116.html
http://www.cert.org/advisories/CA-2003-20.html
http://www.information-age.com/channels/security-and-continuity/it-case-studies/284366/how-to-survive-a-denial-of-service-attack.html
http://www.information-age.com/channels/security-and-continuity/it-case-studies/284366/how-to-survive-a-denial-of-service-attack.html
http://www.csoonline.com/read/050105/extortion.html

2.1. Notable DoS attacks 11

the infected PCs can be used for various purposes like sending unsolicited email,
stealing private data from the infected system, and also for denial-of-service attacks
of magnitudes that had been impossible before.
But botnet operators are usually thinking economically. If a denial-of-service attack
brings no financial benefit, it creates costs of opportunity, since valuable resources
(the bots) could have been used for more profitable actions — like sending Viagra
Spam12. Further, public attention is bad for business, people might update their
virus scanner and detect the bot if news about a botnet were in the mass media.
These might be two reasons why botnet-attacks on highly visible targets are rare. In
terms of resources a botnet with 9 million hosts13 should be capable of successfully
attacking almost any target on the Internet.

2.1.3 Denial-of-Service Attacks related to online Gaming

In 2009 there were news in mainstream media about private persons who used Mi-
crosoft’s X-BOX live service and became victims to DoS attacks. It became known
that botnet operators rented resources and know-how to players who lost games for
taking revenge. However, already in 2001 and 2002 when the authors of [4] investi-
gated DoS backscatter on the Internet, they found out that about 60% of the DoS
victims in their data were dial-up and broadband users, often running IRC clients
or multiplayer game clients like Blizzard’s battle.net. They concluded:

This experiment suggests that the majority of victims of the attacks we
observed are home users and small businesses rather than larger corpora-
tions.

In early 2010 the video game publisher Ubisoft was attacked. At the time, Ubisoft
had just introduced a new copy protection system for their games which required all
players to have a permanent connection to Ubisoft’s DRM servers while playing. This
new method of protecting games from being illegally copied was highly controversial
and intensively discussed in the media. When the first few games with the new copy
protection were released, many customers were unable to play because of connection
problems to the DRM servers. Ubisoft claims that this was caused by DoS attacks
on their servers14. This was a major marketing disaster for the company.
Late 2010, the servers of the independent game project Minecraft15 were attacked,
while the game was still in an early stage of development. It is suspected that the
attack was carried out by players that were not satisfied with the game’s development
pace, wanting to force new features — which in turn means that the attackers
were probably teen agers with limited technical knowledge (script kiddies). As the
attack was a SYN flood against which good defense techniques exist nowadays, full
connectivity could be restored quickly.

2.1.4 Denial-of-Service Attacks due to political Conflicts

In recent years there were several DoS incidents that were related to political con-
flicts. In 2007 the country of Estonia came under serious attacks16 while having

12http://news.softpedia.com/news/Security-Expert-Analyzes-the-Botnet-Based-Economy-117634.
shtml

13http://www.f-secure.com/weblog/archives/00001584.html
14http://www.eurogamer.net/articles/ubisoft-drm-was-attacked-at-weekend
15http://www.minecraft.net/
16http://asert.arbornetworks.com/2007/05/estonian-ddos-attacks-a-summary-to-date/

http://news.softpedia.com/news/Security-Expert-Analyzes-the-Botnet-Based-Economy-117634.shtml
http://news.softpedia.com/news/Security-Expert-Analyzes-the-Botnet-Based-Economy-117634.shtml
http://www.f-secure.com/weblog/archives/00001584.html
http://www.eurogamer.net/articles/ubisoft-drm-was-attacked-at-weekend
http://www.minecraft.net/
http://asert.arbornetworks.com/2007/05/estonian-ddos-attacks-a-summary-to-date/

12 2. Denial-of-Service Attacks

political differences with the Russian government, in 2008 the same happened to
Georgia17. Both victims claim that these attacks were acts of “cyberwar” by the
Russian government while Russia denies any involvement. In 2009 South Korean
and U.S. websites were victims to DoS attacks that were suspected to originate in
North Korea18. In 2010 web-sites of Burmese exiles were attacked19.

2.1.5 Denial-of-Service Attacks related to Wikileaks

In December 2010, the website Wikileaks was attacked several times after publishing
secret correspondence between the US state department and US embassies in foreign
countries. This problem could be solved since several hundred volunteers set up
mirrors of the Wikileaks website.

In the second week of December, Wikileaks-sympathizers organized themselves via
Facebook, Twitter and other web sites, to attack organizations that had recently
acted against Wikileaks. Targets were companies who had stopped providing hosting
services for Wikileaks (EveryDNS, Amazon) and financial companies who had frozen
accounts with donations towards Wikileaks (the swiss bank Postfinance, Master
Card, Visa and Paypal)20.

The websites of Master Card, VISA and Postfinance were unavailable for multiple
hours, apparently 720 attacking computers were enough to DoS www.mastercard.
com. Nothing is known about the hardware configurations and access bandwidths
of the attackers, but it can be guessed that many of the attacking nodes are home
users with DSL lines.

Paypal was apparently attacked, but without significant effects. According to chat
between attackers, they considered Amazon to be too strong to be attacked with
720 drones. As more volunteers participated, an attack on amazon.com was also
scheduled, but could only slow the site down.

The attack utilized a number of different tools, including a Python-variant of the
Slowloris attack tool, which is discussed in Section 2.2.2.

Especially interesting is the tool LOIC 21, an acronym for “Low Orbit Ion Cannon”,
a user-friendly program for window which allows to manually attack a target, or to
set the program into a “hivemind”-mode, in which it connects to an IRC channel
to receive orders. This way, the users voluntarily make their computers part of a
botnet for participating in the DoS attack.

17http://www.wired.com/dangerroom/2008/08/georgia-under-o/
18http://www.technewsworld.com/story/Suspicion-Centers-on-N-Korea-in-DoS-Blitz\

-but-No-Smoking-Gun-67539.html
19http://www.irrawaddy.org/article.php?art_id=19558
20http://www.spiegel.de/netzwelt/web/0,1518,733520,00.html
21http://sourceforge.net/projects/loic/
A quick test of LOIC 1.0.3 and the variant IRC-LOIC 1.1.1.14 (https://github.com/NewEraCracker/

LOIC) against an Apache web server in a closed network revealed LOIC to be rather primitive. The tool
can use three different attacks: UDP, TCP and HTTP. When selecting UDP or TCP, a number of sender
threads is created that repeatedly send a user-defined text string — with UDP the text is written once
into each packet, with TCP it is continuously written into the stream socket.

The HTTP mode did not appear to do anything with LOIC 1.0.3. Using IRC-LOIC 1.1.1.14, each thread
opened a TCP connection and sent minimal HTTP-requests with only GET and Host: lines.

In all cases the target of the attack was not noticeably affected by an attack from a single machine (while
with Slowloris, a single attacker can make an Apache web server unavailable). Also the attack requests
have common properties that clearly distinguish them from legitimate traffic, which allows for filtering.

Generally, the software quality especially of LOIC 1.0.3 appears rather poor, the program sometimes did
not stop attacks when the “stop” button was clicked and crashed several times during the test.

www.mastercard.com
www.mastercard.com
amazon.com
http://www.wired.com/dangerroom/2008/08/georgia-under-o/
http://www.technewsworld.com/story/Suspicion-Centers-on-N-Korea-in-DoS-Blitz\-but-No-Smoking-Gun-67539.html
http://www.technewsworld.com/story/Suspicion-Centers-on-N-Korea-in-DoS-Blitz\-but-No-Smoking-Gun-67539.html
http://www.irrawaddy.org/article.php?art_id=19558
http://www.spiegel.de/netzwelt/web/0,1518,733520,00.html
http://sourceforge.net/projects/loic/
https://github.com/NewEraCracker/LOIC
https://github.com/NewEraCracker/LOIC

2.2. Taxonomy of DoS Attacks 13

Another interesting fact is that the IRC servers that should coordinate the DoS
attackers were themselves under DoS at certain times.

2.1.6 Summary

All these examples show that DoS attacks are still a major issue in Internet secu-
rity. This is also supported by the 2009 Arbor Networks Infrastructure Security
report ([1]), in which network operators named DoS attacks as the most significant
anticipated operational threat for 2010.

This report reveals that DoS attacks are still frequent. Unfortunately the questioning
methodology of Arbor networks makes it impossible to estimate interesting values
like the average bandwidth of an attack. Among the asked ISPs, the largest observed
DoS attack had a data rate of 49 gigabits per second, but most DoS attacks are far
weaker.

2.2 Taxonomy of DoS Attacks

A good overview of DoS attack mechanisms is given in [5]. In this section only
those distinguishing features of DoS attacks are discussed that are relevant for the
following chapters.

2.2.1 Attacked Resources

A repeating theme of this work will be resource usage by denial-of-service attacks.
All considered attacks share the property that they try to exhaust some resource at
the victim.

Resources in this sense are:

• Bandwidth of a link in the network.

• Physical processing resources in some network host or router, i.e. memory
(RAM, hard disk), CPU or I/O bandwidth.

• Limits due to software constraints (which might however be based on physical
hardware constraints).
An example of this category are “half-open TCP connections” that are created
when a TCP SYN packet arrives. The number of such connections is limited
— partially because of physical memory constraints but also because on the
software side, the table that keeps track of such connections is too small.

We have to consider that an attack might involve multiple resources. For example
a server might be running several services, some of which are CPU-intensive calcu-
lations while others require I/O bandwidth. The attacker will then have the option
to focus his attack on a single service or to spread it among the services.

These victim-side resources are set in relation to the attacker’s resources in Sec-
tion 5.2.

14 2. Denial-of-Service Attacks

2.2.2 Semantic vs. Brute-Force Attacks

As already discussed in the introduction to this chapter there are two flavors of
denial-of-service attacks.

A Flooding Attack / Brute-Force Attack is a DoS attack that tries to exhaust a ser-
vice’s resources like processing power or link bandwidth by sending massive mounts
of attack traffic to this service. The easiest example for flooding attacks is a simple
UDP flood which consists of packets that are just designed to overload the network
links.

On the other hand,a Semantic Attack consists of packets which have a semantic
meaning to the destination. There is an almost endless amount of variants of se-
mantic attacks, ranging from single packets that crash a router because of implemen-
tation weaknesses to requests that cause a server to perform a resource-consuming
database search.

As pointed out in [5], many attacks do not fully fit into one of these two categories.
Sending large amounts of requests to a server, each of which causes resource-intensive
calculations is clearly a mix of both. Even a TCP SYN-Flood can be considered a
semantic attack as it forces the destination to reserve resources.

Pure semantic attacks that exploit buffer overflow vulnerabilities are not considered
in this work. All attacks that are in-scope need to have at least some flooding
characteristic.

It is beneficial to distinguish finer categories of flooding attacks to describe the
different attack vectors that the DoS defense mechanisms in the following sections
will have to prove against:

1. Pure Flooding attacks do not require a connection setup. Every packet is
independent of the others, there is no greater context. In this sense classic
UDP and ICMP floods are “Layer 3 Flooding Attacks”. These attacks do
not specifically target protocol vulnerabilities but flood the target’s network
connection.

2. Attacks on TCP and IP exploit the specific semantics of these protocols. The
SYN flood and attacks with fragmented packets belong to this type.

3. Attacks on Layer 7 exploit weaknesses in the application protocols. Exploiting
a weakness on Layer 7 in many cases requires an established Layer 4 connection.
Therefore the attacker has to behave according to the protocol specification of
the Layer 4 protocol (TCP) at least during the connection setup. This also
means that the attacker has to keep state at least for a limited time and that
he can not use spoofed IP source addresses.
An example is the so-called “Slowloris”-attack22, a weakness in many HTTP
servers regarding partial HTTP requests. When the attacker sends a part of
an HTTP request, the web server already reserves a some memory to be able
to process it quickly later on. Therefore sending larger numbers of such partial
requests can make a web server unavailable. This attack is highly effective even
at low data rates.

22http://ha.ckers.org/slowloris/

http://ha.ckers.org/slowloris/

2.2. Taxonomy of DoS Attacks 15

4. Attacks “above” Layer 7 again do not exploit protocol specifics. They are (at
least initially) completely legitimate-looking requests that cause the server to
process them normally. The number of requests (i.e. sent by many botnet-
drones) and possibly also the choice of target tasks (i.e. requesting expensive
searches instead of simple static web pages) make the attack destructive.
This attack requires the attacker to follow the application protocol at least
until the victim performs the resource intensive tasks that it should be tricked
into doing. But as soon as it is advantageous, the attacker can deviate, e.g. to
save the effort of having to close the connection.

In the Arbor Networks Worldwide Infrastructure Security Report of 2009 [1], Inter-
net Service Providers were asked “what attack vector was employed for the largest
attack they observed over the past 12 months ”.
The responses were:

• 45% Flood-Based (e.g., UDP, ICMP) [Corresponding to our Category 1]

• 23% Protocol-Based (e.g., RST, SYN, Frag) [Corresponding to our Category
2]

• 26% Application-Based (e.g., URL, GET, DNS, SQL) [Corresponding to our
Categories 3 and 4] . As the most common targets, participants named DNS,
SSH and HTTP.

• 6% other

This shows that all of these categories are a significant threat and worth inves-
tigating. According to the report, there is a shift towards the more economical
Application Layer attacks. However pure flooding attacks have not become obso-
lete.

2.2.3 Source Address

The taxonomy in [5] distinguishes between spoofed and legitimate source IP ad-
dresses.
Spoofed IP addresses only allow for category 1 and 2 attacks in the above cate-
gorization. Given enough defender resources compared to the attacker resources,
defense against these attacks is relatively easy by placing a layer of proxies between
the clients and the actual web servers (compare Chapter 9). Such proxies require
a complete 3-way TCP handshake before forwarding anything to the servers and
therefore block any spoofed traffic.
The possibility of IP spoofing enables reflector attacks. With such attacks the at-
tacker sends request packets to some other network node using the victim’s IP ad-
dress as the source. Therefore the reply to the original packet is sent to the victim.
If the reply is larger than the request, the attack is also amplified. There are variants
of reflector attacks that use broadcast or multicast for the original request packet to
trigger responses from multiple reflectors which further amplifies the attack.
According to Arbor Networks [1], even today IP spoofing is possible with most ISPs.
The largest DoS attacks in terms of bandwidth are reflector attacks. Amplification
can exceed a factor of 1:76.

16 2. Denial-of-Service Attacks

2.2.4 Attack Rate Dynamics

The DoS taxonomy [5] also categorizes attacks by attack rate dynamics. Some DoS
attacks apply strategies like a slow attack start or interchanging attacks from one
of multiple sources to avoid detection.
This discussion is not relevant for most of this work, as we do not try to detect
anomalies. However one interesting point should be considered. Attack rate dynam-
ics usually refers to the amount of traffic sent, in terms of packet quantity or number
of higher-layer requests. However, with attacks that take place above Layer 7, the
type of request becomes interesting as well.
Displaying static web pages is not resources intensive, however often web sites include
extended functionalities like a full-text search that require costly database queries.
An attacker would want to open persistent HTTP 1.1 connections to the server and
then continuously send expensive requests. Legitimate customers would probably
send a mixture of many cheap and few expensive requests. Such a situation can
be used by the defender to detect clients that are behaving strangely. To avoid
detection and countermeasures, the attacker would be forced to change his attack
strategy to look similar to a legitimate client.
In Chapter 8 of this thesis attacker and defender will constantly change their strate-
gies. However changes by the attacker do not have the goal of avoiding detection,
but of optimizing the attack.

2.2.5 DoS or DDoS?

Generally most work regarding DoS attacks distinguishes between denial-of-service
by a single traffic source and distibuted-denial-of-service (DDoS) attacks, where
traffic originates at multiple sources. As botnets are common on today’s Internet,
we generally assume that the attacker has multiple systems at his disposal, but we
will aggregate them back to a single attacker node when this is possible without loss
of generality. As this work does not try to detect control traffic and worm spreading,
the organization of the back end infrastructure is not relevant for most of this work
(with the exception of Chapter 10).
We generally assume that the attacker has a certain amount of resources for his
attack and that the number of actual drones is small enough do make it feasible to
keep a list of their (real) IP addresses in memory if necessary. This is still realistic
for a few thousand attacking systems while larger attacks are probably hopeless to
defend against without having extreme amounts of resources.

2.3 DoS Defense Mechanisms
In the related work [5] a taxonomy of DoS defense mechanisms is provided. This
taxonomy is not used for the discussion of related work here as most defense mech-
anisms were published later than the taxonomy, so some do not fit very well.

2.3.1 Overprovisioning

As DoS flooding attacks try to exhaust resources, the first defensive strategy is
having more resources than the attacker can successfully exhaust. This can be
achieved by adding mirror servers and load balancers. For example the DoS attack
on Microsoft in 2001 that will serve as an example in Chapter 3 ended when Microsoft

2.3. DoS Defense Mechanisms 17

introduced additional DNS servers for their domains, which were hosted by Akamai.
DoS attacks on the DNS root servers also usually fail or cause only minor damage
because of overprovisioning ([3],[6]).

Large botnets have an overwhelming amount of available resources. However these
resources can be used for other purposes than DoS attacks which bring the botnet
operator a larger financial benefit (e.g. SPAM distribution). When assuming a
rational attacker, we can also assume the resources of large botnets to be very
limited: An attack with millions of bots will knock out any web server, but it also
produces costs of opportunity for the attacker who could have used these bots in
other financially attractive ways — so it will rarely be cost-effective.

2.3.2 Filtering

Filtering is a practically used method of defending against DoS attacks and also
part of many publications related to DoS defense. The main idea is to introduce
firewall-rules that block incoming attack traffic before it exhausts critical resources.

This may happen at different places in the network.

• In practice, even filtering on the attacked machine may help. The author of this
thesis has talked to a server administrator who was attacked several times in
2009. The attack originated form a single source and targeted an application
on the victim machine (an Apache web server). Filtering for the attacker’s
source IP address on the attacked machine helped as this prevented the attack
traffic from reaching the vulnerable application.

• Filtering close to the attacked host is helpful as high-bandwidth links can still
cope with the attack bandwidth, but the target machine may not be able to do
so. It is also practically possible for operators of small-scale web services to ask
their ISP for filtering (compare [7]). According to [1] ISPs take countermea-
sures when detecting DoS attacks, however there is no information available
on detection rates and mitigation success.

• Filtering in foreign networks or even Internet backbones is a problem in prac-
tice, as different ISPs have to work together. Some DoS defense mechanisms
that were published in the scientific community require some kind of coopera-
tive filtering between autonomous systems (e.g. [8]).

• It is a common best-practice that egress filtering against IP spoofing should be
done in all source networks. Even this is often not the case according to [1].
The author of [9] suggests sophisticated DoS filters in all networks, to filter
traffic close to the source. This would surely be effective, however it is a
“tragedy of the commons” situation: ISPs have to invest money and build an
infrastructure that protects not themselves but someone else. There is currently
no incentive to do so.

Filtering is a building block of most DoS defense mechanisms.

The problem is distinguishing attack traffic from legitimate traffic. Filtering is very
useful if the attack packets share a common property that can be used as a filtering
rule, e.g. a common source address. As mentioned above, today there are still DoS
attacks that originate from a single machine and use only a single kind of packets.

18 2. Denial-of-Service Attacks

However, it is easy for an attacker to send different types of packets or disguise his
traffic as legitimate requests. By using botnets and IP spoofing he can render source
address filtering ineffective. The critical question therefore is, what to filter.

2.3.3 Traceback and Pushback

Traceback techniques, for example probabilistic packet marking ([10]) have been
suggested to find the origin of spoofed IP packets. Traceback techniques would
have to be introduced globally to be effective. As botnets have made DoS attacks
with spoofed IP addresses obsolete, there is no more incentive to introduce a global
traceback infrastructure.

Pushback on the other hand is an effort to filter attack traffic in routers before the
target network. With pushback techniques, a router can tell his upstream router to
drop packets matching certain criteria ([11]).

A problem of this approach is the size of the rule sets that would be required to
filter DoS attacks from botnets (i.e. one rule per attacking IP). Further it remains
questionable why a downstream node should be allowed to tell an upstream node
to drop packets — if a pushback infrastructure existed, misconfigurations or attacks
on this infrastructure could cause unpredictable damage. This leads to questions of
responsibility. Who would pay for financial losses in such a case?

Like traceback, pushback would be most effective if deployed globally. Given the
inherent risks of pushback techniques it is unlikely that this will ever happen.

2.3.4 Attack Detection

There has been a lot of research on detecting DoS attacks and using packet and
flow-level characteristics to distinguish legitimate packets from attack packets.

Anomaly detection monitors traffic and calculates its characteristics, i.e. data volume
or average flow lengths. It gives alerts when they change in an unexpected way. On
the other hand, methods based on pattern matching try to identify known attack
patterns in the data.

The authors of [12] propose a bandwidth-related heuristic to detect DoS attack flows.
The authors of [13] use multiple techniques including spectral analysis to discover
attack flows and tell if they originate from a single or multiple sources even if source
addresses are spoofed. Automatic detection mechanisms are able to react to ongoing
attacks rapidly.

Automatic detection systems can produce false negatives (in our case real attacks
that are not detected) and false positives (legitimate traffic that is classified as attack
traffic). Therefore it is dangerous to automatically generate filtering rules from the
results. This argument becomes even worse given the presence of a strategic attacker
who tries to exploit the internals of a detection system, either to remain undetected
or even to trick the defense into dropping legitimate traffic.

2.3.5 Overlays and Proxies

A number of publications use proxies or even complete overlay networks to pre-
filter traffic before it reaches the attacked servers. The proxy network has enough
resources to serve as a first line of defense against the attack, e.g. because it consists
of a huge number of nodes. In such approaches the proxies provide some possibility

2.3. DoS Defense Mechanisms 19

to distinguish attack traffic from legitimate traffic, which allows to filter the attack
traffic.
In [14] and its extension [15], nodes of a chord-based overlay network act as proxies
that authenticate the users. Legitimate packets are encapsulated and sent to the
actual server. Routers between the server and the Internet filter traffic and allow
only the encapsulated packets to pass. The authors of [16] also use filtering nodes
between the clients and the server. These nodes may interact with the clients,
sending them challenges that have to be passed before a request is routed to the
server. In [17] filtering is done by encouraging legitimate clients to send more traffic
during a denial-of-service attack. This should crowd out the attackers, as it is
assumed that they already send traffic at the maximum possible rate.
Chapter 9 of this thesis investigates a novel proxy-based defense mechanism.

2.3.6 Proof-of-work and Captchas

It is often cheap for clients to send requests, while servers possibly have to invest
much more effort in creating the response.
Proof-of-work techniques require the client to invest resources into a computational
puzzle before the server does something expensive. Typical computational puzzles
are brute-force attacks on weak cryptographic mechanisms ([18][19]).
For a web server such a defense can be implemented easily, by making the client
perform the required calculations in JavaScript. Initially the client sends its request.
The server replies with some information that has been encrypted using some weak
key and a Javascript program that performs the brute-force attack. The client
computes the solution and sends it back to the server who checks the response and
answers with the desired content.
This method has a number of drawbacks. First of all, the server has to invest
resources to accept client requests, generate puzzles and check for the validity of the
solution. Such tasks should rather be outsourced to a network of proxy hosts. The
proof-of-work tests also increase the response times for legitimate clients, therefore
they should only be active during ongoing attacks.
The biggest drawback, however, is that the heterogeneity of Internet end devices is
not considered. While a computational puzzle might be solved very quickly by a
PC with a modern web browser, it may take ages to calculate on a mobile phone.
Research approaches try to counter this by auction techniques, however, the core
problem remains.
Captchas are “Completely Automated Public Turing tests to tell Computers and
Humans Apart”. The most popular form are pictures of letters that have been
distorted in some way. The idea is that the letters are still readable for humans
while they are unrecognizable for OCR programs.
Captchas are commonly used on web sites where access by automated programs is
undesired, i.e. when registering accounts or before a client downloads large amounts
of data. Some websites initially assume that a user is a human, but if he behaves
bot-like (i.e. by spidering the site) they present a Captcha. Like proof-of-work tests,
Captchas can also be used as a lightweight authentication mechanism to prevent
DoS attacks.
However, today Captchas do not accomplish what they promise. Most Captchas
can be broken algorithmically, so they become machine-readable. On the other

20 2. Denial-of-Service Attacks

hand many Captchas are hard to read for humans. Websites with Captchas are
often inaccessible for handicapped people, for example a blind person is unable to
solve a visual Captcha.

Both, proof-of-work tests and Captchas can be used together with proxy nodes to
reduce the effects of DoS attacks. They both do not work perfectly, but they will
decrease the amount of attack traffic on the server, allowing to serve more legitimate
requests. A related work is [16], which calculates scores from the results of different
legitimacy tests and filters based on the results.

2.3.7 Capability-based Approaches

A different approach for DoS defense is based on so-called capabilities [20]. The key
observation is that on the Internet anyone can send a packet to anyone else without
obtaining a permission first — which makes DoS attacks possible. Capability-based
approaches try to give control over the traffic to the receiver. The sender has to
obtain permissions called capabilities for sending traffic from the receiver and pos-
sibly also from routers in intermediate autonomous systems on the path. Besides
requiring major architectural changes to the Internet, a weakness of such schemes is
that the mechanisms for granting these capabilities can themselves be vulnerable to
DoS attacks (DoC — Denial-of-Capability Attack) [21].

The Content-Centric Networks (CCN) approach for a Future Internet [22] implicitly
provides the same kind of protection. It is an interesting research question if Content-
Centric Networks would be vulnerable to DoS attacks at all.

2.3.8 DoS Resistant Protocol Design

TCP is vulnerable to SYN Flood attacks as it only needs very few resources for
a Client to send a SYN packet while the server has to reserve memory for TCP’s
state information. Large amounts of SYN packets can therefore exhaust the server’s
resources.

With SYN cookies ([23]) the server can delay the resource reservation until receiving
a second packet from the client — and for sending a matching second packet the
client also has to invest some resources. Therefore SYN cookies counter the TCP
vulnerability.

The author of [24] investigates protocols for such DoS vulnerabilities. This is done
by adding cost functions for the attacker and the defender to a model checker.

The Flones network simulator and the work presented in Chapter 7 of this thesis
follow a similar idea. However not protocols are investigated, but network topologies.

2.4 Evaluation of DoS Defenses

In [25] a taxonomy of evaluation criteria for DoS defenses is given. This section
gives a brief overview of those criteria. In Chapters 7, 8 and 9 where DoS defense
mechanisms are discussed, this taxonomy will be used for evaluation as far as the
categories are relevant to the given solution.

In this section the different subcategories of the taxonomy are described briefly as
far as they are not self-explanatory.

2.4. Evaluation of DoS Defenses 21

• Effectiveness
Effectiveness covers the general performance of the DoS defense mechanism. It
is split into the following subcategories:

– Normal time: How does the defense affect performance when there is no
attack?
∗ QoS available for legitimate traffic: e.g. delays, drop probabilities
∗ Resource Consumption: e.g. CPU usage by cryptographic operations

– Attack time: How well does the defense counter a DoS attack?
∗ QoS available for legitimate traffic
∗ Amount of attack traffic allowed through
∗ Resource Consumption: e.g. processing power required by filters in
routers

• Ability to fulfill requirements

– QoS requirements of legitimate applications: e.g. web surfing or VoIP
– Legal requirements: A certain robustness against DoS attacks might be

required by external rules, e.g. rules for operating a DNS root server are
defined in [3].

• Robustness
Robustness refers to attacks against the DoS defense mechanism itself.

– Misusability: Are there DoS attacks where the defense system makes
things worse instead of better?

– Additional vulnerabilities created: Is it possible to exploit new protocol
mechanisms that were introduced as part of the DoS defense for DoS
attacks? An example would be the injection of malicious filtering rules
into a pushback mechanism.

– Resilience against changes in attack characteristics: Is the system robust
against changes to the attack traffic (e.g. if the attacker suddenly switches
to IP spoofing)?

• Configuration capabilities
Is it possible to re-configure the defense mechanism, e.g. when the attack
changes or when it turns out that certain legitimate packets are classified as
false positives and therefore dropped?

• Dependence on other resources
This captures operational dependencies of the DoS defense system.

– Human intervention: Is the system autonomous or does it require critical
decisions to be met by a human?

– Technical resources: Does the system depend on other technical systems?
For example a filtering DoS defense depends on a mechanism to identify
attack traffic.

• Interoperability
How does the defense system fit into corporate infrastructures? Is interaction
with other defense systems in other networks possible?

22 2. Denial-of-Service Attacks

2.5 Conclusions
Denial-of-Service attacks first appeared in the 1980s and first caught public attention
in the year 2000. Today they are even more threatening, as cyber-criminals have
access to botnets of thousands of PCs.

It is interesting that major web sites are almost never affected. The fact that the
web sites of Microsoft, Amazon, the White House and other large organizations
who potentially have enemies on the Internet are always reachable shows that given
enough resources, a defense against DoS attacks is possible.

Victims of DoS attacks are rather smaller companies, less-defended government web-
sites and private persons. These organizations are usually unprepared when being
attacked. The example of Minecraft in Section 2.1 shows that even outdated attacks
like SYN-Floods initially work against these victims — at least for some time.

Key findings in Chapter 2:

• Denial-of-Service Attacks are very common on the Internet, they
were considered the most serious operational threat in a survey
among ISPs.

• In 2009, the bandwidth of the strongest documented denial-of-service
attack was 49 Gbit/s. However most attacks use far less bandwidth,
the current trend is a shift from flooding to semantic attacks. For
example the Slowloris attack works with partial HTTP requests and
is very effective.

• Motivations of the attackers are extortion of businesses or the de-
sire to make a political statement. Another common motivation —
probably with younger script kiddies — is loosing in online games
or being dissatisfied with the policies of computer game companies.

• By combining sufficient overprovisioning with filtering, a very effec-
tive denial-of-service defense can be achieved. Such methods make
many potentially attractive targets like big company websites, gov-
ernment websites and critical Internet infrastructure like the DNS
root servers robust against DoS attacks.

• Most successful DoS attacks target small businesses, less-defended
government websites or private persons.

3. Service Dependencies

One field that has not been investigated in previous work is the influence of service
dependencies on denial of service attacks. The following real-world example shows,
how service dependencies affect DoS attacks.
On January 25th and 26th 2001, the majority of Microsoft’s services were made
unavailable by a DoS attack1 .
Figure 3.1 shows an approximation of what the company’s network may have looked
like at this time. The news articles about this topic are not very precise, but the
illustration is sufficient to explain the main point.
Microsoft was running a number of different services, i.e. web sites and mail ser-
vices. Most of these services relied on DNS name resolution for domain names like
microsoft.com and hotmail.com.
At that point in time, the company had located all of their DNS servers in a single
subnet which was connected to the Internet by a single router. Therefore this router
was a single point of failure.
Due to a configuration problem the router failed on January 24th and Microsoft’s
services were unavailable for one day. This event was covered extensively by the
press and technical news websites, therefore the existence of this single point of
failure became known on the Internet.
When the router came back online, it became target of DoS attacks that interrupted
Microsoft’s services again at least temporarily during the next two days2. It is
unknown, if the attack was carried out by a single attacker, it is possible that different
individuals independently attacked the router after learning about the problem in
the press.

1http://www.networkworld.com/news/2001/0125mshacked.html
2http://www.heise.de/newsticker/meldung/Weitere-Attacke-auf-Microsofts-Websites-33586.

html (German)

http://www.networkworld.com/news/2001/0125mshacked.html
http://www.heise.de/newsticker/meldung/Weitere-Attacke-auf-Microsofts-Websites-33586.html
http://www.heise.de/newsticker/meldung/Weitere-Attacke-auf-Microsofts-Websites-33586.html

24 3. Service Dependencies

DNS 1 DNS 2

DNS 3 DNS 4

Router

WWW 1 WWW 3WWW 2

WWW 6

WWW 4

WWW 5

Attacker

Internet

Figure 3.1: DoS attack against Microsoft in 2001.

Microsoft’s denial-of-service problems were finally solved when they added new DNS
servers in other networks with the help of Akamai.

When reading about this incident, Microsoft’s mistake in the network configuration
appears very obvious. However, in complex networks such misconfigurations can
happen easily. Further it is interesting to investigate which general effects service
dependencies can have on DoS attacks, even if the dependencies do not create a
single point of failure. This problem space is investigated in Chapter 7.

3.1 Types of Service Dependencies
For this investigation it is useful to think about how services can interact with each
other and which resources they share.

We consider three different types of service dependencies:

• Client-Side direct dependency: The client needs some specific information be-
fore being able to use a service. A common example is DNS, a web client has
to resolve the IP address of the web server before being able to send a request.

• Server-side direct dependency: A service has to request some information before
being able to answer a client’s request. A common example is a web server
that depends on a database server for serving dynamic content.
This type of dependency comes in a large number of variants (i.e. a mail
server depending on DNS or some authentication service). It is also the source
of nested dependencies, as the dependency may have other dependencies of its
own.

• Router dependency: Service requests depend on the routers on their path to
be forwarded.

One important property of service dependencies in this context is that requests
which originally seemed independent require some shared resource to be processed.
The interaction of requests can take one of three forms:

3.2. Detecting Service Dependencies 25

• Requests (either user requests or requests caused by a dependency) are pro-
cessed by the same service. In this case they have to share resources and also
compete for places in the same queues.
This work assumes that such requests end in a service-specific queue and are
served in the same order as they arrived.

• Requests are answered by services that run on the same physical machine.
There is some amount of isolation between the services, the operating sys-
tem will try to schedule the services according to specific goals (i.e. fairness,
priorities). The isolation is even stronger if the services are located in differ-
ent virtual machines on the physical machine, which adds an extra layer of
isolation.

• Requests have to pass through the same network element, i.e. a router or switch.
They have to share network resources like bandwidth and router CPU. There
might be some isolation if the router employs QoS mechanisms like IntServ or
DiffServ, uses simple static packet prioritization or Layer 2 mechanisms like
VLANs.

3.2 Detecting Service Dependencies
For the investigation method discussed in Chapter 7, it is necessary to know about
service dependencies in the own network. There are several different methods avail-
able to collect and manage this information in large company networks.
Generally management of services and their dependencies is a task of network ad-
ministrators. It can be fulfilled using tools that range from Excel Sheets to network
management software like HP OpenView[26].
Networks can easily grow to a size and complexity that makes it very difficult to keep
track of all service dependencies. There has been extensive research on discovering
service dependencies from the network traffic [27, 28, 29, 30]. The method is usually
to capture traffic at as many different locations as possibly (ideally in every host)
and do reasoning on the observed packets. If a packet of type A arrives at a machine
and shortly afterwards a packet of type B is sent from the same machine, there is
the possibility that sending packet B was triggered by the arrival of packet A. If this
happens multiple times, one can be increasingly sure that this sequence of events
did not occur by accident, but that a real service dependency has been discovered.
The actual analysis methods are more sophisticated, i.e. analyzing the frequency of
events.
The author of this thesis also participated in developing an active approach to de-
pendency discovery. The idea here is to cause load on a service S and measure
the response time of a service T . If service T responds slower than normally, one
can suspect that service T has a dependency on service S. To make the detection
more accurate and to make multiple simultaneous probing processes possible, the
load induced on service S is not constant, but follows a sinus pattern. This allows
to detect possible dependencies in service T ’s response time by transforming the
measured data into the frequency domain. Details can be found in [31] and [32].

3.3 Conclusions
In this Chapter we investigated the relation between service dependencies and denial-
of-service attacks. We saw that Microsoft fell victim to a denial-of-service attack in

26 3. Service Dependencies

the year 2000 and that this attack exploited a weakness in the company’s network
topology. We investigated different types of dependencies and discussed related work
on detecting them.

Whether or not a network can be DoS-attacked not only depends on the amount
of resources which are available for defending it. The network topology and service
dependencies are key factors, as they can create weaknesses that an attacker can
exploit to amplify his attack.

Key findings in Chapter 3:

• Whether or not a network can be DoS-attacked not only depends on
the amount of resources which are available for defending it. The
network topology and service dependencies are key factors, as they
can create weaknesses that an attacker can exploit to amplify his
attack.

4. Game Theory

Game theory is the science of strategic interaction. It is commonly regarded as a
branch of applied mathematics, but also of economics as game-theoretic arguments
play an important role in many economic questions.

Generally it can be said that direct application of game theory to complex real-world
problems is usually not possible. Complete game-theoretic models even of simple
situations tend to become very complicated. The Colonel Blotto Game, which is
important for this thesis, is a good example, as its description is very simple while it
took mathematicians 80 years to solve it. Still it is often useful to model simplified
versions of strategic situations and try to extract results that are applicable in the
real world.

Denial-of-service attacks are problems of strategic interaction. An attacker tries
to do as much harm as possible while a defender attempts to prevent this. In
Part II of this thesis, we will look at denial-of-service attacks as problems of strategic
resource allocation. The Colonel Blotto Game, is a game-theoretic model of resource
allocation, it is applicable to our denial-of-service scenarios and can be a source of
valuable insights. The following Section 4.1 will give an introduction into a few
basic game-theoretic concepts. Section 4.2 introduces the Colonel Blotto Game and
investigates properties that are also relevant for denial-of-service attacks.

Good introductory books on game theory are [33] and [34].

4.1 Introduction

Game theory is split into many sub-fields like cooperative game theory, evolutionary
game theory or auction theory. The following sections provide an introduction to
non-cooperative game theory, the branch of game theory that deals with competitive
and selfish strategic interaction between two or more individuals.

28 4. Game Theory

In this section we introduce the most simple definition of a game and the concept
of a Nash equilibrium. More advanced game-theoretic concepts are only introduced
when needed.

4.1.1 What is a Game?

Informally, a game in the game-theoretic sense is a situation where two or more
players have to make strategic decisions. The different choices that each player has
are called strategies. We denote the strategy space of player i (the set of all of player
i’s options) with the uppercase letter Si, while a concrete strategy in this set is
denoted by a lowercase letter si ∈ Si.
At the end of the game, each player will get a payoff. This outcome is defined
as a utility function1 for each player. We will treat it as an abstract “score” that
the players try to maximize. Each player’s utility function depends on the strategy
choices of all players.
With these concepts we can define a game as:

Definition 1. A n-player game in normal-form is given as G = (S1, . . . , Sn; u1, . . . , un)
where

• Si is the set of possible strategies for player i and

• ui is the utility function of player i, ui : S1 × . . .× Sn 7→ R.

2-player normal-form games are usually drawn as a table:

Player 2 Strategy C Player 2 Strategy D
Player 1 Strategy A (u1(A, C), u2(A, C)) (u1(A, D), u2(A, D))
Player 1 Strategy B (u1(B, C), u2(B, C)) (u1(B, D), u2(B, D))

Here, the numbers in the brackets are the utility for player 1 and player 2 if the
given strategy combination is played.
We illustrate the previous definition, with the following example.
Alfredo and Elisabetta are a couple and they want to go out together. Unfortunately,
their mobile phones are broken, so they cannot agree on where to go. Therefore, both
of them will just go somewhere and see if the other one is there.

It is the first common assumption for normal-form games that the game happens
simultaneously and both players have to make their decisions without knowing what
the other player will decide.
Alfredo wants to go to the casino, Elisabetta prefers the opera. However both of
them will be very unhappy if they do not meet, they really want to spend the evening
together.

We design a payoff matrix that fits to the story. Alfredo and Elisabetta will both get
a positive score if they go to the same place. If they meet at the casino, Alfredo’s

1In economy, the concept of utility is defined as a number which describes the satisfaction that an
individual experiences when consuming a good. A good does not have to be a directly consumable item
(e.g. an apple) but can also be far more abstract. For example we “consume” the security that police and
fire-brigade provide. Further information can be found in textbooks on microeconomics.

4.1. Introduction 29

score will be high while Elisabetta gets a high payoff at the opera2. If they go to
different places, both of their scores will be zero.

Alfredo: Gambling Alfredo: Opera
Elisabetta: Gambling (1, 2) (0, 0)
Elisabetta: Opera (0, 0) (2, 1)

In normal-form games we also assume that the payoff-matrix is known to all players.

4.1.2 Nash Equilibria in Pure Strategies

Game Theory tries to determine, what the optimal choices of the different players
in a game are. Here, one helpful concept is the Nash Equilibrium.

Definition 2. A strategy profile X∗ = (s∗1, . . . , s∗n) is called Nash equilibrium, if for
every player i = 1, . . . , n and for every strategy si ∈ Si

ui(s∗1, . . . , s∗i−1, si, s∗i+1, . . . , s∗n) ≤ ui(s∗1, . . . , s∗n) (4.1)

In other words if all other players play their equilibrium strategies, player i has no
incentive to deviate from his own equilibrium strategy. One can also say that each
player’s equilibrium strategy is a “best response” to all other player’s equilibrium
strategies.

In the example we have two obvious Nash equilibria: (Gambling, Gambling) and
(Opera, Opera).

4.1.3 Nash Equilibria in Mixed Strategies

The original equilibrium concept by John Nash also allows a player to randomize
between his strategies. If at least one player randomizes, we call the equilibrium a
Nash Equilibrium in mixed strategies. On the other hand, if no player randomizes,
we call it a Nash Equilibrium in pure strategies.

In our example the strategy profile

Xmixed =
(1

3Gambling + 2
3Opera,

2
3Gambling + 1

3Opera
)

(4.2)

is a Nash equilibrium in mixed strategies. In this equilibrium the expected payoff3

for both players is 2
3 .

2We do not assume scores to be comparable between Alfredo and Elisabetta. We also do not assume
that a score of 2 means that a person likes something “twice as much” as a score of 1. The payoffs are just
numbers that the players maximize, there is no deeper meaning involved.

3Calculation for Alfredo (he is player 2 here):

uAlfredo

(
1
3 Gambling + 2

3 Opera, 2
3 Gambling + 1

3 Opera
)

= 2
9 uAlfredo(Gambling, Gambling) + 4

9 uAlfredo(Opera, Gambling)
+ 1

9 uAlfredo(Gambling, Opera) + 2
9 uAlfredo(Opera, Opera)

= 2
9 · 2 + 4

9 · 0 + 1
9 · 0 + 2

9 · 1
= 2

3

30 4. Game Theory

Elisabetta

Gambling OperaGambling Opera

Gambling Opera

Alfredo Alfredo

(0,0)(1,2) (0,0) (2,1)

Figure 4.1: A sequential version of the battle of the sexes.

As John Nash has proven [35], it is sufficient to compare the mixed equilibrium
strategy to all pure strategies to show that this actually is an equilibrium. Therefore
in this concrete case it is sufficient to show that Elisabetta has no incentive to switch
to one of her pure strategies as long as Alfredo sticks with his mixed strategy and
vice versa.
The concept of mixed-strategy equilibria assures that each finite game has at least
one Nash equilibrium. There are a number of games where randomizing makes sense
intuitively, the simplest and also most prominent example is “Rock-Paper-Scissors”.
However, in many cases — like in our example — mixed-strategy equilibria seem
unnatural and counter-intuitive. When faced with a strategic problem, humans
usually choose the solution that appears best to them — rolling dice in such a
situation is rather uncommon.

4.1.4 Dynamic Games
In many real-live situations of strategic interaction, a player is able to observe the
actions of his opponent before making his own decision.
Figure 4.1 shows a sequential version of the game “Battle of the Sexes” discussed
above. Here Elisabetta can first decide where she wants to go. Alfredo is able to
observe this decision.
Any subtree of this game is called a subgame. The corresponding equilibrium con-
cept is the so-called subgame-perfect equilibrium. An equilibrium is called subgame-
perfect if the equilibrium-strategies form a Nash-equilibrium in each subgame of the
original game. Subgame-perfect equilibria are found by the technique of backward-
induction, the game is solved from the end towards the beginning.
In his left subgame Alfredo would choose gambling to get a payoff of 2 instead of
0. In his right subgame Alfredo would decide for the opera to get a payoff of 1
instead of 0. Anticipating these decisions Elisabetta will choose to go to the opera.
Therefore the subgame-perfect equilibrium of this game is (Opera, Opera).
This example shows that turning a simultaneous game into a sequential game can
dramatically change the characteristics. Former equilibrium strategies have disap-
peared and the ordering has turned the symmetric game into one that highly favors
one player.
Game theory has developed a number of additional concepts, i.e. for modeling in-
complete information. However, as they are not used in the remaining part of this
thesis, they are omitted here.

4.2. The Colonel Blotto Game 31

4.2 The Colonel Blotto Game
The Colonel Blotto Game is a well-known problem in game theory, which was first
formulated by Borel in 1921 [36] and has been investigated by many mathematicians
since. Even though the scenario is relatively simple, finding Nash equilibria in this
game is hard and the results are often unintuitive. However, the Colonel Blotto
Game is applicable to DoS attacks and is therefore investigated here.
4.2.1 Scenario
The commanders of two armed forces fight a war. Commander A has XA armies
at his disposal while Commander B is in charge of XB armies. There is a limited
number n of battlefields.
The basic Colonel Blotto Game lets both commanders choose a discrete distribution
of their forces simultaneously. The commander who allocates more forces to a given
battlefield j will win this battlefield. Each won battlefield gives a score of +1, while
each loss is counted as −1, a draw gives a score of 0. The general with the higher
score will win the war.
There is a large number of variants of the Colonel Blotto Game, e.g.

• continuous allocation of resources,

• different values of the battlefields,

• asymmetric resources,

• or sequential blotto games.

4.2.1.1 Equilibrium Example
Game-theoretic reasoning on the Colonel Blotto Game is very difficult. There are
many equilibrium strategies in classic Blotto Games and they are all mixed-strategy
and un-intuitive. The example equilibrium given here is taken from [37].
Assume XA = XB = 10 and n = 5. Define pure strategies S1 . . . S5 as follows:

Pure Strategy BF 1 BF 2 BF 3 BF 4 BF 5
S1 4 3 2 1 0
S2 0 4 3 2 1
S3 1 0 4 3 2
S4 2 1 0 4 3
S5 3 2 1 0 4

In equilibrium, both players play each of these strategies with probability 1
5 .

The full set of equilibria for the continuous version of the game was finally found by
Roberson in 2006 [38].
One central problem of game theory is that equilibrium strategies are often not con-
vincing. Experimental game theory has shown that humans often choose strategies
that were not predicted by game-theoretic concepts like the Nash Equilibrium. As
equilibrium strategies for blotto games are not even intuitive (it is not possible to
“see” why this is an equilibrium without calculations), it is unlikely that real-life
individuals would follow the calculated strategies.
Therefore in the following sections, we will not argue based on these Nash equilibria
but extract other useful results for our denial-of-service scenarios from the Colonel
Blotto Game.

32 4. Game Theory

4.2.2 Blotto as a Zero-Sum Game

The colonel blotto game is a zero-sum game. There is only one score value, the
payoff uB(s) for player B is −uA(s). Therefore, a special equilibrium defined by
John von Neuman in 1928 is applicable here, the so called minimax solution.
In this solution player A has to decide, what strategy to play. It is common knowl-
edge that it is the best strategy for Player B to minimize Player A’s payoff. There-
fore, Player A anticipates the worst-possible move by Player B and chooses his
strategy in a way that minimizes the harm that Player B can do. John von Neu-
mann’s minimax theorem states about this situation:

Theorem 1. In a finite two-player zero-sum game, with uB(sA, sB) = −uA(sA, sB)

max
sA

min
sB

uA(sA, sB) = min
sB

max
sA

uA(sA, sB) (4.3)

In computer science terms this means that the (inner) optimization loop of player
B and the (outer) optimization loop of player A can be exchanged.
A minimax solution in mixed strategies is guaranteed to exist in all zero-sum games.
This minimax solution is also a Nash equilibrium (the minimax solution is the
stronger concept).

4.2.3 Non-existence of pure-strategy Nash Equilibria

The Colonel Blotto Game does not have pure-strategy equilibria. For simplicity, we
prove this here for the case of continuously distributable resources.
Let XA = XB. Player A chooses the distribution of his forces sa = (a1, . . . , an),
where n is the number of battlefields. Assume ai > 0 for some i. A winning strategy
for player B is as follows:

bi = 0
bk = ak + ai

n− 1 ∀k 6= i

By not allocating anything to battlefield i, player B can win all other battlefields.
This is why two strategies sa and sb can never simultaneously be best responses to
each other, assuming that sa wins, the loosing player B rather would have wanted to
play a strategy s′b constructed from sa as described above (intuitively, the situation
can be considered the same as with Rock-Paper-Scissors; a game which does not
have a pure-strategy equilibrium for the same reason).

4.2.4 Variants of the Colonel Blotto Game

Over the years, many variants of the Colonel Blotto Game have been published.
Partly this was motivated by the difficulty of finding equilibria in the game, but
partly also by the desire to apply the game to new real-life phenomena.
The authors of [39] investigate a sequential Colonel Blotto Game, but find an equi-
librium which is not very convincing as the attacker has to make a choice in favor of
the defender. In our DoS scenarios it will be more intuitive to model the attacker’s
benefit as the defender’s loss, therefore a zero-sum model fits better. A very inter-
esting work is presented in [40] which also investigates a sequential Colonel Blotto

4.3. Conclusions 33

Game and finds that there are circumstances under which the defender might prefer
to leave locations undefended, even if he had spare resources to protect them.
In [37], the static Colonel Blotto Game is generalized. The authors investigate payoff
functions that are different than the “the winner takes it all” function used in the
classical Colonel Blotto Game and allow different payoffs if certain combinations
of fronts are won. In Section 7.2 of this thesis we will introduce a specific payoff-
function for modeling DoS attacks.

4.2.5 Consequences for Denial-of-Service Investigations

In its basic form, Colonel Blotto is a simultaneous game. When turning Blotto into
a sequential game, the characteristics of the game totally change. The second player
has a major advantage as he can observe his opponents choice and then follow the
strategy outlined in Section 4.2.3. This way he will always win unless he has a
significant disadvantage in resources.
Interpreting denial-of-service attacks as resource distribution decisions of attacker
and defender, we see practical consequences of our game-theoretic investigations.
Denial-of-service attacks are carried out by an attacker who is free to decide where
to strike. He can change his attack strategy within moments by giving new orders
to his drones. The defender on the other hand is static, changes to his network
infrastructure require physical servers to be moved, new servers to be bought and
new cables to be laid. Therefore the defender will loose when attacker and defender
are about equally strong.
This fact was the inspiration for the work in Chapter 8 which tries to make the
defender more agile.

4.3 Conclusions
In this chapter we have introduced Game Theory. In static games players act si-
multaneously, here Nash equilibria are the most common equilibrium concept. In
mixed-strategy equilibria, the players randomize among their strategies.
If players act sequentially we have a dynamic game, in this case the subgame-perfect
equilibrium is the easiest equilibrium concept.
The Colonel Blotto Game is a static game which can be applied to DoS attacks.
However its equilibria are always mixed-strategy and not very intuitive. When
modifying the Colonel Blotto Game to make the players act sequentially, the second
player has a huge advantage if he can observe the first players’s decision.
Key findings in Chapter 4:

• A sequential version of the Colonel Blotto Game can be applied to
the DoS problem. In this case the defender acts first, as he has
to choose a static configuration for his network. The attacker can
observe this configuration and attack accordingly.

• This gives the DoS attacker a huge advantage over the defender since
he can exploit weaknesses in the defender’s network. With about
equal resources, the attacker will always win.

34 4. Game Theory

Part II

DoS Attacks as a Problem of
Strategic Resource Allocation

5. Overview

DoS attacks are considered a resource management problem in this thesis. Both,
attacker and defender have a limited amount of resources (like CPU or network
bandwidth) at their disposal. The defender’s goal is using these resources to serve
legitimate requests, while the attacker aims at preventing this.

We have seen the Colonel Blotto Game in Section 4.2, which is the game-theoretic
equivalent to our situation. The main topic of Chapters 7 and 8 is the resource
distribution of attacker and defender, which is similar to the Colonel Blotto scenario.

The defender has servers at his disposal, that can provide the services that he wants
to offer. He can change the resource distribution, i.e. by upgrading servers, buying
new servers or by changing the assignment of services to servers.

The attacker on the other hand has limited resources as well. As we saw in Chapter 2,
denial-of-service attacks by large botnets with almost unlimited resources are rare.
The much more common case is an attacker who controls a hand full of servers or
has rented a small share of resources from a botnet. Therefore the attacker can not
blindly throw packets at the attacked network, he has to carefully choose his target
to assure the success of his attack.

In this thesis we make the simplifying assumption that the defender can not tell,
which incoming requests are legitimate and which ones are part of the attack.
Techniques like anomaly detection that can be used to automatically filter cer-
tain requests are not within the scope of this thesis (compare Section 2.3.2 and
Section 2.3.4).

However filtering methods can be regarded as orthogonal to the methods developed
in this thesis. If the defender can filter parts of the attack traffic before they consume
scarce resources, only the remaining attack traffic becomes the defender’s resource
management problem. Further, load-management investigations that are presented
in this thesis are also applicable to filtering systems for denial-of-service traffic.

38 5. Overview

Attacker Good
Client

Network of Defender

Service 1
Ressources:
100 Units

Good Client
sends
fixed
amount of
requests
to each
service.

Attacker
distributes

attack
resources.

Service 2
Ressources:
100 Units

Service 3
Ressources:
100 Units

Ressources:
100 Units

Replies to
the Good Client
serve as the
success metric
of attacker and
defender.

Figure 5.1: The basic attack scenario.

Section 5.1 introduces the scenario and the players for the following chapters. Sec-
tion 5.2 discusses, what resource usage means in our models. Finally Section 5.3
gives an overview of the chapters in Part II.

5.1 Scenario and Actors: Introducing Attacker, Defender
and Good Client

Figure 5.1 shows the basic scenario of our investigations in Chapters 7 to 9. We
have three actors:

• The defender owns the attacked network. He wants to provide a service to
the good client, therefore his goal is to serve as many good client requests as
possible. In the model he can not tell the difference between legitimate requests
and attack requests, therefore he has to serve all requests.
However, serving requests costs resources. If the resources at a specific service
are exhausted, requests will be dropped. Main subject of this thesis is optimiz-
ing the defender’s resource distribution to allow him to increase the amount of
served requests.
The defender’s payoff in game-theoretic terms is the number of successfully
served good client requests.

• The attacker ’s goal is to harm the defender, in other words he minimizes the
defender’s payoff. To achieve this, he will use his own resources to send attack
packets to the defender’s services, trying to overload them. The attacker’s
payoff is equivalent to the dropped good client requests.
The attacker is considered to be a single node here, the difference between
normal denial-of-service attacks and distributed denial-of-service attacks is only
represented by the attacker’s amount of available resources.
In some chapters we assume that the attacker is smart enough to know the
defender’s strategy or even the optimal attack strategy. This is legitimate as we

5.2. Resources and the Relative Strength of Attacker and Defender 39

want to optimize the defense and we can not do this assuming a unrealistically
weak attacker.

• The good client is the aggregation of all legitimate users of the defender’s
services. He is assumed to be static for the analysis in this thesis. In real life,
the load caused by legitimate users also changes during the day and sometimes
in unexpected ways. This aspect is ignored for the time being. However by
introducing load the good client can be seen to work in the attacker’s favor.
The number of replies that the good client receives from his requests to the
defender’s servers is used as the success metric of our DoS game.

5.2 Resources and the Relative Strength of Attacker and
Defender

Real-life resources that a denial-of-service attack can exhaust have already been
discussed in Section 2.2.1. They can include processing power, memory, network
bandwidth, but also more high-level concepts like “half-open TCP connections”.
In this thesis we will assume the resources of attacker and defender to be within
the same order of magnitude. Denial-of-service games are within the scope of this
thesis whenever the strategy matters: The attacker will win if he is smart and the
defender chooses a bad strategy and vice versa.
This is not an unrealistic case, as we saw in Chapter 2. And even if the attacker
was much stronger, the methods presented here are still helpful as they can be
combined with other approaches like proxies and filtering. Defending against denial-
of-service attacks by having enough resources is a highly relevant case as discussed
in Section 2.3.1. Our work makes this defense more effective.
Mapping real-life resources to the investigated DoS situation is not easy, especially
since attacker and defender do different things.
Assume a Core2-Duo with 2 cores and 3GHz HTTP-server and an identical machine
which acts as a client. It is not clear that the server can serve the same amount
of requests that the client can send, just because the machines are equally strong.
Maybe the server (or the client) has to make expensive calculations or database-
lookups to fulfill his tasks and therefore has to invest 100 times more CPU-cycles
into a job than the client.
We will use abstract resource units that are scaled in a way which makes the model
easier. The most common way of scaling will be that the defender needs one resource
unit (i.e. of CPU) to serve the attack packets that the attacker has sent with one
unit of the same resource. The actual numbers when building a simulation model
from a real scenario have to be determined by measuring the performance of the
participating nodes.

5.3 Outline of Part II
The following Chapters focus on the Subject of denial-of-service attacks in different
scenarios.

• First in Chapter 6, the Flones Network Simulator is introduced. It will mainly
be used for the analysis of network topologies in the following chapter.

40 5. Overview

• Making networks more robust against DoS attacks is subject of Chapter 7. We
first introduce a theoretical model which shows, how attacker and defender
will act in a very much simplified case. We extend the model by simulat-
ing scenarios where multiple services have to be distributed between multiple
servers. Finally we investigate, how service dependencies create weaknesses
that can be exploited by DoS attacks and test a method of optimally fixing
these vulnerabilities.

• Chapter 8 is about further enhancing the defender’s capabilities using live
migration for DoS defense. Again a number of services are distributed among
different servers, however, now the defender is able to move these services at
any time — even during the attack. This is costly for the defender, but as the
attacker has limited information about the new distribution, the attack will be
less effective for a certain time.

• One DoS defense mechanism based on HTTP redirects is evaluated in Chap-
ter 9. It is more transparent and standards-compliant than existing solutions,
but its effectiveness is limited.

• Finally in Chapter 10, a possible denial-of-service attack on mobile networks
is discussed. Here, a mobile botnet attacks the individual cells of the mobile
network only, if enough attacking devices are present to actually cause harm.

6. The Flones Network Simulation
Environment

When simulating denial-of-service attacks, traditional network simulators show de-
ficiencies in two aspects. First of all, simulating large numbers of packets in event-
based network simulators like NS2 and OMNeT takes a lot of time. Second, nor-
mal network simulators consider network bandwidth as the only relevant resource.
Processing of packets inside the nodes happens instantly and uses no resources.
Therefore simulations of application layer attacks, which mainly aim for exhausting
processing resources at the victim, are not possible.

The Flones 2 network simulator was developed for denial-of-service investigations
as presented in Chapter 7. The approach of Flones 2 is different from traditional
discrete event network simulators in which an event is generated each time a single
packet is received — which means that sending 100,000 packets over a single link
causes 100,000 events. In Flones we wanted to aggregate events to greatly reduce
the processing time.

Flones 2 as described here is the successor of the custom network simulator called
Flones (FLow Oriented NEtwork Simulator). Flones 1 had a number of nice con-
ceptual ideas which are described in Appendix A, however the final software turned
out to be relatively unpractical to use. Therefore the improved Flones 2 simulator
was the basis of the actual research. Flones 2 will sometimes just be called Flones
in the following, as Flones 1 is no longer in use.

Section 6.1 discusses related work. Section 6.2 names the goals of the Flones 2
software. Sections 6.3 and 6.4 describe the simulator, here Section 6.3.2 about the
concept of a queue is the most important part for understanding the remaining
chapters of this thesis. Section 6.5 gives some evaluation of Flones 2.

42 6. The Flones Network Simulation Environment

6.1 Related Work
The most common method of network simulation are so-called discrete event simu-
lators. These simulators are based on a queue of future events. For example when
a packet is sent, the delay of the link is calculated and an event is scheduled at
the time, when the packet will arrive. The simulator processes the events one by
one in the order given by the scheduled times. The running time of discrete event
simulators linearly increases with the number of packets that have to be simulated.
Common discrete event simulators are NS21, OMNet++2 and Opnet3.
Fluid network simulation models as presented in [41] express the packet flows analo-
gous to flows of liquids. Complex protocols like TCP are modeled using differential
equations. Time-continuous fluid simulation strongly abstracts over small changes
in data rates and therefore looses accuracy. Therefore hybrid approaches like [42]
have been suggested. Flones 2 is similar to that.
A unique new feature of Flones 2 is tracing of resources in each node. All traditional
simulators consider network bandwidth to be the only resources, message processing
in nodes happens instantly when the message arrives. Flones 2 introduces input
queues, services that require resources like computing power for message processing,
and a scheduler that assigns resources to the services.

6.2 Development Goals
The goals in the development of Flones 2 were:

• Instead of sending individual packets, Flones 2 should send message aggregates
consisting of a message and a multiplier as the basic unit of data transmission.
The simulation time should depend on the number of message aggregates, not
on the number of messages contained in them. This speeds up simulations with
large numbers of packets.

• Flones 2 should be able to simulate overload in routers and servers. This makes
sure that not only pure flooding denial-of-service attacks, but also attacks on
higher layers can be simulated.

• Flones 2 should allow the user to develop services in a natural way. Protocol
implementations should be as similar as possible to handler functions that are
used by real-world applications to react on incoming packets.

• There should be a strong relation between simulation rounds and real time, for
example queuing delays should be included in the model.

6.3 Design
This section describes the design of Flones 2. The simulator works on Message
Aggregates instead of individual messages, but transmits them similar to a normal
network simulator. Flones 2 is round-based and assumes that all events that happen
within a round occur simultaneously. In each round, Message Aggregates are taken
from incoming links to the node’s input queues. A scheduler decides, which messages
can be processed by the node’s services. Finally outgoing messages are sent to the
outgoing links. These steps will be elaborated in the following.

1http://www.isi.edu/nsnam/ns/
2http://www.omnetpp.org/
3http://www.opnet.com/

http://www.isi.edu/nsnam/ns/
http://www.omnetpp.org/
http://www.opnet.com/

6.3. Design 43

6.3.1 Message Aggregates

MessageAggregates consist of one or multiple identical messages. Their attributes
are shown in Figure 6.1. singleSize is the size of each message in the aggregate while
multiplier is the number of messages.
singleSize and multiplier are defined as float variables that may take real values.
This avoids problems that would otherwise arise from discretization. The calcula-
tions of the scheduler described in Section 6.3.3 would be much more complicated
when working on integer values and desired properties like order-independence of
MessageAggregates would have been hard to achieve.
content is the actual content of the message and consists of key-value-pairs where
the key can be any hashable Python object and the value any kind of Python object.
This field can also be used for convenience to save connection state that nodes assign
to these packets. Therefore the content field is not directly related to singleSize.

MessageAggregate
source: Node
destination: Node
content: dictionary of arbitrary (key → value)-pairs
singleSize: float
multiplier : float

Table 6.1: Message Aggregate

6.3.2 Queue

The MessageQueue is the central class that defines the behavior of Flones 2. It
consists of the ma_roundlist, a list of lists of MessageAggregates. Conceptually
all MessageAggregates that arrive in the same round are assumed to have arrived
simultaneously.
The basic operation of a MessageQueue is shown in Figure 6.1. In the beginning of
each new round, a new empty list is created in and added to ma_roundlist (Step 1).
MessageQueues are FIFO queues, so dequeueing will first retrieve the oldest mes-
sages (say the messages that arrived in round k).
Newly enqueued MessageAggregates are added to this most recent list (Step 2).
Therefore theMessageAggregates inma_roundlist always remain sorted by the round
in which they arrived.
In Figure 6.1 the queue capacity is exceeded after the arrival of the new MessageAg-
gregates. This is accepted for now, dropping of messages is the last step within a
round. The reason for this is that there may be queues with a very high throughput
compared to their capacity, therefore one always has to check the constraints after
removing the MessageAggregates that leave in this round.
MessageAggregates are sent in Step 3. Here 350 messages can be sent, but the
oldest ma_roundlist only contains 300 messages. Therefore those 300 messages
from round one and another 50 from round two are sent. The 50 messages from
round two are selected by taking an equal share from each MessageAggregate.
Equal MessageAggregates are merged before they are actually sent. Therefore in
the example one MessageAggregate containing 110 Messages of Type A ist sent, one

44 6. The Flones Network Simulation Environment

Message Aggregate
Type: A
SingleSize: 50 Bytes
Multiplier: 100

Message Aggregate
Type: B
SingleSize: 50 Bytes
Multiplier: 200

Message Aggregate
Type: C
SingleSize: 50 Bytes
Multiplier: 200

Arrival Time: Round 2

Message Aggregate
Type: A
SingleSize: 50 Bytes
Multiplier: 100

Message Aggregate
Type: B
SingleSize: 50 Bytes
Multiplier: 200

Arrival Time: Round 1Arrival Time: Round 3

Input

Total Capacity: 1000 Messages

Message Aggregate
Type: B
SingleSize: 50 Bytes
Multiplier: 400

Message Aggregate
Type: C
SingleSize: 50 Bytes
Multiplier: 300

Message Aggregate
Type: A
SingleSize: 50 Bytes
Multiplier: 100

Message Aggregate
Type: B
SingleSize: 50 Bytes
Multiplier: 200

Message Aggregate
Type: C
SingleSize: 50 Bytes
Multiplier: 200

Arrival Time: Round 2

Message Aggregate
Type: A
SingleSize: 50 Bytes
Multiplier: 100

Message Aggregate
Type: B
SingleSize: 50 Bytes
Multiplier: 200

Arrival Time: Round 1Arrival Time: Round 3

Total Capacity: 1000 Messages

Step 1:
Start of Round 3

Step 2:
Arrival of new
Message Aggregates

700 new Messages

Message Aggregate
Type: A
SingleSize: 50 Bytes
Multiplier: 90

Message Aggregate
Type: B
SingleSize: 50 Bytes
Multiplier: 180

Message Aggregate
Type: C
SingleSize: 50 Bytes
Multiplier: 180

Arrival Time: Round 2 Arrival Time: Round 1Arrival Time: Round 3

Output

350 Messages/Round

Total Capacity: 1000 Messages

Message Aggregate
Type: B
SingleSize: 50 Bytes
Multiplier: 400

Message Aggregate
Type: C
SingleSize: 50 Bytes
Multiplier: 300

Step 3:
Sending
Message Aggregates

Message Aggregate
Type: A
SingleSize: 50 Bytes
Multiplier: 90

Message Aggregate
Type: B
SingleSize: 50 Bytes
Multiplier: 180

Message Aggregate
Type: C
SingleSize: 50 Bytes
Multiplier: 180

Arrival Time: Round 2 Arrival Time: Round 1Arrival Time: Round 3

Total Capacity: 1000 Messages

Message Aggregate
Type: B
SingleSize: 50 Bytes
Multiplier: 314

Message Aggregate
Type: C
SingleSize: 50 Bytes
Multiplier: 235

Step 4:
Dropping
Message Aggregates

Figure 6.1: Message Queue: Processing of Messages within one Round.

6.3. Design 45

def do_HTTP_REQUEST(self, MA):
"""
Handler for incoming HTTP requests.
Sends HTTP replies back to the requests’ source.
"""
out_MA = MA.copy() # content, multiplier remain the same
out_MA.source = MA.destination
out_MA.destination = MA.source
out_MA.size = 150
out_MA.content[’type’] = "REPLY"
self.send_out(out_MA)

Figure 6.2: Example message handler method.

MessageAggregate contains 220 messages of Type B and the 3rd one contains 20
messages of Type C.

Finally in Step 4, the queue’s capacity constraint is enforced. The queue currently
contains 1150 messages, therefore 150 messages have to be dropped. Those are
selected uniformly among the messages that arrived in the current round.

6.3.3 Service

Services are implemented in a quite natural way: Handler methods are defined for
incoming MessageAggregates, as shown in Figure 6.2.

Each service also needs a method called resource_request. It receives a resource to
be assigned (e.g. RAM) and a dictionary of already assigned resources (e.g. {CPU:
20 units, half_open_sockets:10}). The method returns the amount of resource units
that the service wants to have in this round (e.g. 10 units of RAM). This method
is called by the scheduler while distributing resources among the services.

Usually a service will look into its input queue to determine the right amount of
resources to request. Assume that an example service needs one unit of CPU and
one unit of RAM to fulfill a request. There are 20 pending requests in the input
queue.

We assume that the scheduler calls:

resource_request(self, "CPU", {})

The example service will return 20, because it needs 20 units of CPU to process its
pending requests.

Further we assume that CPU is currently the bottleneck, the node’s services request
more CPU than there is available. In this case the second call by the scheduler
might look like this:

resource_request(self, "RAM", {"CPU":10})

46 6. The Flones Network Simulation Environment

def resource_request(self, resource_name, assigned_resources):
"""
The service returns the amount of resources it wants to have
for this resource-type, given the assignment of other resources
in assigned_resources.
"""

Figure 6.3: Header of the base class resource_request method.

The example service only got 10 units of CPU in this round, therefore it will not be
able to process more than 10 requests from its input queue. As a consequence it will
return 10 — there is no need to reserve more RAM as it will not be used anyway.

The exact way in which the resources are assigned is described in the following
Section 6.3.4.

6.3.4 Scheduler

The scheduler assigns resources to each node’s services in each round. While a
normal scheduler in an operating system has to solve the question, which process
will be the next to get access to a resource, the Flones 2 scheduler has to answer a
different question: How will the fixed amount of resources that are available in one
round be distributed among the services.

As a basic approach a proportional share scheduler, which assigns priorities to dif-
ferent services was chosen. The following requirements had to be fulfilled:

• Handling of multiple resources: The scheduler has to be aware of the fact that
there are multiple resources and that a service needs to have all of his resource
requirements fulfilled to process messages.

• Efficient resource usage: The scheduler must not assign resources to services
that don’t need them. The scheduler must not leave an amount of a resource
unassigned if there still is a service with demand for this resource.

• Possibility to prioritize: It has to be possible to assign priorities to the different
services. Services with higher priority are guaranteed to get a certain share of
the total resources.

• Fairness and order-independence: The resources should be assigned equally
to the services, i.e. two services that have equal priorities and demand equal
amounts of resources should get equal assignments. The assignments must not
depend on the order of services in the node’s service list.

Fulfilling all of these requirements simultaneously requires looping over the services
and resources several times in nested loops. Algorithm 1 gives an idea of how the
assignment is done in the code.

In the following, the algorithm is described in a more prosaic way, starting with the
innermost loop and adding the outer loops later on:

6.3. Design 47

1. r is the first resource (e.g. CPU).

2. Ask each service, how much of resource r it wants to have.

3. All services requesting less than their share or exactly their guaranteed share of
the available resources will get the full requested amount. A service’s guaran-
teed share depends on his priority relative to the sum of all service’s priorities.

4. All services requesting more than their guaranteed share of the available re-
sources will get their guaranteed share for now.

5. Calculate how much of resource r is left.

6. Inner loop — assign rest of r: Return to Step 2 and distribute the rest of
resource r among the services whose demand was not satisfied yet using the
same scheme. Repeat until either resource r is completely spent or until there
is no more demand for r from any services.

7. Middle loop — assign the next resource: Return to Step 2, continuing with the
next resource. Whenever asking services about their desired resource usage,
tell them which amount of resource r has already been assigned to them.

8. Outer loop — only the assignment for the LAST resource is final: A later
resource limit might have caused a sub-optimal assignment of earlier resources.
This is why we can only be sure that the last assigned resource is the correct
value. Therefore we declare the assignment of the last resource rlast as final.
We delete all non-final assignments and return to Step 2, starting again with
the first resource.

To make the process more clear, here is an example of how the resource assignment
works:

• Assume that we have two services that compete for two resources: CPU and
I/O Bandwidth (IOBW).

• Service 1 needs 1 CPU and 2 IOBW to fulfill one request.

• Service 2 needs 2 CPU and 1 IOBW to fulfill one request.

• Service 1 has a priority of 3, Service 2 has priority 1.

• Each Service has 10 requests waiting in its queue. We have 10 units of each
resource.

• Inner loop for resource CPU: Service 1 requests 10 CPU, Service 2 requests 20
CPU. Both services request more than their share, so Service 1 gets 7.5 CPU,
service 2 gets 2.5 CPU. No unspent CPU resources are left.

• Inner loop for resource IOBW: Service 1 requests 15 IOBW because it got 7.5
CPU and needs twice as much IOBW to fulfill 7.5 requests. Service 2 only
requests 1.25 IOBW for the same argument. In the first round of the inner
loop, service 1 gets 7.5 and Service 2 gets 1.25 (it is below its share). In
the second round Service 1 gets another 1.25 IOBW because there is no more
competitor.

48 6. The Flones Network Simulation Environment

• Because Service one only got 8.75 IOBW, it can only fulfill 4.375 requests.
Therefore it only requires 4.375 CPU, the rest would be wasted.

• Outer loop: We only accept the assignment of 8.75 IOBW for Service 1 and
1.25 IOBW to Service 2 as final. We return to re-assign the CPU.

• Inner loop for resource CPU: Service 1 requests 4.375 CPU and gets those.
Service 2 requests 2.5 CPU and gets those. There is unspent CPU now, but
we can not use it as we are limited by the IOBW.

Algorithm 1: The Scheduler assigns resources to the services.
input : priorities
output : updated states, committed transitions
foreach r∈resources, s∈services do

finally_assigned_resources(s, r)← None

// OUTER LOOP
for #resources do

temp_assigned_resources = finally_assigned_resources
// MIDDLE LOOP
foreach r∈(resources\finally_assigned_resources) do

// INNER LOOP
while unassigned_resources(r) > 0 AND demand(r) > 0 do

foreach s∈services do
share(s, r)← unassigned_resources(r) · priority(s)∑

s1∈services
priority(s1)

foreach s∈services do
demand(s, r)← s.ask_for_demand(r, temp_assigned_resources(s))
if demand(s, r) ≤ share(s, r) then

temp_assigned_resources(s, r)+ = demand(s, r)
else

temp_assigned_resources(s, r)+ = share(s, r)

calculate_remaining_unassigned_resources(r)

finally_assigned_resources(last_resource)←
temp_assigned_resources

Resources are split into two categories: Persistent and disposable resources. An
example of a persistent resource is RAM, a node initially has a certain amount of it,
services may reserve some RAM for their tasks. The total amount of RAM is fixed,
so a service has to free RAM that it does not require any longer before any other
service can use it. An example of a disposable resource is CPU — at the beginning
of each new round, a certain amount of CPU-cycles is available. These are consumed
by the services and disappear.

6.3.5 Node

The Node class in Flones 2 represents a node in the network. Figure 6.4 shows an
overview of such a node.
Arriving MessageAggregates first have to pass the Classifier. This entity looks at
the protocol-field in each MessageAggregate and distributes it to the assigned ser-
vice. MessageAggregates that are not meant for this node are sent to the Forward-
ingService, a dummy-service that makes sure that MessageAggregates which are not

6.4. Additional Features 49

Incoming
Links

Classifier

Service 1

Service 2

Forwarding
Service

Scheduler

Outgoing
Links

Message Buffer

Loopback
Interface

Triggers
from User

Forwarding
Agent

Global
Routing

Database

Figure 6.4: Nodes in Flones 2.

processed otherwise use up resources (the actual forwarding decision is taken by a
separate ForwardingAgent). The MessageAggregates are enqueued at the Service’s
input queue and wait to be processed.
Next the Scheduler asks each service how much resources it wants to have. The
service answers this question based on the fill level of its input queue. The Scheduler
calculates the resource assignment based on the replies from all services and the
amount of available resources as described in Section 6.3.4.
The services can now process incoming MessageAggregates with the assigned re-
sources. During this process, new MessageAggregates might be created or it might
be decided that existing ones have to be sent out again. Those MessageAggregates
are passed to the ForwardingAgent which distributes them to an outgoing interface.
The MessageAggregates are enqueued in the corresponding queue and sent out as
soon as the traffic situation on the link permits it.
One special outgoing interface is the loopback interface. Messages on this interface
are buffered in a MessageBuffer until the beginning of the next round, when they
are passed to the classifier. This MessageBuffer can also be used to simulate triggers
coming from the user.
This procedure shows one issue we have to be aware of: A message aggregate will
at least take one round to pass a node. If the length of the simulation rounds is too
long compared to the transmission delay of the links, this will increase the packet’s
travel times.

6.4 Additional Features
Flones 2 has a number of special features that were implemented because they were
required at certain points in time. The following is a brief list of these functionalities:

• Anycast: Multiple Flones Nodes can be grouped into one anycast group. The
effect is that these nodes are mapped to a single node when calculating the
routing table.

50 6. The Flones Network Simulation Environment

• Moving services at runtime: Flones services can be moved between nodes.
This can for example be used to simulate the migration of virtual machines.
Costs for the migration are not automatically calculated, this has to be done
manually in the code that triggers the service movement.
A lookup mechanism has been implemented, which allows the user to set a
destination service for a MessageAggregate instead of a destination node. The
sending service on the source node has to make a lookup in a global service
table to find the correct destination node for the messages. Like in reality it
can happen that the destination service is moved while messages are on the
way there, in this case those messages contain the old destination node and
will therefore be sent to the wrong location.

• Live Attacker and Live Defender: Normally Flones 2 simulations are static, the
defender has a static network and the attacker selects a fixed attack scheme
prior to the simulation run. This mode of operations is used for iterative opti-
mization of network topologies, results of this process are shown in Chapter 7.
However there is a different mode of running more dynamic Flones 2 simula-
tions. Between two simulation rounds, special agents for attacker and defender
may re-configure the network at runtime. On the defender’s side they would
typically move services or resources, on the attacker’s side they would change
the attack’s targets. This mode of operations has been introduced to be able to
investigate the possibility of defending against DoS attacks by live-migrating
virtual machines containing the services. This scenario is discussed in Chap-
ter 8.

• Multiple same-cost paths: One important way to achieve resilience is redun-
dancy. Flones 2 supports redundant paths to a destination and is also able
to distribute traffic if multiple paths to the same destination have the same
routing costs. Currently the sending router makes a local decision to distribute
the MessageAggregates based on the interface’s outgoing queue lengths.

• Scenario Generation: A scenario generator was implemented, which builds a
topology based on the waxman algorithm ([43]). Then it randomly distributes
resources and services with dependencies. The “random scenario” presented
in Section 7.5 was initially generated by this method, but modified manually
afterwards.

6.5 Correctness and Performance
Several tests were made, to make sure that Flones 2 performs as expected.

There were no direct comparisons to other network simulators like NS2 or OMNet.
Pure forwarding tests of UDP packets are trivial, the correctness of Flones 2 in
such scenarios could be assured using unit tests. More sophisticated simulations in
traditional simulators usually involve TCP data flows, while Flones 2 currently does
not contain a TCP model. It would be possible to build a model of TCPs congestion
control based on TCP formulas for fluid simulation (like the one shown in [44]). On
the other hand, NS2 and OMNet do not contain models of service’s load behavior
— one main feature of Flones 2.

The assumptions that the load model and the scheduler are based on have been
verified in various tests. Practical tests have shown that the usage of CPU resources

6.6. Conclusions 51

scales linearly with the load of a web server. The used amount of RAM depends on
the load, but also on the number of worker processes. During the experiments that
are presented in Section 8.2 it could be confirmed that in virtualized environments,
the schedulers of hypervisors behave like the scheduler modeled in Section 6.3.4.

A number of plausibility tests was conducted on simulation scenarios, some of the
results are presented in Section 7. Comparing simulation results to prior expec-
tations sometimes yielded differences, however upon closer investigation it always
turned out that the expectations were wrong while the Flones 2 model was correct.
These differences were caused by not considering legitimate clients as a source of load
during a DoS attack scenario and under-estimating the influences of dependencies.

Performance tests of Flones 2 were conducted as well. As expected — and in analogy
to packet-level network simulators, the simulation time depends linearly on the num-
ber of message aggregate send events. In tests Flones 2 performed approximately
5000 of such send events per second on a 1.8 GHz machine, with tracing of events
to a file being turned on. As expected, the runtime of Flones 2 also depends linearly
on the number of rounds that are simulated.

6.6 Conclusions
In this chapter,the Flones 2 network simulator is described. Flones 2 aggregates
individual packets and sends them in the form of a message aggregate. A special
feature of Flones 2 compared with traditional network simulators is the calculation
of resource usage in the nodes.

6.7 Acknowledgements
The author would like to thank Jörg Willmann, who participated in the develop-
ment of the original Flones simulator and found the well-sounding acronym “Flones”
during a brainstorming session. Clemens Plank wrote the first optimization scripts
for it, Matthias Siegel and Andreas Korsten collected real-world data for the model
and Alexander Gitter performed the plausibility tests and implemented several im-
provements.

52 6. The Flones Network Simulation Environment

7. Attacks against a Static Defender

Denial-of-Service attacks are a problem of strategic resource distribution. The de-
fender usually has a network consisting of multiple servers. These servers host the
services, some of which are accessible to end users while others are internal backend
services.
The Microsoft DoS attack was already introduced in Chapter 3. It shows how an
attacker can exploit weaknesses in the network infrastructure to cause huge damage
with limited resources. In this example the weakness may seem very obvious. How-
ever, computer networks can become very complex, therefore, making sure that no
such weakness exists is a difficult task.
In this chapter we investigate the case of a static network, which means that the
defender can not make changes to the network when the attack has started. Buying
and setting up hardware and laying wires takes time. For the attacker on the other
hand, changing the attack strategy is a matter of giving a new command to his
drones. He decides on a much shorter time scale.
We want to discuss the resource allocation choices of attacker and defender in this
scenario, look at the influence of service dependencies and finally find and remove
DoS weaknesses.
Further we want to investigate a simple statement regarding the attacker’s strategy:
If the attacker has large amounts of resources (i.e. drones, bandwidth), he can afford
to spread his attack among many target services. The more the attacker’s resources
are limited, the more he will have to focus the attack.
This chapter is organized as follows. After briefly discussing related work in Sec-
tion 7.1, we will develop a game-theoretic model of DoS attacks in Section 7.2. In
Section 7.3 the case of multiple services or virtual machines per physical server is
discussed. In Sections 7.4 and 7.5, Flones 2 is used to find DoS-weaknesses in net-
works, while Section 7.6 investigates a method to fix them. Section 7.7 is about

54 7. Attacks against a Static Defender

the missing pieces that are needed to develop a real-world DoS defense from the
approach. Sections 7.8 to 7.10 conclude this chapter.

7.1 Related Work
Denial-of-service attacks and common defense mechanisms have already been cov-
ered in Chapter 2.3.
Game theory has already been applied to DoS investigations in the past. In [7]
a DoS defense framework involving filtering in routers and firewalls is described
and then evaluated game-theoretically. The authors of [18] look at DoS prevention
techniques like computational puzzles and evaluate them using game theory. These
game-theoretic considerations are very different from the resource-oriented view in
this thesis. Service dependencies have not been considered in related work.

7.2 A DoS Model based on the Colonel Blotto Game
In this section we introduce a model for DoS attacks based on game theory. There
are two active players, a DoS attacker and the owner of the attacked network, called
defender in the following.

7.2.1 Resources and Payoff

We assume that the defender has n services. The defender can assign resources (i.e.
CPU or network bandwidth) to the services which makes them harder to attack. The
defender’s strategic decision is the distribution of his C units of resources among his
services. As a consequence, each service si will have a service capacity ci, which
denotes the number of requests that service si can handle.
The attacker also has a limited amount of resources at his disposal, which correspond
to being able to send R requests. For the DoS attack, the attacker assigns requests
to services of the defender. For service si the number of attack requests is ra,i.
In analogy to game theory, the services can be seen as the battlefields of a war.
Both players distribute their resources among different battlefields. Thus, our DoS
attack model is a sequential version of the Colonel Blotto Game which was already
introduced in Section 4.2.
To model the payoff functions of attacker and defender, we introduce a static third
player, the good client. The good client is the representation of all legitimate users
of the services and competes with the attacker for the services’ resources.
The good client sends a representative amount of requests rgc,i to service i. If the
service is overloaded, some of these requests will not be fulfilled. As discussed in
Chapter 5, we assume that the defender can not distinguish legitimate and attack
requests, both are treated equally. Therefore it is equally likely that an attacker or
good client request is dropped. Thus, ci

rgc,i+ra,i
is the fraction of all requests that can

still be served. rgc,i
ci

rgc,i+ra,i
requests of the good client will be served. We define the

payoff for the attacker for attacking service si as the number of unanswered requests
by the good client to the service due to overload.

pa,i (ra,i) =

0 if rgc,i + ra,i < ci,(
1− ci

rgc,i+ra,i

)
· rgc,i otherwise (7.1)

7.2. A DoS Model based on the Colonel Blotto Game 55

The attacker’s payoff from the whole attack strategy is

pa(ra,1, . . . , ra,n) =
n∑

i=1
pa,i(ra,i). (7.2)

In our models we assume that the attacker can observe this metric, which is not the
case in reality and therefore debatable. The rationale is as follows:

• Maximizing the number of dropped good client requests is the attacker’s ulti-
mate goal. Therefore this metric describes the attacker’s payoff.

• The attacker can indirectly estimate the number of dropped good client packets
from the observed loss of his own clients and his estimate of the popularity of
the service.

• The goal of this analysis is hardening the network against the worst possible
attack. Therefore it makes sense to assume global knowledge.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

At
ta

ck
er

 s
co

re

Number of attack requests

c = 5
c = 10
c = 15

Figure 7.1: The payoff function for rgc = 1.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

N
um

be
r o

f a
tta

ck
ed

 s
er

vi
ce

s

Defender resources per service

Figure 7.2: The number of attacked services
for n = 100, rgc = 1, R = 100.

7.2.2 Strategies of Attacker and Defender

We model the situation as a zero-sum game, with the defender’s payoff being −pa.
The defender first has to decide, how to distribute his resources. After that the
attacker distributes his own resources to attack the services. We solve the game
using backwards induction starting with the second step (compare Section 4.1.4).

The attacker has to solve the maximization problem

max
ra,1,...,ra,n

n∑
i=1

pa,i(ra,i). (7.3)

For the further analysis of the model, we take some simplifying assumptions. The
good client is sending an equal amount of requests rgc to each of the services. To
avoid degenerate cases in which either the attacker or the defender is not powerful
enough to influence the game’s outcome, we assume that the attacker is strong
enough to attack a subset of the defender’s services, but not all of them.

We make the following observations:

56 7. Attacks against a Static Defender

• The attacker has to choose how many services he will attack (how many of the
ra,i will be larger than 0). As there is no payoff if rgc + ra,i < ci, there is no
point in attacking a service with less than ci − rgc resources.

• pa,i as displayed in Figure 7.1 is concave as soon as ra,i > ci − rgc. When
investing more resources into attacking a specific service, the marginal payoff

lim
∆ra,i→0

∆pa,i(∆ra,i) will decrease. Thus at some point it is better to attack one
more service than to stick with the currently attacked ones.

• As can be seen in Figure 7.1, the attacker can achieve a higher payoff from the
same number of attack requests, when focusing on weaker targets.

• The attacker will keep his marginal payoff equal among all attacked services.
If the marginal utility at one place was higher, the attacker would be able to
gain more by shifting resources there.

Summarizing we see that the best attacker strategy is to attack only a subset of the
services. The services in this subset will be attacked in a way which equalizes the
attacker’s marginal payoff, so e.g. if all services are equally defended, they will also
be equally attacked. In case of an unequal distribution of the defender’s resources,
the attacker will tend to attack the weaker-defended targets.
The defender has to distribute his resources C among the services and minimize the
attacker’s payoff by doing so. If the defender did not spread his resources equally,
the attacker would strike the less defended services first. This would increase the
attacker’s payoff and the defender’s resources would be wasted at a place which is not
attacked. This points out that in this model and under the assumptions described
above it is optimal for the defender to distribute his resources equally among the
services.
Figure 7.2 was obtained by simulation using a Python script. Here the defender
has 100 services, the vertical axis shows how each of them is defended. The good
client causes a load of one resource unit on each of the services. The attacker has
the capacity to create 100 resource units of load at his target services. As discussed
above, the defender decides to spread his resources equally among the services, the
attacker chooses a subset of services to attack with equal strengths. Figure 7.2
shows the number of services that the attacker decides to attack on the vertical axis,
while increasing the defender’s resources on the horizontal axis. One can see the
anticipated behavior, the attacker has to concentrate his resources when attacking
more strongly defended targets.

7.2.3 Experimental Verification

The above considerations were verified in a testbed. The server was a 3 GHz Core2
Duo machine, running Linux, an Apache web server and PHP5. As a purely CPU-
bound service, a PHP script that factored a large number was used. A single com-
putation of this task took roughly 7 milliseconds.
The Attacker was a Core2 Quad with 2.4 GHz, the Good Client a Core2 Duo with
2.5 GHz. Both, attacker and Good Client are realized using Apache Benchmark.
All three computers resided in the same local area network.
In the real world, the situation is different than in the theoretical model. In theory
we assumed that Attacker and Good Client send fixed amounts of requests, when
the capacity of the server is exceeded the extra requests are dropped.

7.2. A DoS Model based on the Colonel Blotto Game 57

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

R
el

at
iv

e
G

oo
d

C
lie

nt
 "L

os
s"

Attacker Concurrency

Measured Data
Prediction for c=3

Figure 7.3: Comparison of a testbed Experiment with the theoretical considerations. The
axis labels have been chosen to make the curve comparable to Figure 7.1. A value of
zero on the vertical axis means that the server serves the Good Client optimally, while
increasing values show the Good Client’s loss due to the server also having to serve the
attacker.

In reality, we have to set-up a TCP connection before being able to send requests.
If multiple requests are to be sent, existing TCP connections are usually re-used.
Since TCP includes error-handling, usually no requests are lost.

Apache spawns worker processes to handle requests. By default up to 200 processes
can be running simultaneously and another 100 TCP connections can be waiting in
a queue until they are assigned to a worker process.

On the client side, Apache Benchmark has a “concurrency” parameter that deter-
mines, how aggressive the benchmark will be. This parameter sets the number of
simultaneous open TCP connections. In each connection, the client will send a single
request and wait for the reply (stop and wait). Apache Benchmark as configured
for this experiment sends requests for a fixed time and counts the number of replies.
Requests that have been sent before the end of the experiment but have not received
a reply when the time has ended are not counted as failed requests, but simply ig-
nored, which is a difference to the Good Client that will be used in Section 9.6.
This difference is negligible, however, as there is only a single active Good Client
request at any time compared to 4269 Good Client requests that are successfully
served under optimal conditions.

Because of this, almost no request actually fails. In the following experiment, the
number of failed Good Client requests is zero. However, the attacker “steals” pro-
cessing power that would otherwise be used to serve the Good Client. As the Good
Client sends his requests one by one and as each request takes longer to process, the
number of responses that the Good Client receives gets lower. In other words, even
though the setting is different, we still expect to see the predicted effect.

Figure 7.3 shows exactly this behavior. Since the server is a dual-core machine,
we would expect it to be able to serve two requests (i.e. one from the Attacker
and one from the Good Client) simultaneously. However, each request spends some
time on the network and in the network stacks of the participating machines. The
experimental data shows that the Good Clients is still served optimally at a server-

58 7. Attacks against a Static Defender

side concurrency of 3. Therefore the theoretical estimate for c = 3 and rgc = 1 has
been drawn in the Figure as a reference.
This experiment shows that despite the many complicated aspects of real-world
servers, the model presented here behaves very similar to real systems. However
some parameters have to be interpreted differently. Sections 8.2 and 9.6 contain
additional testbed experiments.

7.3 Multiple Services per Server
In reality, often multiple services — for example web sites — are run on the same
machine. This section focusses on calculating optimal assignments of services to
servers. This can be seen as a preparation for Chapter 8, where the defender will
gain the possibility to move the services during the attack.
The following results were obtained using a similar model as in Section 7.2. A
scheduler was added which is a version of the scheduler in Section 6.3.4, but limited
to a single resource. We will take the scheduler as given, scheduling is not part of
the defender’s strategy.
Again we will calculate time in rounds, therefore our scheduling decision is not the
same as in a regular operating system. We do not decide which service should be
run next, but which amount of resources each service will get during the next round
of time.
In the simple case of a single resource this scheduler will act as follows:

• Each service has a priority ps. The share of service s is given as ps∑
i∈S

pi
.

• A service requesting less resources than its share will get the requested amount
of resources. The remaining (not needed) resources will be collected in a pool.

• A service requesting more than its share will get its share.

• This procedure will continue recursively. In each pass the resources from the
pool will be distributed among all services who require more.

Attacker and defender strategies were calculated using optimization algorithms to
find minimax-sound strategy combinations. For simplicity, all services have equal
scheduling priorities and the same amount of good client traffic.
Figure 7.4 shows the optimal strategies of attacker and defender in an example
scenario. The defender owns three servers with the capacity to serve 100 requests
per time unit each. Five services are run on these servers, the good client causes a
load of 10 requests on each of these services. The attacker’s capacity is increased
from top to bottom. As in the previous sections, the attacker’s score is based on
the number of lost good client requests, therefore the maximum achievable attacker
score is 50. The results of attacker and defender optimization are optimal, but not
unique (it is possible to swap services for getting a different assignment with equal
score).
We see that the defender tries to distribute his services as far as possible. This is a
logical choice as a concentration of services on the same server would also concentrate
good client requests — increasing the initial server load and allowing for a higher
attacker score as there are more good client requests that can potentially be dropped.

7.3. Multiple Services per Server 59

Attacker Resources: 200.00 Attacker Score: 10.91

Server 1
Resource Usage: 20.00 of 100.00

Server 2
Resource Usage: 220.00 of 100.00

Server 3
Resource Usage: 10.00 of 100.00

 Service 1
 10.00 (0.00 + 10.00) of 10.00

 Service 2
 110.00 (100.00 + 10.00) of 50.00

 Service 3
 110.00 (100.00 + 10.00) of 50.00

 Service 4
 10.00 (0.00 + 10.00) of 10.00

 Service 5
 10.00 (0.00 + 10.00) of 10.00

Attacker Resources: 400.00 Attacker Score: 21.82

Server 1
Resource Usage: 10.00 of 100.00

Server 2
Resource Usage: 220.00 of 100.00

Server 3
Resource Usage: 220.00 of 100.00

 Service 1
 110.00 (100.00 + 10.00) of 50.00

 Service 2
 110.00 (100.00 + 10.00) of 50.00

 Service 3
 110.00 (100.00 + 10.00) of 50.00

 Service 4
 110.00 (100.00 + 10.00) of 50.00

 Service 5
 10.00 (0.00 + 10.00) of 10.00

Attacker Resources: 800.00 Attacker Score: 32.76

Server 1
Resource Usage: 313.99 of 100.00

Server 2
Resource Usage: 313.99 of 100.00

Server 3
Resource Usage: 222.02 of 100.00

 Service 1
 222.02 (212.02 + 10.00) of 100.00

 Service 2
 156.99 (146.99 + 10.00) of 50.00

 Service 3
 156.99 (146.99 + 10.00) of 50.00

 Service 4
 156.99 (146.99 + 10.00) of 50.00

 Service 5
 156.99 (146.99 + 10.00) of 50.00

Attacker Resources: 600.00 Attacker Score: 27.50

Server 1
Resource Usage: 10.00 of 100.00

Server 2
Resource Usage: 320.00 of 100.00

Server 3
Resource Usage: 320.00 of 100.00

 Service 1
 160.00 (150.00 + 10.00) of 50.00

 Service 2
 160.00 (150.00 + 10.00) of 50.00

 Service 3
 160.00 (150.00 + 10.00) of 50.00

 Service 4
 160.00 (150.00 + 10.00) of 50.00

 Service 5
 10.00 (0.00 + 10.00) of 10.00

Figure 7.4: Optimal attacker and defender strategies with equal servers for attackers with
200, 400, 600 and 800 resource units.

60 7. Attacks against a Static Defender

The attacker has to make the same decision as before, he has to decide how many
servers to attack. If the services on one server are equally valuable (in terms of good
client requests) and equally prioritized (by the scheduler), he will always attack them
equally. With increasing resources the attacker will attack more servers as he did in
Section 7.2.

For Figure 7.5, the resources of the first server were doubled. The defender chooses to
keep three services on the stronger machine, as this increases the minimum resources
available to all services. Again the argument is the same as in Section 7.2.

When the attacker is weak, he will attack one of the weaker servers with a single
service. However as soon as he is strong enough, he will switch to attacking the
strong machine for maximizing the number of dropped good client requests.

7.4 Finding DoS-Weaknesses using Flones
In this section we switch from the simplistic game theoretic model to a network
simulation. Given a network topology, servers and services and information about
service dependencies (compare Chapter 3), we want to calculate the optimal at-
tack. This allows the defender to assess potential DoS vulnerabilities of his network
infrastructure.

The method is based on the Flones 2 network simulator. Conceptually it would be
possible to replace the simulator component with a traditional packet-based simu-
lator like NS2, however Flones 2 has two major advantages:

• The Flones 2 model of MessageAggregates makes the simulations fast.

• In Flones 2 a scheduler makes sure that resources like CPU and RAM are
required for message processing (see Section 6.3.4). If there are insufficient re-
sources, messages remain in the service’s queues which will eventually overflow.
In traditional network simulators, the only “resource” is the capacity of links,
processing of messages happens immediately and without costs.
Therefore unless a DoS simulation focuses on pure flooding attacking attacks,
a way to handle other resources would have to be introduced.

A single Flones 2 simulation run takes two inputs: A scenario (nodes, links, services,
attacker, good client) and an attack strategy.

simulation(scenario, attack_strategy) = attacker_score

The attack strategy is the attacker’s resource distribution among the potential tar-
gets, so analogous to Section 7.2.1, it can be written as a vector (ra,1, . . . , ra,n) with n
being the number of potential target services. The attacker’s resources are limited,
so ∑n

i=1(ra,i) = R. The output is again a score value based on the good client’s
packet loss.

While keeping the scenario constant, we run an optimization loop which searches
for the best possible attack strategy.

max
attack_strategy

simulation(scenario, attack_strategy)

7.4. Finding DoS-Weaknesses using Flones 61

Attacker Resources: 200.00 Attacker Score: 5.24

Server 1
Resource Usage: 30.00 of 200.00

Server 2
Resource Usage: 10.00 of 100.00

Server 3
Resource Usage: 210.00 of 100.00

 Service 1
 210.00 (200.00 + 10.00) of 100.00

 Service 2
 10.00 (0.00 + 10.00) of 10.00

 Service 3
 10.00 (0.00 + 10.00) of 10.00

 Service 4
 10.00 (0.00 + 10.00) of 10.00

 Service 5
 10.00 (0.00 + 10.00) of 10.00

Attacker Resources: 400.00 Attacker Score: 16.05

Server 1
Resource Usage: 430.00 of 200.00

Server 2
Resource Usage: 10.00 of 100.00

Server 3
Resource Usage: 10.00 of 100.00

 Service 1
 10.00 (0.00 + 10.00) of 10.00

 Service 2
 10.00 (0.00 + 10.00) of 10.00

 Service 3
 143.33 (133.33 + 10.00) of 66.67

 Service 4
 143.33 (133.33 + 10.00) of 66.67

 Service 5
 143.33 (133.33 + 10.00) of 66.67

Attacker Resources: 600.00 Attacker Score: 21.41

Server 1
Resource Usage: 454.47 of 200.00

Server 2
Resource Usage: 185.53 of 100.00

Server 3
Resource Usage: 10.00 of 100.00

 Service 1
 10.00 (0.00 + 10.00) of 10.00

 Service 2
 185.53 (175.53 + 10.00) of 100.00

 Service 3
 151.49 (141.49 + 10.00) of 66.67

 Service 4
 151.49 (141.49 + 10.00) of 66.67

 Service 5
 151.49 (141.49 + 10.00) of 66.67

Attacker Resources: 800.00 Attacker Score: 26.71

Server 1
Resource Usage: 467.93 of 200.00

Server 2
Resource Usage: 191.03 of 100.00

Server 3
Resource Usage: 191.03 of 100.00

 Service 1
 191.03 (181.03 + 10.00) of 100.00

 Service 2
 191.03 (181.03 + 10.00) of 100.00

 Service 3
 155.98 (145.98 + 10.00) of 66.67

 Service 4
 155.98 (145.98 + 10.00) of 66.67

 Service 5
 155.98 (145.98 + 10.00) of 66.67

Figure 7.5: Optimal attacker and defender strategies, Server 1 is twice as strong as Server
2 and Server 3. The attacker’s strength is increased from top to bottom.

62 7. Attacks against a Static Defender

0
0.5

1
1.5

2
2.5

3

0
0.5

1
1.5

2
2.5

3

0
1
2
3
4
5
6
7
8

Atta
ck

on Servic
e 1

Attack on Service 2

At
ta

ck
er

 P
ay

of
f

Figure 7.6: DoS optimization as a multidimensional problem: The attacker’s total payoff
is the sum of the attacks on individual services. The lower part of the graph shows the
area, where no service is overloaded, therefore the payoff is zero. The optimizer works on
such graphs with usually more dimensions and a constraint on the attacker’s resources.

For the choice of optimization algorithms, we have to look at the behavior of our
services when the load is increased. A single service corresponds to one dimension of
our problem space. Figure 7.6 is a two-dimensional variant of Figure 7.1 to illustrate
this.
A service will not loose any packets as long as it is not overloaded. This is a problem
when using traditional optimization algorithms like the conjugate gradient method.
If the starting point of the optimization is in the area without packet loss, the
optimization algorithm will not see an improvement in any direction and therefore
stop immediately.
When the load on a service is increased further, the good client’s packet loss will
show the same concave behavior as in Figure 7.1. However it should be noted that
also different loss functions may occur in a Flones 2 scenario. For example a load
balancer that is only active if the load on a service exceeds a certain level will lead
to discontinuities in the packet loss function.
Concluding we assume that the function to be optimized is piecewise differentiable,
which is the case for all scenarios in this chapter. The function may contain a limited
number of discontinuities in each dimension, and in each dimension there is a flat
area close to zero.
Practical experiments have shown that a combination of optimization algorithms
usually yields the best result. First we test many points that lie distributed in the
definition space, by using a random search, an evolutionary algorithm or by testing
all corners of the definition space. After that a downhill simplex quickly converges to
the right point. The optimization is based on standard algorithms from the libraries
SciPy1 and Pyevolve2.

7.5 Simulation Results
In this section we investigate two scenarios. The first one is shown in Figure 7.7 and
based on the DoS attack against Microsoft which was already described in Chapter 3.

1http://www.scipy.org/
2http://pyevolve.sourceforge.net/

http://www.scipy.org/
http://pyevolve.sourceforge.net/

7.5. Simulation Results 63

internet

CPU: 100000

good_client

CPU: 1500

attacker

CPU: variable

corp_router

CPU: 2500

corp_dns

dns_server.corp_dns

CPU: 1200

corp_http

http_server.corp_http

CPU: 1200

external_http_0

http_server.external_http_0

CPU: 600

external_http_1

http_server.external_http_1

CPU: 610

external_http_2

http_server.external_http_2

CPU: 620

Figure 7.7: MS-DoS scenario.

Here we have four HTTP servers, one of which is located in the company’s internal
network while the others are directly connected to the Internet. Additionally we
have a DNS server which is also located in the company’s internal network. The
router “corp_router” which connects the internal network to the Internet is the
bottleneck of the scenario.

The good client is the aggregation of all users of the HTTP service. Simplifying
the real-world DNS protocol, we state that he always has to send a query to the
DNS server before being able to send a request to one of the HTTP servers (this
is a “client-side direct dependency” combined with a “router dependency” in the
categorization of Section 3.1). The single point of failure of the network is the DNS
server, while the corporate router is the bottleneck on the way there. The attacker
can choose to send packets to each of the HTTP servers or to the DNS server, he is
not required to make a DNS query before each HTTP request.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

At
ta

ck
 S

pl
it

Attacker Resources

Corporate HTTP
Corporate DNS

Ext HTTP 0

Figure 7.8: Attacker strategy in the MS-
DoS scenario.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

G
oo

d
C

lie
nt

 P
ac

ke
t L

os
s

Attacker Resources

Figure 7.9: Attack success in the MS-DoS
scenario.

We simulated this scenario with different amounts of attacker resources. Each time,
the attacker strategy was optimized to find the best possible attack on the network.
Figure 7.8 shows the attacker’s resource distribution, Figure 7.9 the damage caused
by the attacker.

We find that the attacker needs a bit more than 500 resource units per simulation
round to cause damage. The weakest spot is one of the external HTTP servers with
a capacity of 600 resource units and which is busy for 100 resource units serving

64 7. Attacks against a Static Defender

internet

CPU: 10000

good_client

CPU: 1500

attacker

CPU: variable

Router 0

CPU: 7000

Router 1

CPU: 5000

Router 2

CPU: 5000

Router 3

CPU: 5000

Router 4

CPU: 5000

Server 0

DS 0

CPU: 1200

Server 3

DS 3

CPU: 1200

Server 1

DS 1

CPU: 1200

Server 2

DS 2

CPU: 1200

Server 4

DS 4

CPU: 1200

Server 5

EUS 0

CPU: 1200

Server 6

EUS 1

CPU: 1200

Server 7

EUS 2

CPU: 1200

Server 8

EUS 3

CPU: 1200

Server 9

EUS 4

CPU: 1200

Figure 7.10: Random scenario.

requests from the good client. Starting at 900 units of attack capacity, the at-
tacker switches to attacking services behind the bottleneck router. At this point,
the router’s load per round consists of 400 DNS queries from the good client, 100
HTTP requests from the good client, 900 requests from the attacker and the cor-
responding replies for all of these requests, so the router would need 2800 resource
units to cope with the load. Causing packet loss at the router would have been
possible sooner, but the attack on the external HTTP server still had the higher
payoff. When attacking the bottleneck, the attacker is indifferent between the DNS
service and the internal HTTP service. Packets to both targets flow through the
weak router and therefore have the same effect while at the same time the bottleneck
makes it impossible to overload either service.
The second scenario shown in Figure 7.10 was created by a random topology and
service dependency generator. The blue dashed arrows are the service dependencies.
For example when “End-User Service 0” (EUS 0) receives a request, it has to ask for
some information at “Dependency Service 0” (DS 0) which again has to ask back at
DS 3 (“server-side direct dependencies” according to Section 3.1).
The results of simulating the random scenario are shown in Figures 7.11 and 7.12.
Additionally Figures 7.13 and 7.14 show the optimal attack strategies of attackers
with 1500 and 1550 resource units per round against the random scenario. These
two graphics were generated by Flones’ Graphviz Tracer implemented for [45]. This
type of graphical output greatly helps in identifying the actual weaknesses.
The attacker needs 500 resource units to initially cause damage. With this amount
of resources he targets EUS 2, however the weak spot responsible for the packet
loss is Router 2 which becomes overloaded with EUS 2 messages, DS 1 and DS
0 messages and traffic from the good client. At 1550 resource units, the attacker
starts distributing his resources to also attack EUS 0. This causes a massive increase

7.6. Hardening the Network: The Defender Side 65

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

At
ta

ck
 S

pl
it

Attacker Resources

EUS 0
EUS 1
EUS 2
EUS 3
EUS 4

Figure 7.11: Attacker strategy in the ran-
dom scenario.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

G
oo

d
C

lie
nt

 P
ac

ke
t L

os
s

Attacker Resources

Figure 7.12: Attack success in the random
scenario.

Figure 7.13: Optimal attack against the random scenario for an attacker with 1500 resource
units per round. Only e2 is attacked.

in the load of DS 0 which becomes the new main target. At 2600 resources units
the attacker opens up a new front by targeting EUS 3. Again the main load is
not created at the targeted service, but in Routers 3 and 4, amplified by of EUS
3’s dependencies. At 2950 resources the attacker finally adds EUS 4 to its list of
targets.

As we see in this scenario, the attacker actually increases the number of targets
when being supplied with more resources. This way he can maintain an almost
linear increase in his payoff, despite the concave nature of the individual payoff
functions.

7.6 Hardening the Network: The Defender Side
In this section we add an outer optimization loop to the simulation to make the
defender improve his network. In game-theoretic terms we calculate a minimax
solution:

minDefenderStrategy maxAttackerStrategy AttackerScore

or equivalently

66 7. Attacks against a Static Defender

Figure 7.14: Optimal attack against the random scenario for an attacker with 1550 resource
units per round. The attacker adds e0 to the set of attacked hosts.

maxDefenderStrategy minAttackerStrategy DefenderScore,

where the attacker’s score is again the good client’s packet loss. On the other hand
the defender’s score is based on the successfully served good client requests. We will
use the defender’s score as the main metric in this section.
John von Neumann’s minimax theorem only guarantees the existence of this solution
for mixed strategies. In our cases, solutions exist but are generally not unique — as
we saw in the previous Section 7.5 there are trivial examples of situations where the
attacker is indifferent between attacking two services.
While we continue using standard conjugate gradient and downhill simplex optimiz-
ers for the attacker optimization, we completely switch to evolutionary algorithms
for the defender. This is because the inner optimizers usually do not hit the optimum
perfectly but show random fluctuations. A Flones 2 simulation run is a complex cal-
culation based on 64-bit floating point numbers. The limited floating point accuracy
introduces errors that accumulate during a simulation run. They become significant
when trying to calculate gradients on the results of multiple simulation runs. One
can say that the outer optimizer sees a “rough” landscape that is has to run on.
Evolutionary algorithms mainly test random points of the whole definition space and
then narrow down the search on areas where good solutions were found previously —
this procedure makes them more stable in our situation. However as will be shown
below, they also usually do not find an optimum.
The combination of inner and outer optimizations also takes relatively long to ana-
lyze. Simulation runtimes for the two scenarios investigated below were in the order
of 4-6 hours when both optimizations were used. A pure attacker optimization
usually takes less than a minute.
The MS-DoS scenario already presented in Section 7.5 was tested with the new
defender. Only the resource allocation among the different servers was optimized.
One aspect that might be interesting for future work is the investigation of changes
to the topology — the defender would be allowed to connect his nodes differently.
However this would make the definition space of the problem even larger, therefore
it is not clear, how topology-changes for the defense can be simulated effectively.

7.6. Hardening the Network: The Defender Side 67

In the currently investigated MS-DoS scenario as shown in Figure 7.7, there are six
nodes under the control of the defender. The defender has 70 000 resource units to
distribute among them, the attacker can distribute 20 000 resource units. As before,
the attacker needs one resource unit to send one request while the defender requires
one resource unit to answer it.
The router at the entry of the corporate network also requires one resource unit to
forward a message. This router is not attacked directly, but traffic to the DNS and
corp_http servers generates load on this router. Again, the single point of failure of
this network is the DNS server, while the corporate router is the bottleneck on the
way there.

Node Attacked Defended
Router X
DNS X X
corp_http X X
http0 X X
http1 X X
http2 X X

During the optimization, 642 different defender strategies were tested by the evolu-
tionary algorithm. Table 7.1 shows the 10 best strategies that it encountered while
optimizing, each one with the corresponding optimized attacker strategy. We see
that in all defense strategies, the defender assigns the highest amount of resources to
the router and almost always the second-highest to the DNS server. The optimizer
correctly detected the single points of failure on this network.
Two different strategies achieved the highest defender score of 3074. Flones 2 graphs
of these simulation runs can be seen in Figures 7.15 and 7.16. These graphs were
obtained by adding a tracing to the simulator, which produces a graphical output.
In both graphs the defender assigns very small amounts of resources to two of the
external HTTP servers, while the 3rd one gets more computing power. These strate-
gies are clearly not optimal as the uneven distribution wastes resources on server
http0.
Figure 7.17 shows a manually chosen defense strategy for the MS-DoS network with
a score of 4690 — a significant improvement compared to the evolutionary optimiza-
tion.
The second scenario, called cascading scenario in the following, is a smaller version
of the random scenario from Section 7.4. It is shown in Figure 7.18.
Here we have three end-user services (EUS) that depend on three back end services
(dependency services, DS). The back end services are not directly accessible to the
attacker. The defender distributes resources among all six services. The routers in
this scenario have plenty of resources, so they are not bottlenecks.

Node Attacked Defended
EUS 0 X X
DS 0 X
EUS 1 X X
DS 1 X
EUS 2 X X
DS 2 X

68 7. Attacks against a Static Defender

Score
D
efender

Strategy
(%

)
A
ttacker

Strategy
(%

)
(D

efender)
R
outer

D
N
S

corp_
http

http0
http1

http2
D
N
S

corp_
http

http0
http1

http2
3074

27.8
27.8

22.2
11.1

5.6
5.6

23.7
28.2

0.0
24.0

24.0
3074

27.8
22.2

16.7
22.2

5.6
5.6

28.2
23.7

0.0
24.0

24.0
2778

40.0
20.0

0.0
10.0

20.0
10.0

0.0
100.0

0.0
0.0

0.0
2747

26.3
26.3

21.1
15.8

5.3
5.3

22.9
29.7

0.0
23.7

23.7
2484

27.8
22.2

5.6
16.7

5.6
22.2

30.0
44.8

0.0
25.2

0.0
2483

31.2
25.0

6.2
18.8

12.5
6.2

35.0
65.0

0.0
0.0

0.0
2456

27.8
16.7

16.7
5.6

11.1
22.2

21.4
54.0

24.7
0.0

0.0
2355

38.5
38.5

7.7
7.7

7.7
0.0

25.4
74.6

0.0
0.0

0.0
2330

55.6
11.1

11.1
11.1

0.0
11.1

0.0
100.0

0.0
0.0

0.0
2263

29.4
23.5

23.5
5.9

11.8
5.9

41.8
58.2

0.0
0.0

0.0

Table
7.1:

B
est

optim
ization

results
ofM

S-D
oS

scenario.

7.6. Hardening the Network: The Defender Side 69

Figure 7.15: Best defense result 1 for the MS-DoS scenario.

Figure 7.16: Best defense result 2 for the MS-DoS scenario.

Figure 7.17: Best manual defense for the MS-DoS scenario.

70 7. Attacks against a Static Defender

Good Client

Attacker

EndUser
Server 0

Dependency
Server 0

Dependency
Server 1

Dependency
Server 2

EndUser
Server 1

EndUser
Server 2

Internet

Figure 7.18: The cascading scenario.

Figure 7.19: Best defense result for the cascading scenario.

The defender can distribute 60 000 resource units while the attacker has 30 000
resource units available. We see that DS 0 is a potential weak spot in the network,
as both EUS 0 and EUS 1 depend on it.

Table 7.2 shows the 10 best optimization results of the 680 configurations that the
evolutionary algorithm tested. The best result is also shown as a Flones 2 graph in
Figure 7.19. We see that the weak spot at DS 0 is recognized, this server is supplied
with a lot of resources. However, even the best distribution is clearly suboptimal,
as it assigns 20% of the total resources to EUS 2, but only 10% to DS 2. As EUS
2 depends on DS 2 and as the resources scale equally, EUS 2 will never be able to
serve as many requests as its resources permit.

Figure 7.20 shows a manually selected defense strategy, where this flaw has been
fixed. The spare resources from EUS 2 have been equally distributed among all
servers. This raises the score by a small amount from 13572 to 13654.

Concluding we can see that the optimization produces good but not optimal results.
With the cascading scenario, the manual improvement has not been as impressive
as with the MS-DoS scenario. However, in the cascading scenario, manual improve-
ments are not that obvious either.

7.6. Hardening the Network: The Defender Side 71

Sc
or
e

D
ef
en

de
r
St
ra
te
gy

(%
)

A
tt
ac
ke
r
St
ra
te
gy

(%
)

(D
ef
en

de
r)

D
S0

EU
S0

D
S1

EU
S1

D
S2

EU
S2

EU
S0

EU
S1

EU
S2

13
57

2
25

.0
25

.0
10

.0
10

.0
10

.0
20

.0
47

.4
10

.1
42

.5
13

43
8

22
.7

22
.7

9.
1

9.
1

13
.6

22
.7

43
.2

7.
2

49
.7

13
15

6
25

.0
25

.0
0.
0

8.
3

16
.7

25
.0

50
.2

0.
0

49
.8

13
14

0
23

.8
23

.8
9.
5

9.
5

9.
5

23
.8

45
.7

8.
8

45
.4

12
98

9
20

.0
20

.0
0.
0

6.
7

26
.7

26
.7

49
.3

0.
0

50
.7

12
80

5
27

.8
16

.7
11

.1
11

.1
16

.7
16

.7
36

.2
14

.0
49

.8
12

75
9

21
.1

26
.3

10
.5

10
.5

10
.5

21
.1

45
.5

9.
0

45
.5

12
72

6
23

.1
23

.1
0.
0

7.
7

15
.4

30
.8

50
.5

0.
0

49
.5

12
70

5
23

.8
23

.8
9.
5

4.
8

14
.3

23
.8

50
.4

0.
0

49
.6

12
69

0
19

.0
23

.8
9.
5

9.
5

14
.3

23
.8

43
.2

7.
1

49
.7

Ta
bl
e
7.
2:

B
es
t
op

tim
iz
at
io
n
re
su
lts

of
th
e
ca
sc
ad

in
g
sc
en

ar
io
.

72 7. Attacks against a Static Defender

Figure 7.20: Manual better defense for the cascading scenario.

The reason for the sub-optimality is that the two nested optimizations take very long
to complete. The evolutionary algorithm would find better defense strategies if it
had more time, however simulation durations were already extreme for the solutions
presented here and the very small simulated networks. Further research, especially
in the field of optimization is required to develop a solution that works on larger
networks.

7.7 Practical Considerations
To perform the attacker analysis as well as the defender analysis that we presented
here, a model of the investigated network is required. This section is intended to
provide hints on how to build a system which automates this task.
As already discussed in Section 3.2, network inventory is a task of network admin-
istrators. Ideally the administrator of a company network should have a plan of the
network topology, hardware devices and also the services and their dependencies.
Such a plan may be available in the form of text files and drawings, however for
a large network the use of a management software like HP Open View[26] is more
desirable.
Section 3.2 also discussed that there is a lot of related work regarding dependency
discovery of networked services.
One more necessary step is discovery of available resources and resource consump-
tion. We need information about the resource usage of each request type and in
case of multiple services on a single machine, the behavior of the server when faced
with a mixed load. If the network is sufficiently outfitted with monitoring agents
— ideally on every server — this can be discovered automatically by learning from
measurement values during normal operations. If this is not the case, active probing
may be required.
When all data has been collected, a model of the network for Flones can be generated
in the form of a Python program. The process of defining networks and services in
Flones was inspired by the TCL-based simulation scripts of NS2. The actual Flones
simulation core is included as a module which is called with the network topology
as a parameter.
As shown above, a static analysis of a network for discovering weaknesses works
very well. Automatically finding an optimal defense is computationally expensive,
so in the worst case the network administrator would manually build an improved

7.8. Conclusions 73

topology based on the acquired knowledge of the old infrastructure’s weaknesses and
then test the new model with Flones before making changes to the real network.

7.8 Conclusions
In this chapter we have shown that DoS attacks can be modeled as a sequential
variant of the well-known Colonel Blotto Game with a payoff-function based on
a good client’s packet loss. Dependencies between services have the potential of
creating bottlenecks which allow a DoS attacker to cause huge amounts of damage
with little effort. Such weak spots in a network can be found when optimizing an
attacker’s strategy using a network simulator. If no bottleneck can be exploited, the
attacker will concentrate his attack on few targets if his possibilities are limited. A
stronger attacker can afford to attack a larger number of targets at once.

We have developed a method which can identify weak spots in network topologies
that might be exploited by a DoS attack. This method is designed to be used by the
owner of the attacked network — the defender — to investigate its own infrastructure
and fix weaknesses there.

An automatic improvement of the network topology is currently only feasible for
small network topologies, as it is computationally expensive.

Key findings in Chapter 7:

• We use the Good Client’s packet loss as a metric for an attack’s
success. When increasing the attack traffic to a service, this metric
follows a concave curve: When the service is already overloaded,
further increasing the strength of the attack gives the attacker less
and less benefit.

• An attacker with limited resources will concentrate his attack to a
single target. The stronger the attacker is, the more targets he wants
to attack.

• If multiple services have to be defended and all of them are equally
valuable, the defender should split the defensive resources equally.

• In the case that m services run on n physical servers with m>n,
the attacker will first choose the servers to attack, depending on his
resources. Then he will attack all services on the chosen servers.

• Weaknesses in networks can be found by optimizing the attacker’s
strategy. However, adding an outer optimization for improving the
network leads to very long simulation times.

7.9 Outlook
“Flash Crowds” of visitors on a web site can create similar overloads as DoS attacks.
The methods investigated here are suitable for improving the worst-case flash crowd
behavior of a network.

If the goal of an analysis is protection against a flash crowd rather than a DoS attack,
one key assumption changes. For DoS attacks we assumed that the attacker will

74 7. Attacks against a Static Defender

attack the set of services that causes the maximum damage. For a flash crowd, the
defender will be able to give hints on which services might potentially be affected and
which ones are completely uninteresting for normal users. Therefore a flash-crowd
analysis will rather focus on the public web servers than on some internal website
which requires a user account.

To achieve this, the recommended procedure is to model the complete network in-
cluding the uninteresting services and to assign a good client usage to each of them.
However, the options of the attacker should be limited to services where a flash
crowd appears possible. This makes sure that dependencies which receive load from
the public servers as well as from internal services are calculated correctly.

The methods developed in this chapter also appear suitable for resource dimen-
sioning of Web Services. One key property of web services that represent business
transactions is the amount of service dependencies. Flones would be able to simulate
such networks and find resource bottlenecks.

7.10 Acknowledgements
The author would like to thank Heiko Niedermayer for discussing the topics in this
chapter. Alexander Gitter wrote parts of the Flones 2 simulations presented here
and developed the components that generated Figures 7.13 and 7.14. Bernd Schultze
worked on the defender optimization.

8. Attacks against a Dynamic Defender

As was shown in Section 4.2.5, timing is a huge issue in Colonel Blotto Games. In
the Classical Blotto Game, both players act simultaneously — a fact which leads
to the complicated properties of the game. If the two players act sequentially, the
second player has a major advantage as he can observe the first player’s decision and
react accordingly. When the resources of both players are almost equal, the second
player will always win.

The DoS game introduced in Chapter 7 is basically a sequential Colonel Blotto game.
First the defender builds his network, a decision which can not be changed easily
afterwards. Changes to the network topology and servers have to be conducted
manually, are costly and possibly make the services unavailable during the time of
the change. Therefore the defender is inflexible, during the attack he has to stick
with his prior decision. The attacker on the other hand has time to investigate the
network’s properties, i.e. by trying different attacks and observing the results. He is
flexible to change his choice at any time.

In modern data centers, services often run on virtualized hardware. Virtualization
abstracts from the underlying hardware and allows for more efficient resource usage,
as multiple virtual machines can share a physical machine. It also can be used for
security purposes, as it allows to isolate services.

The feature which makes virtualization interesting in our context is live migration.
Virtual machines can be moved from one physical machine to another, the actual
downtime during this process is very short and barely noticeable.

Therefore virtualization can be used to change the defender’s service allocation
quickly during an ongoing attack.

We will discuss related work in Section 8.1. Section 8.2 is about the performance
of migrating web servers under high-load conditions with XEN virtualization. The

76 8. Attacks against a Dynamic Defender

scenario for this chapter is outlined in Section 8.3, Section 8.4 gives strategies for at-
tacker and defender. Simulation results are presented in Section 8.5 while Section 8.6
concludes this chapter.

8.1 Related Work
Virtual machines are widely used in today’s data centers, especially in the context
of cloud computing. A physical server contains several virtual servers, each of which
runs its own operating system and set of services. A scheduler cares for the distri-
bution of physical resources between the virtual machines. Common virtualization
solutions are KVM1, XEN2, VirtualBox3 and VMWare4.
Virtualization solutions allow for moving virtual machines between physical ma-
chines. During a “cold migration”, the virtual machine is turned off. “Live migra-
tions” move a virtual machine at runtime. This is done by copying the state of
the running virtual machine to the new physical machine while the machine is still
running on the source host. Since the machine’s state changes during the process,
the differences are copied in a second step. If the states on both sides are suffi-
ciently similar, the machine is turned off on the source host and finally started on
the destination host. Therefore there is still a short downtime of usually less than a
second.
One option of using virtualization for improving the defender’s chances during an
ongoing denial-of-service attack is cloud computing. Virtual machines on Amazon
EC2 can be started within minutes, theoretically it is possible to start thousands of
servers. However, they are charged by usage which can be very expensive especially
when a lot of data is transmitted (0.08 US-$ - 0.19 US-$ per Gigabyte at the time
of this writing5, which translates to 36 US-$ - 85.50 US-$ per “gigabit-hour”). If the
attacked service is valuable enough, renting resources in the cloud is a valid option
for defense.
A proof-of-concept has shown, that also attackers can rent resources in the cloud for
denial-of-service attacks6.
DoS defenses using virtualization have also been suggested by the authors of [46].
We developed this idea independently from them because of game-theoretic consid-
erations. They show in an experiment that migration of a virtual machine using
XEN can improve load conditions during a DoS attack. Experiments with XEN
under DoS conditions have also been conducted for this thesis, see Section 8.2.
The focus of this thesis differs from that of previous work, as our main subject of
research is the strategic behavior of attacker and defender, which was not considered
before.
There has been related work, in the field of load balancing server farms. Algorithms
were developed to handle legitimate load, for example in [47] and [48]. These algo-
rithms distribute services among physical servers based on the observed load in the
past. We will see in the following sections that an attacker might be able to exploit
this property.

1http://www.linux-kvm.org/
2http://www.xen.org/
3http://www.virtualbox.org/
4http://www.vmware.com/
5http://aws.amazon.com/de/ec2/pricing/
6http://www.h-online.com/security/news/item/Thunder-from-the-cloud-1051917.html

http://www.linux-kvm.org/
http://www.xen.org/
http://www.virtualbox.org/
http://www.vmware.com/
http://aws.amazon.com/de/ec2/pricing/
http://www.h-online.com/security/news/item/Thunder-from-the-cloud-1051917.html

8.2. Motivating Experiments 77

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

R
es

po
ns

e
tim

e
of

 H
TT

P
re

qu
es

t (
s)

Time (seconds)

Figure 8.1: Migration of a small virtual machine.

8.2 Motivating Experiments
Various experiments on live migration of loaded services have been conducted during
the research for this thesis. This section presents results of a testbed-experiment that
was conducted using the XEN hypervisor7.
The setup consisted of a client and two physical servers, each one equipped with
a Core 2 Duo processor (with support for hardware virtualization) and 4GB of
RAM. As services, HTTP servers were placed in “virtual appliances” — ramdisk-
based virtual machines. The virtual servers were tested with two different RAM
configurations, the small variant had 64 MB of RAM, while the large one used 1280
MB.
The client was an Apache Benchmark. This benchmarking tool can be configured
to send a number of requests (i.e. 10) simultaneously. A new request is sent as soon
as a reply for one of the old requests arrives, therefore the number of concurrently
active requests is kept constant. In this scenario, no requests remain unanswered.
Each HTTP request triggered a CPU-intensive CGI script that took 0.1 seconds to
run, therefore delaying the response. The expectation is that one of the dual-core
servers can serve 20 requests of this type per second.
Figure 8.1 shows the response-times of a virtualized web server with 64 MB of RAM
during a migration. The machine is constantly loaded with 20 concurrent requests
during the process and migrated to a new server at second 15. One can see a peak
in the graph at this time, which is caused by background load when the virtual
machine’s state is transferred to the new server. As this is a live migration, the
actual downtime of the virtual machine is less than one second.
The total cost of the migration measured in fewer processed requests is moder-
ate. Without migration the server could typically process 1034 requests within 60
seconds, with the migration this number dropped to 1018. These results were repeat-
able, so the costs of a migration can be assumed to be equivalent to the processing
of 16 (CPU-intensive) HTTP requests.
In Figure 8.2, the same migration experiment is performed on a virtual machine with
1280 MB RAM. In this experiment, the response times increased for a period of

7http://www.xen.org/

http://www.xen.org/

78 8. Attacks against a Dynamic Defender

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60

R
es

po
ns

e
tim

e
of

 H
TT

P
re

qu
es

t (
s)

Time (seconds)

Figure 8.2: Migration of a large virtual machine.

25 seconds. Again the service remained responsive during the migration, the actual
downtime during the migration was again less than a second.
In this experiment the number of processed requests dropped to 909, so the migration
costs can be assumed to be equivalent to 125 HTTP-requests.
Finally Figure 8.3 shows a DoS mitigation experiment. Here two virtual servers run
on a single physical server. Each virtual server is loaded with 10 concurrent requests.
A DoS detection mechanism moves virtual server 2 to an unloaded physical server
as soon as the average load of the physical server in a 10-second window is above
90%. The 64 MB virtual appliances were used for this experiment.
The migration is triggered after 13 seconds. After that the response times of the web
servers are reduced dramatically. Again the migrated virtual machine is unavailable
for approximately one second.
The situation was compared to the same scenario without defense. If both virtual
machines remain on the same server, they are able to serve 508 and 509 requests
within 60 seconds. If the defense is triggered as defined above, the total amount of
processed requests increases to 923 for virtual server 1 and 910 for the (migrated)
virtual server 2.
Concluding we can say that live migration comes at moderate costs. Migration as a
DoS defense is only useful, if the benefit of a migration is higher.

8.3 Scenario and Assumptions
The added flexibility of virtualization has its price. There is generally some overhead
because of virtualization, however, as today’s virtualization solutions are optimized
for running servers and as virtualization is also used because of other advantages
(e.g. cost reductions because of better server utilization, enhanced security due to
the isolation of virtual machines), we assume those static costs to be negligible.
However, as shown in the previous section, live migration requires the transfer of
hundreds of megabytes of state information from one machine to another which
makes migrations costly.
Therefore it is also clear that an attacker who knows that virtualization is used as a
DoS defense would want to trick his opponent into moving machines unnecessarily

8.3. Scenario and Assumptions 79

(a) Virtual server 1

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

R
es

po
ns

e
tim

e
of

 H
TT

P
re

qu
es

t (
s)

Time (seconds)

(b) Virtual server 2

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60

R
es

po
ns

e
tim

e
of

 H
TT

P
re

qu
es

t (
s)

Time (seconds)

Figure 8.3: Load-balancing during a DoS attack. Initially both web servers run on the
same physical machine. When the attack is detected, guest 2 is moved to an unloaded
server.

(this would fall under “Additional vulnerabilities created” in the taxonomy for DoS
defense evaluation in Section 9).

The following sections discuss assumptions regarding the scenario.

8.3.1 Information

In reality, moving virtual machines (usually within a single data center) without
losing network connectivity is done on Layer 2. There is a “virtual bridge” inside each
of the physical servers which makes Ethernet connectivity to the outside network
available inside the virtual machines. Therefore virtual machines can be moved
without losing their (possibly globally routeable) IP address. An alternative setup
would consist of a load balancer at the edge of the network which hides the physical
locations of the services inside.

80 8. Attacks against a Dynamic Defender

Search
Phase

Migration
Phase

Attack
Phase

Search
Phase

Migration
Phase

Attack
Phase

Search
Phase

Attack
Phase

1 2 3 4 5 6

A
tt

a
ck

e
r

Pa
y
o
ff

Figure 8.4: Attack Dynamics. The vertical axis shows the attacker’s payoff, i.e. lost packets
of a good client. The horizontal axis is time.

In both cases we assume that the attacker does not have complete knowledge of the
attacked network. In case of a service migration, the attacker will notice the changed
service capacity and the migration overhead, so he will know that something has
changed. However as changes happen locally within the defender’s network, the
attacker will not know the new assignment of virtual machines to physical servers.
To get current information, the attacker will have to do probing by running different
attacks and observing the results. The attacker is smart and will try to react as well
as possible, but the attacker’s limited knowledge gives the defender an advantage,
at least for a certain time.

8.3.2 Dynamics

The space of possible strategies for attacker and defender is very large. For this
thesis we reduce the strategy space by restricting ourselves to defender strategies
that follow a certain timing pattern. The defender will decide whether or not to
move services at fixed points in time. A strategy in which moving virtual machines
can directly be triggered by changes in the attack is potentially more exploitable.
In our case the decisions are made in fixed intervals to limit the maximum amount
of resources which is spent for moving services.
The above assumptions lead to a behavior of attacker and defender that is shown in
Figure 8.4.
At (1) the attack starts. The attacker initially does not know how he can successfully
attack the defender’s network, so he has to do probing. This means that he tries
different attacks and observes the amount of damage done.
The process is similar to the attacker optimization in Chapter 7, the attacker tests
different strategies. However, now he knows that he only has a limited amount of
time available until the defender will react. Searching for the optimum will probably
take too long and the attacker’s payoff during search periods is lower than the payoff
of constantly sending a reasonable attack pattern. So eventually (2) the attacker
chooses an attack which has proven to be good — but which is probably not optimal.
At (3) the defender decides to change his attack. Between (3) and (4) there is an
increased resource consumption on the moved services — as discussed above, moving

8.4. Strategies 81

services is costly. The total costs of moving services (in attacker payoff units) is the
shape colored red.

At (4) moving the services has ended and the defender is fully operational in his
new network state. As the defender reacted to the attacker’s actions, the attacker’s
last attack is probably ineffective now. The attacker now has to start his search for
an attack strategy again — and during the search he will have a lower payoff than
before. The area marked green is the defender’s benefit from moving the services in
attacker payoff units.

The whole process will repeat now. The attacker decides on an attack at (5) which
remains static until the defender decides to change his network again. The whole
process continues to iterate until at some point one of the opponents gives up (6).

From the picture we see that the duration of the defender’s cycle and the duration
of the attacker’s search are important parameters to be investigated. This will be
done in later sections of this chapter.

8.3.3 Scheduling

Schedulers of virtual machine monitors try to assign a fair share of resources to each
virtual machine. Therefore in the following we will continue with the proportional
share scheduler that was introduced in Section 6.3.4 and already used in Chapter 7.
Own experiments with XEN in [49] have shown this to be realistic.

8.4 Strategies
This section discusses different strategies for the attacker and defender. We separate
them into three categories, simple and clearly sub-optimal strategies, heuristics that
we will use for the simulations and advanced strategies might not be realistic in
practice, but help to estimate what is theoretically possible.

8.4.1 Simple Strategies

This section describes some very simple attack and defense strategies. These are not
useful in real scenarios and are shown as reference points for the evaluation of later
improved strategies.

The static defender only uses a fixed configuration which is manually assigned at the
beginning of the simulation. This will generally be the optimal static distribution
according to the considerations in Section 7.3 — the one that minimizes the damage
of an attacker who plays optimally.

This strategy can be considered state-of-the-art on the defender’s side, as DoS pro-
tection by moving services is not used yet. The main goal of this chapter is to show,
if an improvement over this best-possible static assignment can be achieved.

The random attacker first selects a subset of services to attack. Each possible target
service is selected with 30% probability. After that the resources are randomly
distributed between the targets by drawing k uniformly distributed random numbers
di, where k is the number of attacked services.

The distribution r1, . . . , rk of the attacker’s total resources R is calculated as

ri = di · R∑
i=0,...,k

di
.

82 8. Attacks against a Dynamic Defender

This distribution is motivated by the observation that it is rarely optimal to at-
tack all services. Initial tests during the implementation showed that this attacker
performs significantly better than an attacker who just calculates a uniform distri-
bution among all services. The choice of the target selection probability will be
further elaborated in Section 8.5.
The static attacker initially searches for a good attack pattern by trying distributions
and evaluating the attack’s success. For this he employs the same random selection
as the random attacker. This search phase only continues for a limited time, after
that the static attacker constantly sends the best pattern found so far. Once the
static attacker has entered the static attack phase, he does not monitor the success
of the attack, so he continues sending the same pattern even after the defender
re-configured his network. This can be considered a state-of-the-art attacker, as he
attacks a place where he can do decent damage, but he is not aware of the defender’s
possibility to adapt.

8.4.2 Heuristic Strategies

The following strategies are improvements on the attacker’s and defender’s side.
They are still easy to implement and expected to be much more effective.
The bin packing defender will decide about a new strategy in fixed time intervals. He
observes the load on his services caused by attacker and good client. The problem
of finding a new assignment of services is a Bin Packing problem (similar to the
Knapsack problem), which is known to be NP hard. However, in many cases simple
heuristics give good solutions.
In our case, an additional constraint is given by the costs of moving services. There-
fore for each candidate assignment of services to servers, a score was calculated,
based on the predicted overload using this new configuration and the number of
migrations that are necessary to get from the current assignment to the new one.
Using this score, a good new assignment was determined using an evolutionary op-
timization algorithm.
The heuristic attacker is an extension of the static attacker that continues to monitor
the attack’s success. Upon noticing that something has changed (which is already
the case when the defender starts moving the services), the attacker starts a new
random search phase.
Practically, the new random search can be triggered twice in each cycle, at the
beginning and at the end of the migration phase. The attacker might find a new
good configuration during the defender’s migration phase which is no longer valid
as soon as the migration has ended. In this case the attacker will notice the change
due to the end of the migration phase only after his search phase has ended and
immediately start a new search phase.

8.4.3 Advanced Strategies

In this section we discuss strategies that are allowed to use global knowledge.
It is not clear what a real optimal attack strategy would look like. It would surely
involve some sophisticated search pattern that quickly gives the attacker a lot of
information about the attacked network. An optimal strategy might combine at-
tacking and searching by testing variations of patterns that are already known to
yield a good payoff.

8.5. Results 83

The cheating attacker estimates the harm that an optimal attacker would do. It
simulates search phases which are identical to the heuristic attacker. However, the
results of these searches are not used.

After the search phase is over, the cheating attacker gets access to the defender’s
real service distribution. Using this information, he is able to calculate the optimal
attack using an optimization algorithm. In other words this attacker only fakes the
search and then continues with the theoretically optimal attack.

Until now, defenders only took the current attack and the costs of moving services
as a basis of their decisions. Actually considering the current attack is not very
helpful as the attacker can change it immediately after observing a change on the
defender’s side. With the heuristic attacker and cheating attacker discussed above
the defender has a high risk of choosing a new strategy which is good against the
old attack, but very vulnerable against new ones. Therefore the general strength of
the new choice should be the main criterion.

Therefore the anticipating defender iterates over all possible assignments of services
to servers (which is still possible with the 3 servers and 5 services used in the exam-
ple). For each assignment he calculates a score based on:

• The attacker payoff of the new assignment versus the current attack. This
should be a very low value, ideally zero.

• The cost of migrating from the old assignment to the new one.

• The attacker payoff of the new assignment, given that the attacker will chose
a new optimal attack. In other words the attacker is expected to behave like
the cheating attacker discussed above. This payoff is the main criterion which
has a weight of 80%.

This defender was used only in few simulation runs as the calculation of the de-
fender’s strategy (which must be a best response to the optimal attacker strategy
and therefore again involves two nested optimizations) is computationally expensive.

8.5 Results

Figure 8.5 shows the simulation scenario. Default value for the attacker search
interval is 60 rounds, for the defender interval 200 rounds.

Figure 8.6 shows a simulation of an heuristic attacker against a bin-packing defender.
On the horizontal axis, the attacker’s search interval is increased. It can be seen
that it is optimal for the attacker to search only for a very short time interval (here
10 of 200 rounds) to be able to sustain the strongest attack for the remaining time.

If the attacker searches for a little less than 200 rounds, he becomes even worse than
a random attacker (which would have a score of 0.08 in this graph). The reason
is that the attacker attacks with the optimal found attack in round 200, which is
probably a very good attack. The attack in this round is the basis of the defender’s
defense decision. There is only a limited space of very good attacks and those
attacks trigger only a limited amount of VM movements. If the attacker attacks
with a random strategy in round 200, it tricks the defender into defending against
this strategy which is probably not a good decision.

84 8. Attacks against a Dynamic Defender

Attacker

Service 1

Good
Client

Physical Server 1 Physical Server 2 Physical Server 3

Service 2

Service 3 Service 4 Service 5

Capacity 200 Capacity 100 Capacity 100

Good Client
sends
10 units of
requests
to each
service.

Attacker
distributes

attack
resources.

Figure 8.5: Simulation scenario.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600 700

At
ta

ck
 s

uc
ce

ss
 (G

oo
d

cl
ie

nt
 p

ac
ke

t l
os

s)

Search interval (with defense interval = 200 rounds)

Figure 8.6: Heuristic attacker vs. bin-packing defender: Simulation of different attacker
search intervals.

8.5. Results 85

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500 600

At
ta

ck
 s

uc
ce

ss
 (G

oo
d

cl
ie

nt
 p

ac
ke

t l
os

s)

Attacker resources

Static attacker vs. static defender
Static attacker vs. bin-packing defender
Random attacker vs. static defender
Random attacker vs. bin-packing defender

Figure 8.7: Simulation of simple attacker strategies with different attacker strengths.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

At
ta

ck
 s

uc
ce

ss
 (G

oo
d

cl
ie

nt
 p

ac
ke

t l
os

s)

Random Threshold

Attacker Ressources 200
Attacker Ressources 300
Attacker Ressources 400
Attacker Ressources 500
Attacker Ressources 600

Figure 8.8: Influence of the random at-
tacker ’s threshold versus a static defender.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

At
ta

ck
 s

uc
ce

ss
 (G

oo
d

cl
ie

nt
 p

ac
ke

t l
os

s)

Random Threshold

Attacker Ressources 200
Attacker Ressources 300
Attacker Ressources 400
Attacker Ressources 500
Attacker Ressources 600

Figure 8.9: Influence of the random at-
tacker ’s threshold versus a bin-packing de-
fender.

Here we see that it is a mistake on the defender’s side to base decisions on events
that happened in the past if the attacker could observe — or even worse influence
— them.

Figure 8.7 shows how the simple attack strategies perform against a static defender
and a bin-packing defender.

The curves of the static attacker show random fluctuations. This is because the
static attacker only once performs a random search (in the very beginning) and sticks
with this decision for a very long time. Even though the curves show averages of 25
simulation runs, these random factors would not converge. All other attackers also
make random decisions, but as they do this regularly, the random search happens
in the order of 500 times per single simulation run. Therefore all other values show
much better convergence.

The static attacker is quite strong when playing against a static defender. We see
that a bin-packing defender is much stronger than a static defense. In the end, with

86 8. Attacks against a Dynamic Defender

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500 600

At
ta

ck
 s

uc
ce

ss
 (G

oo
d

cl
ie

nt
 p

ac
ke

t l
os

s)

Attacker resources

Static attacker vs. static defender
Heuristic attacker vs. static defender
Heuristic attacker vs. bin-packing defender
Cheating attacker vs. static defender
Cheating attacker vs. bin-packing defender

Figure 8.10: Simulation of improved attacker strategies with different attacker strengths.

an attacker strength of 600 the attacker can attack almost anything, therefore a
good strategy only brings limited benefits.
The random attacker shows a bad performance against the static defender. However
against the bin-packing defender it scores much better. This is because the bin-
packing defender will costly move services each 200 rounds, but he will not have any
benefit from this as the following attacks will be random again.
In Figures 8.8 and 8.9 we investigate the choice of the random attacker’s threshold
as discussed in Section 8.4.1 — the dice roll that determines if the random attacker
will attack a service or not. Like in Chapter 7 we see that a weak attacker wants to
concentrate his attack on few targets while a strong attacker rather wants to spread
his attack. Therefore the optimum value shifts towards the right with increasing
resources.
As noted in Section 7.3 an attacker wants to choose which servers to attack depending
on his resources and then hit all services on the selected servers. However, in our
scenario the attacker does not know the assignment of services to servers.
In the simulations we have 3 servers. It will be optimal for a weak attacker to attack
a single server. Therefore the limitation to attacking 30% of the services increases
the chance that the attacker will select the right services. Therefore the chosen
threshold of 30% for all other simulations is beneficial for a weak attacker, i.e. one
that has less than 400 resource units available. A strong attacker would rather select
a higher value.
Figure 8.10 shows the performance of the improved attack strategies. The static
attacker versus static defender curve is provided again as a reference. We see that
heuristic attacker and cheating attacker both perform well, while the former one is
still a bit weaker than the latter one. Versus the static defender, both attackers’
curves show a dent at 210 attacker resource units. This is the time when the attacker
decides to switch from attacking a single target (in this case a physical server) to
attacking two. This phenomenon was discussed in Section 7.2, Figure 7.9 shows it
as well.

8.6. Conclusions 87

0

5

10

15

20

25

Static Defender Bin Packing Defender Anticipating Defender

At
ta

ck
 s

uc
ce

ss
 (G

oo
d

cl
ie

nt
 p

ac
ke

t l
os

s)

Static Attacker
Random Attacker
Heuristic Attacker
Cheating Attacker

Figure 8.11: Final evaluation including the anticipating defender.

Between 180 and 280 units of attacker resources, the bin packing defender performs
worse than the static defender. This is caused by the overhead of moving virtual
machines, possibly this effect could be improved by increasing the VM movement
penalty in the defense strategy calculations. Overall we see that the bin packing de-
fender reduces the damage caused by the attacks, however against a strong attacker
the benefit is not very big.

Until now, the anticipating defender was not considered. The fact that an inner and
an outer optimization have to be calculated made it impractical to calculate this
strategy for the above graphs. Figure 8.11 shows simulation results with attacker
resources being set to 300, which includes all attack and defense strategies.

Again we see that the static defender is the worst defense strategy against most
attacks. It only performs well against the random attacker. The bin packing de-
fender is very good against static attacks, but there is little gain against optimized
attack strategies. It also performs very bad against the random attacker because of
unnecessary service movements.

The anticipating defender is better than the bin packing defender when countering
advanced attacks. It also performs about as well as the static defender when being
attacked by the random attacker. Interestingly the bin packing defender outperforms
the anticipating defender when it comes to countering static attacks. This is because
the anticipating defender sacrifices defense efficiency against the current attack for
being less vulnerable in the future. So the bin packing defender is more vulnerable,
but the static attacker is not smart enough to exploit the vulnerabilities.

We can see that the anticipating defender performs a bit better than the bin packing
defender. However, the difference is not large.

8.6 Conclusions

In this chapter we have shown that moving virtual machines can improve the de-
fender’s situation when facing a DoS attack. The attacker is free to change his
strategy at any moment, but he has no information about the new state of the

88 8. Attacks against a Dynamic Defender

network and therefore wastes time probing for a new effective DoS strategy. A
requirement for an improvement on the defender’s side is that the cost of moving
the virtual machines is lower than than the loss which the defender suffers while
searching for his new attack strategy.

We limit the defender to making choices in fixed intervals. This is an artificial
limitation which is meant to reduce the strategy space. Another limitation is the
fact that the defender only uses the load distribution in one single round as the basis
of his decisions. Better strategies may exist for the attacker as well as the defender.
Proving that a certain strategy is optimal for this scenario is probably very hard.

For example, a hypothetical better attacker would not just make a decision which
is optimal for the moment, but plan in advance and try to influence the defender’s
next resource allocation. This would not only require the attacker to have detailed
information about the defender’s current state, but also knowledge about his decision
making. This even better attacker would be strong against a bin packing defender,
but probably its gain against the anticipating defender would be very limited.

It is generally dangerous for the defender in denial-of-service games, to make deci-
sions based on observations from the past in the presence of a smart attacker. The
attacker will also observe the basis of the decisions (or even be able to modify it)
and therefore predict or influence the decision making. Further examples will be
shown in the following Chapter 9.

The methods developed in this chapter are suitable for countering Flash Crowds of
legitimate requests which overload services. We assume that a bin packing defender
would perform better in a flash crowd environment than against a DoS attacker, as
the flash crowd — despite of strong load fluctuations — does not willingly try to
trick the defender algorithm into sub-optimal decisions.

Key findings in Chapter 8:

• Moving services at runtime brings a great benefit against an attacker
who is not aware of this and will therefore not react effectively.

• A smart attacker can greatly reduce the benefit of this method.

• As a defender, it is dangerous to base decisions on the attacker’s
past strategy. The performance of the new strategy against its own
best response should be the main criterion.

• Testbed experiments have shown that VM migration during a DoS
attack is practically feasible and can be expected to bring a benefit
as long as attackers do not adapt.

8.7 Acknowledgements
The author would like to thank Young Chul Jung who developed the initial strategies
for attacker and defender and Andreas Korsten for the testbed results in Section 8.2.

9. Protection of Webservers using Proxies

People tend not to think about security until it is too late. Adding security to a
product or web site takes time and creates additional costs. As long as no attack
happens, there is no benefit from having security features. Such views seem short-
sighted at first, but depending on the situation it may be rational to ignore security
advice, if the costs outweigh the benefits [50].
In case of denial-of-service attacks, it is very helpful if a service scales well when
adding additional hardware. But being able to replicate a service to multiple servers
usually requires synchronization among the instances which is hard to achieve.
Therefore, most web applications are developed in a way that gives no possibility of
easily creating replicas and distributing them to multiple servers.
In most cases it is surely possible to change the web application’s architecture to
make distribution easier, however, this takes time and when the attack is already
ongoing it is too late to make major architectural changes.
In this chapter an experimental DoS defense for web servers is developed that can
be applied when the attack has already started and that requires very few changes
on the actual server. This system requires no JavaScript code on the client side as
many similar approaches do, but purely relies on the HTTP standard [51].
After related work is discussed in Section 9.1, the scope of the defense system is
defined in Section 9.2, while in Section 9.3 the system itself is described. In the
following sections an evaluation specific aspects of the system is given, first theoret-
ically (Section 9.4), then via simulation (Section 9.5) and finally using experiments
on a testbed (Section 9.6). The chapter is concluded in Section 9.7.

9.1 Related Work
A number of other publications use proxies between clients and server for coun-
tering denial-of-service attacks. This related work has already been discussed in
Section 2.3.5.

90 9. Protection of Webservers using Proxies

The novelty in this thesis is the proof-of-work, which is done by redirecting the
client various times between the proxies. Therefore our test can be completed by
any HTTP-compliant client, there is no need for additional client-side logic.
Different proof-of-work techniques are discussed in Section 2.3.6. The closest com-
petitor to our method are client-side computational puzzles based on JavaScript,
e.g. provided by the Apache module mod_kaPoW ([19]).

9.2 Scope
As discussed in Section 2.2.2 there are different types of DoS attacks. The most
simple ones try to exhaust the victim’s bandwidth by sending large amounts of
meaningless UDP or ICMP packets. More specific are attacks that try to interact
with the victim and lure it into reserving resources.
In recent years, one new type of attack that has been observed made a complete
TCP handshake and then sent partial HTTP requests. Optimized web servers that
try to process requests fast and therefore reserve resources as early as possible, e.g.
the Apache web server, were especially vulnerable against these attacks.
Generally the type of attack which is the hardest to detect is the complete application
layer attack. The attacker simply has more resources available than the server and
sends complete Layer 7 (e.g. HTTP) requests. There may be web pages on the
server that are especially hard to generate (i.e. search results that require complex
database queries). In this case the attacker can try to concentrate on such pages to
maximize the effect of his attack.
The defense system presented in this section is based on proxies. Therefore all
attacks that do not send complete Layer 7 requests will not affect the actual web
server but end at the proxy layer. The server is therefore protected, however it might
be possible to overload the proxies this way.
In the following we will distinguish two categories of attacks:

• attacks with complete requests that can pass the proxy defense layer and reach
the actual web server, and

• attacks that specifically try to overload the proxies. This is possible with
flooding attacks if the attacker has enough resources or with partial HTTP
requests.

9.3 Approach
A DoS attacker has limited resources at his disposal, however if the attack is suc-
cessful the attacker’s resources are sufficient to make the defender spend all of his
resources for processing the attacker’s requests. Like in some of the related work,
our basic ideas are:

• Introduction of an intermediate layer between the clients and the web server,
which has more resources and can therefore filter incoming requests. This
defense layer is based on proxies that can be set up cheaply and easily at
commercial web hosting providers.

• Making the client spend / waste resources before being able to send an actual
HTTP request to the server.

9.3. Approach 91

The novelty of our system is that the system is completely based on HTTP redirects.
Each client has to “prove” that it spent resources by sending its request multiple
times to the proxies before it is processed by the actual web server. This idea is
based on the assumption that resources on the web server are scarce, but that it is
possible to set up a strong proxy defense that can match the attacker’s resources.

9.3.1 Using the System to defend against a DoS Attack

The following steps are necessary during a DoS attack to set up the proposed system:

• Set up multiple proxy servers at some web hosting provider. Currently the
proxies are written as Java Applications, but this is not a hard requirement,
they can easily be ported to other server technologies.

• Inform each proxy about

– the addresses of all other proxies,
– the address of the web server to protect and
– a shared secret — a common symmetric encryption key Ksecret.

• Change the web server’s IP address. The whole proxy layer would be useless if
the attacker still knew the real server’s IP address allowing him to bypass the
proxy layer, therefore the server’s address must be changed. We assume that
this is possible without too much hassle.
Ideally the defender’s ISP should drop traffic to the old IP address as early
as possible in his network. A sophisticated architecture for hiding the server’s
real location and filtering all traffic to the server that does not originate from
a proxy layer similar to ours has been described in [15].

• The target domain’s DNS server has to be configured to return proxy IP ad-
dresses in a round-robin fashion when being asked about the web server’s IP
address.

After these steps the system is operational and can process request from clients as
described in the following Section 9.3.2.

9.3.2 Processing a Client’s Request

Figure 9.1 shows the message flow of a client requesting a web site while the protec-
tion is active.

1. The client queries DNS for the web server’s IP address.

2. DNS returns the IP address of one of the proxies.

3. The client sends its HTTP-request to the given proxy.

4. The proxy now generates an HTTP redirect message with status code 302
Found. This message redirects the client to the same URL at another randomly
selected proxy. The redirected URL also contains an additional HTTP GET
parameter pcode with encrypted information, the main part of which is the
number of already performed redirects (in this case 1) and a timestamp. The
complete content of this parameter will be discussed in Section 9.4.4.

92 9. Protection of Webservers using Proxies

Client

Proxy 1

Proxy 2

Proxy 3

Proxy 4

DNS

Web
server

1 2
3

4

5 6

78

Figure 9.1: Message Flow with DoS defense.

5. The client receives the redirect and sends its request again to the given proxy.
The new request includes the added parameter which the client could not read
or modify because of the encryption.

6. The new proxy receives the request and evaluates the pcode parameter. The
number of already performed redirects is compared to a target number (one in
the example).

7. If the request has been redirected often enough, it is passed to the web server
for processing. The pcode parameter is removed from the URL, so the web
server sees the original request from the client.

8. The web server processes the request as it normally would and sends the reply
back to the proxy.

9. The proxy passes the reply to the client.

A message sequence chart of the communication is shown in Figure 9.2. With n
being the number of redirects that the client has to go through, one can see that a
potential attacker has to send n+1 requests for getting one request to the web server
if there is no way to bypass the system. Therefore the attack would be attenuated
by a factor of 1

n+1 .

It is clear that the proxies need enough resources to cope with the full attack capacity
of the attacker. The assumption here is that proxies are relatively cheap and that new
ones can be created easily. The only purpose of the proposed system is a reduction
in the number of attack requests to the actual server. The following sections show
how effectively this goal can be achieved.

9.4. Analysis of the System 93

Figure 9.2: Message sequence chart.

The proposed system is only a good choice for dynamic content that is generated
specifically for the client. Purely static web sites, images and other documents can
be cached by the proxies. As caching proxies are a technology that has been in use
for a long time, this case is not explicitly investigated in the following. We assume
that the proxies are able to distinguish between static and dynamic content and
that each proxy fetches static content only once and responds to later requests by
serving a cached copy. Therefore we only have to consider dynamic content in the
following.

9.4 Analysis of the System
In this section we analyze potential weaknesses of the proposed system. This analysis
will be extended by simulations in the following Section 9.5.

9.4.1 Replay Attacks

A smart attacker would try to bypass the system by replaying message (5) in Fig-
ure 9.1. This message will be called Ticket Message in the following text, as it
ultimately permits access to the service.
Some basic replay protection can be provided by adding a timestamp to the pcode
parameter. Assuming synchronous clocks on all proxies, it is possible to define a
lifetime for the ticket. Replaying the ticket message is only possible during that
lifetime, outdated ticket messages are dropped by the proxy. This section discusses
the degree of protection that this anti-replay mechanism provides.
From the attacker’s perspective, the situation looks as follows: First he needs to
spend a certain amount of effort on obtaining a ticket message. Then this ticket can
be used for a limited time to send requests directly to the web server. During this
time the attacker is only limited by its own capacity and the capacity of the relaying
proxy. Figure 9.3 shows a time-sequence chart of such an attack.
For the theoretical investigation of this attack’s consequences, we make the following
assumptions:

94 9. Protection of Webservers using Proxies

Figure 9.3: Message sequence chart of a replay attack.

9.4. Analysis of the System 95

Preparation Phase of Wave 1 Attack Phase

Wave 1

Wave 2

Wave 3

Wave 4

Figure 9.4: Pipelining the attack by obtaining ticket messages in the background.

• As we want to investigate the worst-case traffic that the attacker can send, we
do not consider any resource constraints on the webserver or the proxies.

• We assume an HTTP 1.0-style behavior on the proxies. This means that the
HTTP connection to a client is closed as soon as a single request has been
answered. This introduces additional overhead compared to modern HTTP 1.1
“keep-alive” connections. We make this choice as this extra overhead affects
the client and the proxies and not the web server we are trying to protect,
therefore it works in our favor.

• We assume that the attacker wants to run a continuous attack for a long time,
so he has to obtain new ticket messages in the background while sending attack
traffic. Therefore he has to pipeline his attack in waves as shown in Figure 9.4.
Ticket messages are obtained during a “preparation phase” and used during
the actual “attack phase”. The number of parallel waves is chosen to make sure
that at every time, one wave is in its attack phase.

For the investigation, we need the following parameters:

• bo outgoing link capacity of attacker in bits per second

• bi incoming link capacity of attacker in bits per second

• So = SSY N + SACK + SGET , size of the attacker’s outgoing messages for one
request in bits

• Si,p = SSY NACK + SREDIRECT , size of the reply-messages from the proxy to
the attacker during the preparation phase in bits

• Si,a = SSY NACK + SREP LY , size of the reply-messages from the proxy to the
attacker during the attack phase in bits

• l ticket lifetime in seconds.

• t attack phase duration, t = l −RTT in seconds

• n Number of redirects

96 9. Protection of Webservers using Proxies

From these values we want to calculate the request rate r, the number of requests
per second that the attacker can send to the actual server.
Without any defense, the attacker can send

runconstrained,out = bo

So

[
requests

s

]
.

With the defense mechanism as described above, the attacker has to go through a
preparation phase before being able to send requests to the server, like shown in
Figure 9.3. We assume that the attacker prepares the next attack phase during the
current attack phase to make sure that the victim is permanently unreachable.
In this case we can give a first approximation for r as

rdefense,out =
t·bo−n·So

So

t

[
requests

s

]
.

The sum of the available link capacity during one attack phase duration is t·bo. Prior
to the current attack phase, the attacker had to spend n · So units of bandwidth on
the preparation. As attacks are pipelined and new preparation phases happen in
parallel to the current attack, we can assume that this is the amount of bandwidth
that has to be spent for future attacks during the current attack phase. So the
available bandwidth for attacking is only t · bo − n · So which reduces the number of
requests that are sent during the attack phase to t·bo−n·So

So
.

In the above formula, if n becomes sufficiently big, the attacker wastes all of his
bandwidth in preparing and is unable to send all attack packets that he got tickets
for. In this case the attacker will have to reduce the attack traffic as well as the
preparation traffic to a certain fraction, so his problem is to optimize

rdefense,out,lower = max
f

f · t·bo−f ·n·So

So

t

[
requests

s

]
.

This formula is a lower bound. It can be justified by separating the attack phases
into busy and idle attack phases. The later ones are caused by the fact that the
attacker sends less preparation traffic and therefore does not have sufficient tickets
for a continuous attack.
The assumption that makes this formula a lower bound is that during these idle
attack phases, there is no attack traffic (since the attacker does not have a ticket)
while the preparation traffic is a long-term action which has to be the same during
busy and idle attack phases. The remaining bandwidth during idle attack phases is
simply not used by the attacker.
To calculate an upper bound, we look at the attacker’s constraints. Again the
attacker chooses a parameter f which defines the ratio of attack phases where attack
traffic is sent and idle attack phases where no ticket is available to send traffic.
Averaging over a longer period of time, we can formulate two constraints:

• A Bandwidth constraint, only the non-preparation bandwidth is available to
send attack traffic

request_ratedefense,out,upper,bw =
t·bo−f ·n·So

So

t

9.4. Analysis of the System 97

• and a ticket constraint, as the attacker can only send attack traffic if he has a
ticket for the round

request_ratedefense,out,upper,tickets =
t·bo·f

So

t
.

With larger f , request_ratedefense,out,upper,bw will decrease. At the same time, request_ratedefense,out,upper,tickets

will increase. One has to find an optimal f that maximizes the minimum of both
formulas. Setting

request_ratedefense,out,upper,bw = request_ratedefense,out,upper,tickets

gives
f = bo · t

bo · t + n · So

.

Solving for the request rate, it follows

request_ratedefense,out,upper =
t·bo− bo·t

bo·t+n·So·n·So
So

t

= b2
o · t

bo · So · t + n · So
2

which is our upper bound for r.

Without any replay attacks, the attacker has to go through a full preparation phase
for each single request that he sends. Therefore the rate of outgoing traffic that
actually reaches the server is reduced to

request_rateperfectdefense,out = bo

(n + 1) · So

[
requests

s

]
.

With this attack, the attacker has to be able to react to incoming replies, otherwise
he will not be able to obtain new tickets. Therefore he must be careful not to DoS his
own incoming bandwidth. This might be the harder constraint, as HTTP responses
that actually include content are usually much larger than the corresponding HTTP
requests. On the other hand, many Internet access technologies are asymmetric (e.g.
ADSL). Therefore, if the attack-traffic is sent from a botnet, we would commonly
have bi > bo.

Analogous to the above considerations it is possible to derive similar formulas for
incoming traffic. This is omitted here as they are not needed for the following
argumentation.

9.4.2 Evaluation of lifetime-based Replay-Protection

Figure 9.5 shows the reduction of traffic to the server when applying the discussed
defense mechanism. The following parameters were chosen:
Parameter Value Parameter Value
bo 1.0 MBit/s SSY N 40 Bytes
RTT 0.1 s SACK 40 Bytes

SGET 400 Bytes

98 9. Protection of Webservers using Proxies

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

T
ra

ffi
c

at
 s

er
ve

r
(n

or
m

a
liz

ed
 to

 n
o

de
fe

ns
e

=
 1

)

Number of redirects

perfect defense
defense, l=0.25s, lower
defense, l=0.25s, upper

defense, l=0.5s, lower
defense, l=0.5s, upper

Figure 9.5: Effectiveness of the defense.

9.4. Analysis of the System 99

As seen in Figure 9.3, the lifetime of the actual ticket has to be at least two RTTs
long. Internet services should generally be accessible from anywhere on the globe.
Customers who are located close to the service generally experience short RTTs (e.g.
20 ms from Munich to servers in Germany). RTTs get longer the further customer
and service are apart (e.g. 300 ms from Munich to South Korea). The type of
Internet connection also plays a role, a modem connection also increases the delay
for each packet.

Considering this, 0.5 seconds would be a low value for the lifetime, even without the
presence of a DoS attack that slows down packet processing in routers and on the
proxies.

Practically, up to 20 redirects are possible. With a higher number, the web browser
will no longer redirect but display an error message.

From Figure 9.5 we can see, that under these circumstances, we can not hope to
reduce the DoS traffic on the server by more than 20%. Therefore the replay attack
makes the purely lifetime-based tickets unusable.

9.4.3 Protection from Replay Attacks

It is possible to achieve perfect replay protection when storing some data per con-
nection attempt. For this two conditions must be fulfilled:

• Make sure that the same proxy does not forward the same request twice to the
server. This can be done by incorporating some unique ID into the requests
and making each proxy store a list of IDs that were recently forwarded to the
server.

• Make sure that the same request is not forwarded to the server by two different
proxies. One method of doing this is to let the first proxy that receives a new
request decide which proxy will be the last one in the chain. This information
also has to be stored in the pcode encrypted HTTP parameter. If a proxy
receives a request with enough redirects but if he is not the one who is allowed
to forward this request to the server, then this request will be dropped.

The request ID can be of the form “<ID-Assigning-Proxy>-<Counter>” to be
unique in the system (or at least unique for the duration of one connection request).

This scheme requires each proxy to keep some state (a list of recently forwarded IDs),
which we initially wanted to avoid. However the state is only in the order of a few
bytes per request and can be expired based on timestamps regularly. As the purely
lifetime-based replay protection has been shown to be ineffective in Section 9.4.1,
ID-based replay protection was used in the actual implementation.

9.4.4 Content of the encrypted Parameter

Functionally, the pcode parameter has to include the following information:

• The number of remaining redirects.

• A request ID assigned by the first proxy in the chain.

• The ID of the final proxy that is allowed to send the request to the server.

100 9. Protection of Webservers using Proxies

Algorithm 2: Proxy forwarding logic
input: R: incoming HTTP request, n: target number of redirects,

k: symmetric_encryption_key, counter: ID-space for messages,
recently_forwarded_tickets: message IDs that have passed through
this proxy lately

if not R.pcode exists then
exit_proxy = choose_random_proxy()
next_proxy = choose_random_proxy()
num_redirects = 1
request_ID = self.proxy_ID|“−′′ |counter
counter = counter + 1
R.pcode =
Enck(IV |request_ID|num_redirects|exit_proxy|integrity_info)

redirect(R,next_proxy)
else //pcode existed already

if not check_integrity(R.pcode) then
drop(R)

request_ID, num_redirects, exit_proxy = Deck(R.pcode)
if num_redirects < n− 1 then

next_proxy = choose_random_proxy()
num_redirects = num_redirects+ 1
R.pcode =
Enck(IV |request_ID|num_redirects|exit_proxy|integrity_info)

redirect(R,next_proxy)
else if num_redirects = n− 1 then

num_redirects = num_redirects+ 1
R.pcode =
Enck(IV |request_ID|num_redirects|exit_proxy|integrity_info)

redirect(R, exit_proxy)
else if num_redirects = n then

if exit_proxy = self.proxy_ID and
request_ID /∈ recently_forwarded_tickets then

recently_forwarded_tickets← request_ID
remove_pcode(R)
forward_to_server(R)

else // wrong exit proxy or duplicate
drop(R)

else // invalid num_redirects
drop(R)

9.4. Analysis of the System 101

• Optionally a timestamp can be used to detect outdated requests. However this
purpose can partially be fulfilled by the message ID.

To avoid manipulation, some standard cryptographic additions are used:

• An initialization vector that prevents identical plaintexts from producing iden-
tical ciphertexts. This can be omitted if plaintexts are sufficiently different or
a shortened IV can be transmitted (i.e. by using an IV that is shorter than the
used encryption algorithm’s block size and expanding it via some expansion
function).

• Some integrity verification mechanism, i.e. an HMAC value of the encoded
message. Otherwise the attacker would be able to blindly change the ciphertext
and test what happens.

The whole procedure is summarized in Algorithm 2. The encoded numbers request_ID,
num_redirects and exit_proxy easily fit into one AES block of 128 Bits. IV and
hash are each another 128 Bits long.
Finally, the pcode parameter has to be encoded in a printable way to be usable as
part of an URL. Using Base64, 384 Bits of raw data translate to 64 characters in
the URL (67 characters if the format is &p=<content>).
9.4.5 DoS Weakness of the Scheme
A smart attacker will try to find weaknesses in any defense scheme and unfortunately,
this DDoS defense scheme has one major weakness.
An attacker could focus his attack on a single proxy. Because requests have to pass
through a chain of proxies and each of these proxies has to be responsive at the
time, such a DoS attack will affect a large percentage of the user requests. For
example with 20 proxies, and 15 redirects to uniformly chosen proxies, about 56%
of all connections would be affected if a single proxy was unavailable.
An attack on one of the proxies is also much easier than an attack on the server, as
the attacker does not have to respond to redirects — standard UDP flooding would
be sufficient.
Possible solutions for this are:

• A proxy always redirects to himself. This would greatly reduce the fraction of
affected connections. When receiving IP addresses of multiple proxies by DNS,
the client could also try a different proxy if the first one does not respond.
The core idea of our DoS defense scheme does not require forwarding of re-
quests from one proxy to another, forwarding to the same proxy would also
be sufficient. Forwarding between the proxies was initially only introduced for
finer load-balancing, which is a minor advantage.

• Apply a load-balancing scheme among the proxies by always redirecting to
proxies that currently have a low load. This requires the exchange of load
information among the proxies in the background.
Using this option, one has to make sure that load balancing does not make the
load oscillate (a proxy is flooded with requests after reporting low load) and
that the load balancing can not be exploited by the attacker.

Simulating these aspects will be subject of the following section.

102 9. Protection of Webservers using Proxies

9.5 Simulation

Load-balancing issues and possibilities to exploit them were investigated simula-
tively. The simulation is round-based and contains two clients (good and evil) and
a configurable number of proxies. In each round, all clients send requests to the
proxies first, then the proxies respond if they are not overloaded. The response may
contain a redirect, in this case the client is free to decide whether it will follow it.
No replay attacks were possible in the simulation, the assumption is that this is
prevented by the scheme described in Section 9.4.3.

(a)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18

R
at

e
of

 s
uc

ce
ss

fu
l g

oo
d

cl
ie

nt
 re

qu
es

ts

Number of Redirects

Client vs. no defense
evil Client vs. no defense
shifting evil Client vs. no defense
Client vs. Proxy (Reference)

(b)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18

R
at

e
of

 s
uc

ce
ss

fu
l g

oo
d

cl
ie

nt
 re

qu
es

ts

Number of Redirects

Client vs. Proxy
evil Client vs. Proxy
shifting evil Client vs. Proxy
Client vs. no defense (Reference)

(c)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18

R
at

e
of

 s
uc

ce
ss

fu
l g

oo
d

cl
ie

nt
 re

qu
es

ts

Number of Redirects

Client vs. load-balancing Proxy
evil Client vs. load-balancing Proxy
shifting evil Client vs. load-balancing Proxy
Client vs. no defense (Reference)
Client vs. Proxy (Reference)

(d)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18

R
at

e
of

 s
uc

ce
ss

fu
l g

oo
d

cl
ie

nt
 re

qu
es

ts

Number of Redirects

Client vs. load-balancing Proxy 2
evil Client vs. load-balancing Proxy 2
shifting evil Client vs. load-balancing Proxy 2
Client vs. no defense (Reference)
Client vs. Proxy (Reference)

(e)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18

R
at

e
of

 s
uc

ce
ss

fu
l g

oo
d

cl
ie

nt
 re

qu
es

ts

Number of Redirects

Client vs. self-redirecting Proxy
evil Client vs. self-redirecting Proxy
shifting evil Client vs. self-redirecting Proxy
Client vs. no defense (Reference)
Client vs. Proxy (Reference)

Figure 9.6: Simulation of different attackers and proxies. Simulation parameters: Good
Client capacity 5, server capacity 10, single proxy capacity 10, number of proxies 16,
attacker capacity 25, 20000 simulation rounds.

As in previous chapters, the rate of successful requests of a good client is used as
the primary metric for the attacker’s and defender’s success. While the good client

9.5. Simulation 103

(a)

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14

R
at

e
of

 s
uc

ce
ss

fu
l g

oo
d

cl
ie

nt
 re

qu
es

ts

Attack resources (given in multiples of the Proxy Capacity)

Client vs. no defense
evil Client vs. no defense

shifting evil Client vs. no defense
Client vs. Proxy (Reference)

(b)

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14

R
at

e
of

 s
uc

ce
ss

fu
l g

oo
d

cl
ie

nt
 re

qu
es

ts

Attack resources (given in multiples of the Proxy Capacity)

Client vs. Proxy
evil Client vs. Proxy

shifting evil Client vs. Proxy
Client vs. no defense (Reference)

(c)

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14

R
at

e
of

 s
uc

ce
ss

fu
l g

oo
d

cl
ie

nt
 re

qu
es

ts

Attack resources (given in multiples of the Proxy Capacity)

Client vs. load-balancing Proxy
evil Client vs. load-balancing Proxy

shifting evil Client vs. load-balancing Proxy
Client vs. no defense (Reference)

Client vs. Proxy (Reference)

(d)

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14

R
at

e
of

 s
uc

ce
ss

fu
l g

oo
d

cl
ie

nt
 re

qu
es

ts

Attack resources (given in multiples of the Proxy Capacity)

Client vs. load-balancing Proxy 2
evil Client vs. load-balancing Proxy 2

shifting evil Client vs. load-balancing Proxy 2
Client vs. no defense (Reference)

Client vs. Proxy (Reference)

(e)

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14

R
at

e
of

 s
uc

ce
ss

fu
l g

oo
d

cl
ie

nt
 re

qu
es

ts

Attack resources (given in multiples of the Proxy Capacity)

Client vs. self-redirecting Proxy
evil Client vs. self-redirecting Proxy

shifting evil Client vs. self-redirecting Proxy
Client vs. no defense (Reference)

Client vs. Proxy (Reference)

Figure 9.7: Simulation of different attackers and proxies. Simulation parameters: Good
Client capacity 5, server capacity 10, single proxy capacity 10, number of proxies 16,
number of redirects 12, 20000 simulation rounds.

always chooses a random proxy for his first requests and then follows the chain of
redirects, different variants of the evil client have been implemented:

• A simple attacker client that behaves the same way as the good client, trying
to follow redirects to increase the load on the proxies as well as on the server.

• An evil client that focuses his resources on attacking the proxies, exploiting the
weakness described in section 9.4.5. It first calculates the number of proxies
to attack for optimal packet loss based on the ratio of his own resources to the
target’s available resources. A discussion of optimally selecting the number of
targets can be found in Section 7.2.

104 9. Protection of Webservers using Proxies

(a)

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30

R
at

e
of

 s
uc

ce
ss

fu
l g

oo
d

cl
ie

nt
 re

qu
es

ts

Number of Proxies

Client vs. no defense
evil Client vs. no defense
shifting evil Client vs. no defense
Client vs. Proxy (Reference)

(b)

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30

R
at

e
of

 s
uc

ce
ss

fu
l g

oo
d

cl
ie

nt
 re

qu
es

ts

Number of Proxies

Client vs. Proxy
evil Client vs. Proxy
shifting evil Client vs. Proxy
Client vs. no defense (Reference)

(c)

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30

R
at

e
of

 s
uc

ce
ss

fu
l g

oo
d

cl
ie

nt
 re

qu
es

ts

Number of Proxies

Client vs. load-balancing Proxy
evil Client vs. load-balancing Proxy
shifting evil Client vs. load-balancing Proxy
Client vs. no defense (Reference)
Client vs. Proxy (Reference)

(d)

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30

R
at

e
of

 s
uc

ce
ss

fu
l g

oo
d

cl
ie

nt
 re

qu
es

ts

Number of Proxies

Client vs. load-balancing Proxy 2
evil Client vs. load-balancing Proxy 2
shifting evil Client vs. load-balancing Proxy 2
Client vs. no defense (Reference)
Client vs. Proxy (Reference)

(e)

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30

R
at

e
of

 s
uc

ce
ss

fu
l g

oo
d

cl
ie

nt
 re

qu
es

ts

Number of Proxies

Client vs. self-redirecting Proxy
evil Client vs. self-redirecting Proxy
shifting evil Client vs. self-redirecting Proxy
Client vs. no defense (Reference)
Client vs. Proxy (Reference)

Figure 9.8: Simulation of different attackers and proxies. Simulation parameters: Good
Client capacity 5, server capacity 10, single proxy capacity 10, attacker capacity 25, number
of redirects 12, 20000 simulation rounds.

This number of proxies is then flooded with requests. The evil client does not
follow redirects but sends new requests in each round and it always floods the
same proxies.

On the other hand different proxy strategies are compared:

• A randomly redirecting proxy which always chooses the target of the next redi-
rect uniformly among all proxies (including itself). This basic strategy was
assumed in all previous sections.

• A load-balancing proxy which is informed about the load of all proxies. It
calculates a probability distribution for selecting the target of a redirect from

9.5. Simulation 105

this load information, each proxy i has a probability of free_resources(i)∑
j∈proxies

free_resources(j)

of being selected.
We can already assume that this proxy has a potential problem, which might
in reality be exploited by an attacker. The distribution of redirects happens
based on load values that were observed in the past and does not necessarily
have any informative value for the future.
In the simulation this might lead to oscillations, as a simple calculation shows.
Assume that we have 10 proxies pi, each one with a capacity of 1.0 resource
units and that we have to serve a total of 7.9 load units of requests. p1 to p9
are each using 0.8 resource units (1.0 = 100% capacity of a single proxy), while
p10 is only at 0.7 load due to random fluctuations.
When making a single redirect decision according to the formula above, p1 to
p9 will be selected with a probability of 9.5%, while p10 will be selected with a
probability of 14.3%.
Therefore in the next round, the load distribution is different. p1 to p9 will
have to serve 0.75 load units each (7.9 ·9.5%), while p10 will be overloaded with
1.11 resource units.
An attacker can exploit this property for amplifying his attacks by constantly
switching his targets.

• An alternative load balancing proxy called load-balancing proxy 2 in the fol-
lowing is also informed about the load of all proxies. However, this information
is only used to avoid redirects to already overloaded proxies. All proxies that
are below 100% load are selected with the same probability.

• A self-redirecting proxy. As with all proxy variants, the decision which proxy is
initially contacted is left to the client e.g. by selecting one of multiple proxies
returned by the DNS-query. After that the self-redirecting proxy will always
redirect clients only to himself.
Again, This scheme has exploitable properties. The attacker knows that all
requests have to be redirected a certain number of times by the same proxy,
so it is sufficient for him to attack each proxy in certain time intervals to drop
the legitimate client’s requests.

These considerations are taken as the motivation for introducing another attacker
type:

• A shifting evil client that behaves the same way as the evil client, but with one
modification. The client does not always attack the same proxies but shifts his
attack in each round. For example if the optimal number of proxies to attack
is 3, this client will attack proxies 1-3 in round one, proxies 4-6 in round two
and so on.
This strategy can be expected to be good against the load balancing proxy as
it uses the lag of load information to make sure that the attacked proxies have
a high load of good client requests.
It can also be expected to be good against the self-redirecting proxy, as all
client requests have to pass an attacked proxy one or even multiple times.

106 9. Protection of Webservers using Proxies

Figure 9.6 shows simulation results. In each graph the horizontal axis shows the
number of redirects, while the vertical axis shows the good client’s success rate. The
simulations contain random decisions that affect the results, however the simulated
time was chosen so long that random fluctuations are insignificant. There are five
graphs in the figure, each of them shows the performance of one defense strategy
against all attack strategies. To make the graphs easier to compare, the “client vs.
no defense” and “client vs. proxy” curves are present in all graphs.

As seen in graph (a), without defense the good client’s success rate with the given
parameters is 33%. Introducing proxies (b) can generally enhance this value. The
client type of attacker causes a trade-off between a high load on the server (when
the number of redirects is low) and a high load on the proxies (when the number of
redirects is high). The more sophisticated attackers only target the proxies, so this
trade-off is not present.

Figure 9.6 (c) shows that load-balancing proxy performs well against the (static)
evil client, but very badly against the client and the shifting evil client. While
the latter confirms our theory about exploitable weaknesses of the load-balancing
proxy, the former shows that fluctuations occur even with a high non-attack load
and therefore load-balancing in this form is unusable. The alternative load-balancing
proxy 2 performs better than the previous load-balancing, but principally shows the
same weaknesses.

The self-redirecting proxy is good against client and static evil client, but even more
susceptible against the shifting evil client than the other variants.

As expected the shifting evil client is the strongest attacker. The standard proxy
without any additional defense mechanisms is the most robust against this best-
possible attack.

In Figure 9.7, each graph shows the strength of the attacker on the horizontal axis,
while the vertical axis is the ratio of successful good client requests. The five graphs
are equivalent to their counterparts in Figure 9.6. The steps in the evil client and
shifting evil client curves are caused by the attackers choice of targets: When more
resources are available, more targets will be attacked.

Again we can see that the shifting evil client is the strongest attacker and that the
proxy without special countermeasures performs best against it.

Especially interesting is Figure 9.8 which shows that the proxy-based defense mech-
anism can mitigate attacks very well if the defender has enough resources available.
With 29 proxies (which is about 6 times the attacker’s capacity), the defender is
able to serve 75% of the requests even against the shifting evil client.

Concluding we see from the simulation that the weakness of redirect-based DoS
protection is the fact that the proxies are chained, all redirects have to work for a
request to succeed. This reduces success rates significantly even for moderate error-
rates. However, if the defender has enough resources at his disposal, decent success
rates are possible even against an attacker that tries to exploit this.

Load-balancing schemes do not work here as they always have to rely on information
from the past. A smart attacker will always be able to guess, what the system has
observed and how it will react. He will therefore be able to attack where it hurts
the most. This is why load-balancing makes things worse instead of better in the
presence of a smart attacker.

9.6. Testbed Experiments 107

In a real-life system, the existence of queues might make load-balancing more useful
than it was in this simplistic model. The load-balancing proxy 2 could be expected
to exclude temporarily overloaded proxies from the chains until they have served the
requests in their queues — an effect that was not considered here. This is why the
unbalanced proxy and the load-balancing proxy 2 will be tested practically in the
following section.

9.6 Testbed Experiments
Until now the investigation of proxy strategies was relatively simplistic. The used
simulation tool did not capture timing effects or TCP handshakes.

For evaluation purposes, the standard proxy and the load-balancing proxy 2 were
implemented in Java and tested using real systems. A testbed consisting of 12
PCs with Intel Atom CPUs that were running Ubuntu Linux was available for the
experiments. As attacker, the Slowloris tool was used1, a perl-script which sends
partial HTTP requests. Slowloris has shown to be effective against the web server
(an Apache 2.2 in default configuration) as well as the proxies. In both cases, the
number of open connections is limited and a connection attempt from Slowloris
blocks a “slot” until a timeout occurs. With the Apache’s default timeout value of
5 minutes, already a relatively mild attack can have devastating effects.

We tried to defend against this attack using the proxy without any load balancing
and the “load balancing proxy 2”. The latter one monitors the load of all other proxies
and only forwards to proxies that are not overloaded. There is no modification of
forwarding probabilities based on the load, if k proxies are not overloaded, each one
will be selected with a probability of 1

k
.

Figure 9.9 (a) shows a simulation using the framework from the previous Section 9.5,
which predicts the result of the experiment. There is no curve for “no defense” as
we do not expect the web server to send any replies during the attack.

In the scenarios with defense, there are four proxies that try to protect the web
server. One of these proxies is attacked with Slowloris. Again we expect slowloris
to completely DoS the attacked proxy, but as it sends partial HTTP requests and
the proxy does not forward a request before it is completed, the actual web server
will not be affected.

Under ideal conditions and using the “load balancing proxy 2”, whether a good
client’s request will be dropped or not completely depends on the client’s choice of
the first proxy. If the attacked proxy is chosen, the request is dropped, otherwise it
will be served — so 75% of the requests will be served successfully. As the attacker
does not follow redirects, there is no way of improving the results by redirecting
multiple times — in fact the results will get worse as soon as the number of redirects
increases the load of the not-attacked proxies.

In the experiment, the good client script tries to send 600 requests within 2 minutes
and 40 seconds. Without an attack, this amount of requests can easily be handled by
the web server. In Figure 9.9 (b), the percentage of successfully answered requests
based on the total number of 600 requests is shown. It can be seen that except
for measurement errors, the general form of the curves is similar to the expectation.
The proxy without load balancing has an exponentially decreasing success probability,

1http://ha.ckers.org/slowloris/

http://ha.ckers.org/slowloris/

108 9. Protection of Webservers using Proxies

(a) Expected result

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

D
ef

en
se

 s
uc

ce
ss

 (r
at

e
of

 s
uc

ce
ss

fu
l G

oo
d

C
lie

nt
 re

qu
es

ts
)

Number of redirects

Proxy without load-balancing
Load-balancing proxy 2

(b) Total result

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

D
ef

en
se

 s
uc

ce
ss

 (r
at

e
of

 s
uc

ce
ss

fu
l G

oo
d

C
lie

nt
 re

qu
es

ts
)

Number of redirects

Proxy without load-balancing
Load-balancing proxy 2
No defense

(c) Failed requests

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

R
at

e
of

 s
uc

ce
ss

fu
l r

eq
ue

st
s

ou
t o

f t
he

 s
en

t r
eq

ue
st

s

Number of redirects

Proxy without load-balancing
Load-balancing proxy 2
No defense

(d) Unsent requests

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

R
at

e
of

 s
en

t r
eq

ue
st

s
ou

t o
f 6

00
 a

tte
m

pt
s

Number of redirects

Proxy without load-balancing
Load-balancing proxy 2
No defense

Figure 9.9: Comparison of the proxy system’s expected performance with real-world ex-
periments.

with each new redirect there is a probability of 1
4 that the overloaded proxy is chosen

and the request remains unanswered. The load balancing proxy 2 correctly identifies
the situation and therefore performs much better, however, at four and five redirects,
the load of the whole proxy system increases, resulting in a lower success rate.
However, the success probabilities are much lower than expected. For the load bal-
ancing proxy with five redirects, we expected more then 40% of successful redirects
and achieved only 20%.
This is because in the real world, a DoS attack has two effects: A fraction of requests
is not answered at all, but all requests are delayed due to the high load on the
systems. In this special case, the Good Client tried to send 600 requests during the
experiment, but was limited to a maximum of 10 parallel requests. Only after a
reply was received, a new request could be sent.
While in the unloaded case, 600 requests could be handled easily by the system, this
was no longer the case under the DoS attack. Therefore we have to distinguish two
categories of failed requests:

• Requests that were sent but remained unanswered. These are plotted in Fig-
ure 9.9 (c). Different than in Section 7.2.3, we actually observed lost requests
in this scenario as the attacked proxy was completely unresponsive.

• Requests that could not be sent during the experiment timeframe, because
of delays while answering the previous requests. Those are plotted in Fig-
ure 9.9 (d).

9.6. Testbed Experiments 109

The extra delays for successful requests were not directly noticeable to a user, in all
cases they were between 120 and 260 milliseconds. Only during the direct attack
without proxy defense, the web server’s response time increased to 3.6 seconds. Lost
requests were detected through a timeout on the client-side. Therefore, each lost
request blocked one of the 10 sender-threads for 10 seconds.
Our model only captures the losses of requests and not the timing aspects. When
looking only at the lost requests, we can see that the approximation is already much
better, even though it still overestimates the effectiveness of the load-balancing proxy
2.
It is also interesting to see in Figure 9.9 (c) that the Apache webserver answers a
large percentage of the actually sent requests — the main damage is done by delaying
requests.
Concluding we can say, that the model used in the previous sections captures the
drop behavior of the investigated situations well. Timing is not considered in the
model. During a DoS attack, the performance of all considered proxy systems will
be negatively affected by extra delays.
Our investigations support the decision not to include timing effects in the model.
We have these timing issues as we send batches of requests using a limited number
of sender threats. For a user who sends a single request, the effect would have been
either a working website (with no noticeable delay) or a timeout.

9.6.1 Practical Aspects
There are a number of practical aspects to be considered when employing a scheme
like the one we suggested.

• The server will get requests from only very few IP adresses. If other DoS
protection mechanisms had been activated before and are accidentally still
active, the proxies could be detected as unusual high-load clients and therefore
blocked.
Further, user identification on the server might take IP addresses as one cri-
terion to distinguish different users (besides cookies, HTTP parameters, . . .).
Especially the IP address could be used as a negative criterion as it is normally
unlikely that the same user sends requests from different IPs. Such interactions
have to be considered and solved either by using only reliable information (i.e.
from cookies) for distinguishing users or by employing a scheme that deter-
mines the last proxy based on the user’s real IP address, so the same user will
always get the same last hop proxy.

• The proposed scheme will not work if the number of redirects that the client
can follow is exceeded. RFC 2068 [52] sets the maximum number of redirects
for an HTTP request to 5. RFC 2616 [51] removes this limitation but still
mentions that such a limitation existed in the past and that the user should be
aware of that. Today common web browsers like Firefox follow 20 redirects.
When activating this scheme for a web server, it should be considered that the
server itself may also use redirects (i.e. when content has changed its location
on the server). The last proxy will have to handle such a redirect correctly —
either by following the redirect himself and retrieving the right document for
the client, or by forwarding the redirect message to the client and being ready
to process the client’s renewed request.

110 9. Protection of Webservers using Proxies

• According to [51], an HTTP client client has to show a warning to the user
when processing redirects of requests that contain HTTP POST information.
As a workaround it appears to be the best solution to re-encode POST infor-
mation as GET parameters during the redirects. The last proxy will receive
the encoded GET parameters and can rewrite them as POST parameters for
the server. This workaround is not fully compatible due to length restrictions
for GET compared to POST parameters.

• As shown in Figure 9.1, a DNS server is used to initially contact the proxies.
When a load-balancing scheme is employed, the DNS server should also be
kept informed about the set of proxies that do currently accept requests.
While the proxies provide redundancy, a single DNS server remains a single
point of failure which is required for provisioning of the service. Therefore
appropriate redundancy is also required here. See Chapter 7 for a discussion
of DoS weaknesses in networks caused by service dependencies.

• The scheme might also be used as a part of a larger DoS defense system. The
proxies might assign an authentication score to each client, based on different
ways to prove the client’s legitimacy. So the client might solve computational
puzzles if he has JavaScript enabled and perform redirects as proof-of-work
if not. This scoring idea might even be combined with captchas. A system
that can combine different legitimacy tests has been presented in the related
work [16].

9.7 Conclusions

We have shown a proxy-based DoS defense system that purely relies on HTTP
redirects.

If JavaScript can be used, a proxy that sends computational puzzles has the advan-
tage that the client can be asked to do more work while the proxy can easily verify
the solution. In our solution, the proxy has to invest more resources than the client,
due to cryptographic operations (which are cheap, however, due to the limitation
on symmetric cryptography).

Our system is compatible with HTTP clients that do not support scripting, i.e.
search engine bots. It allows to defend against DoS attacks if the defender has
sufficient proxies available.

As already mentioned in Section 9.3.2, the system is meant for dynamic content that
has to be generated by the server for each client individually. Static content should
be cached by the proxies.

Key findings in Chapter 9:

• The designed proxy system is effective if the defender has enough re-
sources. However if the use of JavaScript is possible, computational
puzzles should be preferred.

• Load-balancing acts on information from the past. Therefore it has
to be used carefully, a smart attacker can exploit its properties.

9.8. Acknowledgements 111

• The DoS model used in Section 9.5 does not include timing effects.
Real-life experiments support the simulation results, but depending
on the situation, considering increased delays due to the DoS attack
might be important.

9.8 Acknowledgements
The author would like to thank Wolfgang Zejda who developed the initial proxy
and had the idea of how to use the pcode parameter for replay protection. Johanna
Eicher developed the real-world implementation of the load-balancing proxy 2.

Discussions with Marc-Oliver Pahl were very helpful while developing and imple-
menting the ideas presented here.

112 9. Protection of Webservers using Proxies

10. Mobile Worms

Mobile phones are becoming more and more powerful. With fast processors, the
ability to install and run a huge amount of client applications and permanent Inter-
net connectivity, today’s smartphones have become serious platforms for work and
gaming.

Many mobile phones have some form of short-range communications besides the
actual cell phone functionality. This is usually Bluetooth, but WLAN is also not
uncommon. For the future, Near Field Communication is planned, mainly to support
mobile payment applications.

There have been a number of worms for mobile devices, spreading by Bluetooth
like Cabir or MMS like Beselo.A, however, no serious outbreak has been observed
so far. There is hope that the problem of mobile worms will not become as bad as
PC worms, since mobile phones are a relatively closed platform. However phones
based on Symbian, Android or Windows Mobile allow the installation of software
which has not been tested by the operator. Further it is not unlikely that worms
can spread via security holes, as the operating systems of mobile phones are rarely
patched.

Cell phones are an interesting target for worms, possible goals of an attacker could
be payment systems or spying on the user’s location, calls and stored private data.

In this chapter we will describe, what possible harm a mobile worm can do, including
a discussion of regional denial of service attacks against the mobile network operator
and what defenses look like.

Section 10.1 is about related work. Threats by mobile worms including the novel
DoS attack are discussed theoretically in Section 10.2. Section 10.3 will contain
simulation results on the feasibility of the attack, Section 10.5 concludes this chapter.

114 10. Mobile Worms

10.1 Related Work
There have been a number of publications on epidemic spreading of viruses for
biological diseases but also for computer worms. In the latter case, the authors
either use simulations [53] or mathematical models of epidemic spreading [54]. Yan
et. al. [55] observed that the mobility model plays an important role for mobile
worm propagation. Su et. al. [56] did experiments and simulations, showing that
large-scale infections with Bluetooth worms are in fact possible.
So far, a few mobile worms like Cabir1 and Comwarrior2 have been observed in
the wild. However, none of them was able to spread widely. It appears that the
worms were not infectious enough, as they were only able to spread to discoverable
bluetooth cellphones with specific operating system versions and even required user
interaction. Since mobile phones are becoming more and more powerful and since
there is no awareness among the users that security updates might be necessary
for their phone’s operating systems, the possibility of a large-scale infection is still
present.
Security research regarding cellular networks mostly focuses on encryption and au-
thentication issues, but also DoS attack scenarios using signaling messages have been
investigated in the past ([57]). The attack we describe here works with user data,
however the same effects would also be achievable by causing signaling load on the
air-interface signaling channels.
Today, worms on PCs form highly organized botnets. This kind of organization has
not yet been observed with mobile worms.

10.2 Threat Analysis
There are plenty of possibilities how a mobile phone can become infected with mal-
ware: short-range communications like bluetooth, SMS/MMS, drive-by infection on
websites or shipping malware as a Trojan in some seemingly useful software. In this
section we will explore possible dangers by mobile malware, without looking into
the infection process.
Section 10.2.1 briefly describes general incentives for an attacker to write malware
for cell phones. The novel denial-of-service attack will be the subject of the following
Section 10.2.2.

10.2.1 Direct Threats for the User

Mobile phones are perceived to be safer than PCs. While most users know that PCs
can be infected with viruses, mobile malware has been so rare until now that most
people are not aware of it yet. For an author of mobile malware, there are several
possible incentives:

• Users increasingly use their cell phones for email and processing other docu-
ments. Malware can have the goal of harvesting passwords and other user-
specific information.

• If desired, mobile phones allow new ways of spying on people. Not only is it
possible to get audio and video from the phone, also tracking the location of
the user is possible.

1http://www.f-secure.com/v-descs/cabir.shtml
2http://www.f-secure.com/v-descs/commwarrior.shtml

http://www.f-secure.com/v-descs/cabir.shtml
http://www.f-secure.com/v-descs/commwarrior.shtml

10.2. Threat Analysis 115

• Mobile phones are used for payment services. Especially banks are sending one-
time passwords for PC-based online-banking to cellular phones. Tampering
with payment systems could bring a direct financial benefit for the author of
the malware.

• Mobile malware could call expensive service numbers or use other paid services.

Further, a mobile phone could also be made unusable by malware, i.e. by changing
connection settings (which would cut the phone off from the network) or by auto-
matically launching an application on startup which immediately crashes the phone.
Such a destructive behaviour was common to viruses in the past, however it is rarely
observed today as it limits spreading and does not give the attacker a benefit.
Defense against such malware is possible by controlling the applications on the
device. This would not necessarily mean a complete walled-garden philosophy, the
network operator could for example force the users to run a virus-scanner.

10.2.2 DoS Attacks on the Infrastructure

Denial-of-service scenarios against the network operator’s core network and Voice-
over-IP infrastructure in general have already been discussed in the past ([57]). In
this section we focus on possible flooding DoS attacks against individual cells of the
radio access network.
An attacker could perform any kind of jamming attack if he had direct access to the
device’s radio interface. In this section we will make the more realistic assumption
that any user-installed software on a mobile phone is bound to the implemented
MAC protocols for the cellular as well as the short-range interfaces.
Generally, cellular networks are subject to admission control and apply QoS mecha-
nisms, so they are more robust against DoS attacks than an unmanaged Ethernet or
WLAN. A single device is unable to flood a cell, as its share of the medium would
be limited by air-interface scheduling.
When multiple infected devices are present in the same cell, an attack is possible.
Again air interface scheduling of the operator strongly determines the effectiveness
of such attacks. The authors of [58] investigated the capacity of cells in different
operator networks and their reaction to high-load conditions. The results suggest
that 20-80 voice calls are required to deplete the resources of a UMTS cell. The
authors also found out that there is an operator-specific guaranteed minimum band-
width for each data call and that not all operators prioritize voice higher than data.
Highly-loaded cells tend to show strange behavior, including the possibility that all
active connections are dropped. Some network operators also offer video calls which
are given a relatively high priority while using 3-4 times more bandwidth than voice
calls. These results suggest that it is generally possible to DoS an UMTS cell with
less than 50 terminals when choosing a combined attack pattern of voice, data and
possibly video.
In the following we investigate the threat by a hypothetical malware which targets
a network operator’s radio cells. There is no point in attacking by blindly sending
traffic all the time, this would only make the user and possibly the operator aware
of the malware’s presence (i.e. by reduced battery lifetime, higher invoices). Usually
the volume of data traffic that a user can send per month is also limited by so-
called “fair-usage policies”. Therefore the core idea is that the malware only attacks

116 10. Mobile Worms

when it knows that a sufficient number of fellow attackers are nearby, so they can
collectively DoS the cell.

Such an attack requires coordination between the infected devices, which could be
achieved by one of the following approaches:

• Decentralized Coordination: When multiple infected devices are close to-
gether, they form a (possibly meshed) ad-hoc network, which has the main
purpose of counting the number of nearby infected devices. As soon as this
number crosses a threshold which allows the devices to DoS the local cell of
the mobile network, the devices launch their attack. This method has the ad-
vantage that no communication via the cellular network is necessary for the
coordination of the attack. Disadvantages are the lack of control by the mal-
ware author and that the fact of enough devices being in the cell may not be
detected as they are not close enough to form a common ad-hoc network.

• Central Coordination: Each malware instance contacts some central coordi-
nation point on the Internet (possibly via some proxy to disguise the communi-
cation) and transmits its cell ID. The central botmaster can see the distribution
of mobile phones and chose to attack cells with enough infected devices. The
disadvantage of this approach is the usage of the mobile network for coordina-
tion, which may be detected by the operator.

• Hybrid Coordination: Bots coordinate themselves via a ad-hoc networks,
but only one representative of each ad-hoc network keeps contact with the
botmaster. This would still allow for central control, while the amount of
revealing signaling traffic is reduced.

In the following section, these approaches for controlling a mobile botnet are simu-
lated.

10.3 Simulations
We have estimated the potential harm that such a worm can do by simulating its
behavior for one city. The simulated worm targets one mobile operator network in
Munich. This data can be used to estimate what damage a global mobile worm —
one that attacks all cells of all network operators — would be able to do. On the
other hand an attacker might even want to restrict his worm to a limited area or to
cells of a specific operator (compare to the Stuxnet worm [59] which apparently also
had a very specific target).

Our simulation is based on the following real data:

• For the population density of different districts, real census data from 2009 was
used.3

• For the cellular network, the real cell locations of one major mobile operator
with a market share of approximately 1/3 were available. The data consists of
2402 GSM and UMTS cell IDs together with the postal address of the building
that each base station is located at.

3http://www.muenchen.de/Rathaus/dir/statistik/veroeffentl/39378/index.html

http://www.muenchen.de/Rathaus/dir/statistik/veroeffentl/39378/index.html

10.3. Simulations 117

• The number of distinct postal addresses is only 480. This is because usually
(a) base stations use three sectoral antennas and (b) because it is usual that
for example a GSM and a UMTS cell are placed at the same location. The 480
addresses were translated to geo-coordinates using the Google Maps API4.

• We assume that 100% of the population carry a mobile phone. This is conser-
vative, the real ratio is somewhere between 110% and 120% today. Scaled to
the population of Munich5, which is 1,330,440, we can approximate the total
number of mobile phones in the city that belong to our network operator to be
439,000.

Unfortunately there are no good sources on the distribution of certain mobile phone
brands/models (only statistics regarding sales), which would have been interesting
to further evaluate the results.

It was assumed that a single cell is under DoS when more than 52 worms are active.
For this value we took the call capacity of an UMTS cell in voice calls as determined
in [58]. We assume that this underestimates the potential harm that a worm on a
mobile device can do, as individual devices can produce a higher load if using video or
data-calls. Network operators have the possibility to rate-limit data traffic, therefore
we chose this minimal value which corresponds to a data rate of approximately 12
kBit/s.

As noted above, usually multiple cells reside at the same location. We do not consider
the angle between the cell and the user, therefore we are not able to realistically
represent sectoral antennas. So in case of multiple cells at one location, we just
added the capacities. This simplification already has a load-balancing effect, so it
under-estimates the effectiveness of the attack. The background-load from legitimate
users has been set to 15% of the total network capacity, the legitimate users are
placed in the city the same way as the attackers.

The simulation calculates a user distribution and its consequences for the network.
There is no mobility model included, only snapshots of the simulated scenario are
calculated and evaluated. For each user with an infected mobile phone, the simula-
tion performs the following steps:

• A home location for the user is randomly selected on the map according to the
city’s population density.

• As users do not stay at home all day, a random displacement vector is added.
This vector has a gauss distribution, the expected distance of the user from his
home is 1 km.

• If the user’s calculated location is outside Munich, the whole location selection
is repeated. This makes sure that the target number of users is actually reached.

• The cell with the closest distance to the user is calculated. As we do not know
details of the mobile network, this cell is taken as the user’s active cell. The
potential load that can be caused by the worm is added to the cell.

4http://code.google.com/intl/de-DE/apis/maps/
5https://www.statistikdaten.bayern.de/

http://code.google.com/intl/de-DE/apis/maps/
https://www.statistikdaten.bayern.de/

118 10. Mobile Worms

• As the last step, the simulator searches for already-placed users that are (a) in
the same cell as the new user and (b) within an ad-hoc communication range
of 30 meters. A user who fulfills both conditions exists, both are assumed to
be in the same ad-hoc network.

We expect the users to be more evenly distributed than real humans would be
(the random locations do not tend to cluster as much as humans would), which
again under-estimates the attack’s success. On the other hand in reality the mobile
operator constantly enhances his network according to the observed load distribution
(if a cell frequently experiences high load, the network capacity in its vicinity will
be extended by adding more cells). As we do not have insight into the operator’s
capacity planning, we can not consider this. This factor may over-estimate the
attack’s success, as we assume a high call density based on the population density
for certain areas, which may not be the case in reality.

As a performance indicator for the attacker’s effectiveness we use the number of
successfully attacked cells. Further we are interested in the amount of control traffic
that is needed to organize the attack.

10.3.1 Attacker Strategy

As discussed in Section 10.2.2, the attacker has three options of organizing his net-
work. This section explains how these are represented in the simulation.

Generally it can be said that the volume of control traffic is determined by the
malware’s information dissemination strategy. Updates can be triggered, periodic
or use combinations of triggered and periodic transmission. The attacker in this
scenario is in a similar position as the mobile network operator in the following
Chapter 13, therefore many of the optimization versus accuracy considerations apply
here, too. In this section we exclusively want to focus on the effects of clustering,
therefore we keep our model simple in all other aspects.

We assume that nodes send location updates once per minute. A location update
consists of an IP header, a TCP header and the node’s cell ID, a 7 byte number. So
the total length is 47 bytes.

In case of Central Coordination each device sends its updates directly to the bot
master. Therefore the volume of the control traffic is 47·8·#infected_devices

60
bit
s

for the
city. The botmaster makes the perfect attack decision, he will order his worms to
attack exactly those cells where a successful attack is possible at the moment.

With Decentralized Coordination the worms work fully autonomously, so the control
traffic is 0 bit

s
. The worms organize themselves in an ad-hoc network and will only

attack if the size of this network exceeds a threshold. In theory this threshold would
be set to the number of devices that are needed for a successful attack. In practice
the size of a cell is much bigger than the size of a single ad-hoc network. On one hand
it is unlikely that an ad-hoc network of 50 devices is formed when users distribute
randomly in the simulation (as mentioned before, real humans tend to “cluster”
far more, so the attack can be considered more effective in reality). On the other
hand the probability of having multiple ad-hoc networks that can not see each other
within a cell is high. For the following experiments the attack threshold was set
to 5 devices, a choice that is justified by simulations that exclusively focus on this
parameter. This means that often cells will be attacked by groups of worms that

10.3. Simulations 119

Figure 10.1: Simulation with 10,000 infected users. The magnification shows the marked
area near the center of the map.

don’t have the critical mass for a full DoS — which is undesirable for the botmaster
as it draws attention on the worm without causing real harm.
In case of Hybrid Coordination, bots form ad-hoc networks as before. A single rep-
resentative of each ad-hoc network sends reports to the botmaster. Ad-hoc networks
can consist of a single node. The botmaster has the full information and can per-
fectly organize his attack like with Central Coordination, the advantage is that the
control traffic is reduced. We assume an update to be one byte larger than with
Central Coordination, as the number of bots in the ad-hoc network has to be added.
The control traffic can therefore be estimated as 48·8·#ad_hoc_nets

60
bit
s
.

10.3.2 Simulation Results
To make the simulation method more transparent, Figures 10.1 and 10.2 show a
direct simulation output. Here shades of gray show the population density of the
districts of Munich. Red areas are overloaded cells, while the specific shade of red
varies from cell to cell — this is to make the cells visually distinguishable and has
no special meaning. The shape of the cells is due to the simplifying assumption that
the closest base station is always responsible for an area.
Tiny green dots are users with infected devices. The internal resolution of the
simulation is higher than the resolution of the picture, so a single dot may represent
multiple users. In Figure 10.2 users that are part of an ad-hoc network have been
colored blue.
In Figure 10.3, simulation results are shown in the form of graphs. In Figure 10.3 (a)
the average attack success is shown. Without an attack, an average rate of 2.5 of the
480 cells is overloaded (which equals to 0.5%). 20,000 infected users are required to
double this rate in case of central or hybrid coordination. At 108.000 infected users,
more than half of the 480 cell locations would be DoSed.
The decentralized worm with an attack threshold of 5 devices per ad-hoc network is
by far less effective. It needs 56,000 infected devices to double the legitimate rate of

120 10. Mobile Worms

Figure 10.2: Simulation with 30,000 infected users, showing users in ad-hoc networks (with
30m range) as blue dots. The magnification shows the marked area near the center of the
map.

(a) Attack success

0

50

100

150

200

250

300

0 20000 40000 60000 80000 100000 120000

Av
er

ag
e

at
ta

ck
ed

 C
el

ls

Number of infected Users in the Network

Cells taken out by full/hybrid attack
Cells taken out by autonomus attack
Cells unsuccesfully attacked by autonomus attack

(b) Control Traffic

0

100

200

300

400

500

600

700

800

0 20000 40000 60000 80000 100000 120000

C
on

tro
l T

ra
ffi

c
(k

Bi
t/s

)

Number of infected Users in the Network

Full attack
Hybrid attack
Autonomus attack

(c) Evaluation of attack Threshold

0

50

100

150

200

250

300

0 20 40 60 80 100

Av
er

ag
e

at
ta

ck
ed

 C
el

ls

Autonomus attack Threshold

Cells taken out by full attack
Cells taken out by autonomus attack
Cells unsuccesfully attacked by autonomus attack

(d) Influence of ad-hoc Network Range

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120

Av
er

ag
e

Si
ze

 o
f a

d-
ho

c
N

et
w

or
ks

Range of ad-hoc Network (m)

Figure 10.3: Simulation results of the mobile worm simulation. Parameters if not men-
tioned otherwise: 80,000 infected users, 30 m of ad-hoc network range, autonomous attack
threshold 5 devices.

10.3. Simulations 121

cell overloads to 1%. It also produces lots of unsuccessful attacks, therefore infected
devices can probably be identified before causing harm.

In Figure 10.3 (b) one can see that for this single city, the amount of data traffic
produced (depending on the number of infected devices) will be in the order of 1Mbit

s
,

so can still be handled by command and control servers. However, on a global scale,
the botmaster would need a significant amount of infrastructure for command and
control. The hybrid approach reduces the traffic volume especially in case that the
worm has spread widely.

Figure 10.3 (c) continues to show that the decentralized approach is ineffective.
Increasing the network size that triggers an attack disables the worm, as the prob-
ability of building a large ad-hoc network is very low. The unsuccessful attacks
remain a problem, even when the successful attacks have virtually reached zero.
Figure 10.3 (d) shows that an ad-hoc technology with greater range would make
this strategy more efficient. At the simulated ad-hoc network range of 30 meters,
the average size of such a network is only 1.45 devices. With 100 meters this would
increase to about 19 devices.

10.3.3 Load Balancing

Load balancing can help against botnets of this type. Usually a user is in range of
multiple cells. Therefore the network operator can decide to move users from an
overloaded cell to a less-loaded cell. The bot will notice the changed cell ID, but in
the new cell the attack threshold might not be reached, so the bot stops the attack.

(a) Load Balancing with low Load

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

C
el

l L
oa

d

Cell (sorted form highest to lowest Load)

10000 Users, no Load Balancing
10000 Users, Load Balancing

Cell Capacity

(b) Load Balancing with varying load

0

50

100

150

200

250

300

0 20000 40000 60000 80000 100000 120000

Av
er

ag
e

at
ta

ck
ed

 C
el

ls

Number of infected Users in the Network

Cells taken out by full/hybrid attack without load balancing
Cells taken out by full/hybrid attack with load balancing

Figure 10.4: Simulation of centrally coordinated worm.

In Figure 10.4, the network operator employs a simple load balancing strategy. If a
cell is overloaded, users from this cell are moved to the cell which is the second or
third-closest to their location, as long as the load is lower there. After all devices
were moved, the botmaster decides again, which cells should be attacked.

Figure 10.4(a) shows the load values for the 20 cells with highest load in case of 10,000
infected users in the system. Load-balancing improves the situation, the number of
overloaded cells is reduced from five to zero. In Figure 10.4(b), the general effects
of load balancing depending on the number of infected users is shown. Generally it
can be said that load balancing helps if the attack is not too strong. If the resources
of neighboring cells are exhausted as well, there is no way of improving the situation
through load balancing.

122 10. Mobile Worms

Compared to Chapters 8 and 9, it appears like there is no way for the attacker to
exploit load balancing. This is because the attacker’s possibilities are very limited
in this scenario.

10.4 Countermeasures
We see several options to detect and mitigate the threat of this worm.

• In the previous Section 10.3.3 we saw that load balancing can be effective if
the attack is not too strong.

• Looking at the communication to the Internet-based botmaster, if existent.
However, this is difficult, as already today’S PC-based bots can disguise their
traffic, i.e. as normal HTTP communications. Still we suggest that network
operators should employ intrusion detection on the mobile device’s upstream
traffic.

• Detecting short-range coordination traffic, i.e. by placing probes (“Bluetooth
Honeypots”) at crowded places. This has already been suggested in [56] to
detect worm propagation.

• During an attack, the mobile network’s QoS mechanisms could be used to
keep the mobile network operational. However, this requires the possibility to
distinguish the attack traffic from legitimate traffic. In any case voice calls
should be given highest priority.

• If the attack started on all devices simultaneously, the operator could use this
fact to identify the attacking devices. However, this can be disguised by the
attacker by using individual start times for each device.

• If the attack is coordinated locally using an ad-hoc network, the operator could
detect the participating hosts by looking at the locations of the nodes in the
cell. The attacking nodes are expected to be relatively close together. This
might allow blocking the attackers, however, it may also cause some legitimate
sessions to be dropped.

• Operators should prevent the creation of mobile botnets by controlling the
software on the devices — i.e. a mobile virus scanner could be installed by
default.
Depending on the mobile phone’s software platform it might also be possible
for the operator to force the installation or un-installation of certain software
— so security software might be installed and malware might be removed.

10.5 Conclusions
In this chapter we presented an analysis of the potential danger caused by mobile
worms, including a possible DoS attack on mobile operator networks.

It was shown that — even with simulation parameters that probably under-estimate
the damage — such a mobile worm is a serious threat. Centrally or hybridly coordi-
nated, the worm can inflict a lot of damage when infecting enough devices. However
these control schemes are not “stealthy”, there always is control traffic which can

10.6. Acknowledgements 123

be detected by an intrusion detection system. The completely autonomous version
of the worm on the other hand is far less effective when attacking the network.

Load balancing by moving users to different cells is effective as a countermeasure,
as long as the attack is not too strong. Similar resource management decisions will
be subject of Part III of this thesis.

One open question is, whether we really have to expect such attacks. Most of
today’s worms are used by criminals to earn money. It is unlikely that money can
be made from extortion of network operators. However, this attack can also be seen
as targeting a geographical region rather than a specific operator, so for example
public events could be potential victims — large crowds will also make the attack
easier, as more legitimate and more infected users would cluster in a small area.
Even if this attack is hypothetical now, the possibility should be considered when
designing cellular networks.

Key findings in Chapter 10:

• The investigated DoS attack on the individual cells of mobile net-
works is technically feasible and a threat to mobile network opera-
tors. With central coordination by a botmaster, the mobile devices
will only strike when they can actually cause harm.

• The purely decentralized variant of this attack, which is based on
ad-hoc networks, has been found to be ineffective. However, this is
not a 100% reliable result, as humans tend to cluster more than the
randomly distributed users in the simulation. During events which
are visited by thousands of people, critical masses of users might still
be reached.

• It is not clear, what the incentives of an attacker who builds such a
worm would be. However, the same can be said about the Stuxnet
worm ([59]).

• One possible countermeasure is load balancing by moving users to
neighboring cells. This improves the situation as long as those cells
still have free capacities.

• The best defense is the prevention of malware-spreading on mobile
phones. This will be harder as these devices become more and more
open.

10.6 Acknowledgements
The author would like to thank Andreas Klenk and Alexander Klein for fruitful
discussions.

124 10. Mobile Worms

Part III

Metering and Resource
Management in Future Mobile

Networks

11. Overview

Future mobile networks should be able to offer seamless handovers between different
access technologies. As the management of heterogeneous networks is a major topic
in current research, a new term named Always Best Connected (ABC) has evolved in
recent years [60]. It requires both sides in mobile communication to be considered:
On the one hand, users would like to be connected to “best” available network in
terms of e.g. signal quality and bandwidth. On the other hand the network provider
wants to share the available resources between millions of users in a fair or privilege-
based fashion.

Optimal handover decisions between different access networks (so-called heteroge-
neous handovers) have to take various types of information into account, for example
radio conditions and the load of possible target cells. However, collecting this in-
formation and transporting it to mobility management decision engines is costly in
terms of bandwidth. The benefit on the other side is a more efficient use of net-
work resources, a better user experience and — as we saw in Section 10.3.3 — even
improved availability during attacks.

In Section 11.1 the problem statement for Part III of this thesis will be given.
Section 11.2 analyzes the current situation in mobile networks, Section 11.3 discusses
what data is actually required for heterogeneous handover decisions.

In Chapter 12 we will introduce the Generic Metering Infrastructure (GMI),
a modified Publish/Subscribe system for collecting data in mobile networks. Chap-
ter 13 analyzes the trade-off between the quality of resource management decisions
and the volume of collected management data when using the GMI.

11.1 Problem Statement
State of the art mobile devices support multiple access technologies and the han-
dover between them. Generally, either the mobile devices themselves or their users

128 11. Overview

decide which access technology to choose. But a mobile-driven handover decision
is not always desirable. First of all, this kind of network selection poses a burden
on the end user, if it involves user interaction. To hide this complexity from users,
smart decision functionalities should be provided that do not involve the user di-
rectly. Second, each node has to scan for neighboring networks, which consumes a
considerable amount of power. To prolong battery run time of mobile devices, radio
transceivers that are not needed shall be turned off most of the time. Third, as each
mobile node optimizes only its own connection without considering the impact of its
decisions on other nodes, the decision leads to potentially suboptimal solutions. If,
for example, one mobile node connects to a WLAN access network while having a
bad link and slow modulation, this can significantly worsen the connection quality of
other nodes that are also connected to the same access point [61]. Instead it would
be better if the node connected to another access technology in which it would not
degrade the connection quality of adjacent fellow nodes.

A global view on the network including perfect information about all variables would
allow for a centralized decision functionality inside the operator’s core network.
Such a decision engine would be able to take the current state of numerous users
and network-side parameters like the utilization of certain base stations into ac-
count. Thereby it could provide better decisions than a single user may make,
which promises better performance and allows for a network-controlled sharing of
resources in heterogeneous networks.

However the central decision engine would need to obtain all this information some-
how. Collecting management data is expensive as base stations are spread in the
countryside, with costly rented or wireless “backhaul”-links connecting them to the
operator’s core network. Management and control traffic have to share these links
with user data — and as the customer’s data is what an operator is paid for, the
share of measurement traffic has to be minimized. It is expected that after the in-
troduction of LTE, the backhaul links will be a major bottleneck for years to come.

The goal of the following Chapters 12 and 13 will be, to get enough information
for reasonable handover decisions while keeping the amount of measurement data as
low as possible. We will propose a system for monitoring the network and estimate
the potential costs in terms of backhaul bandwidth as well as the potential gain.

11.2 Analysis

Although there already is a way of monitoring and managing current provider net-
works, it lacks of real-time capability [62]. In UMTS networks, for example, mech-
anisms for performance management exist which allow for requesting various infor-
mation for individual cells. However, UMTS NodeBs are usually connected to the
Core Network by links with limited capacity. In this case, for Operation, Adminis-
tration and Maintenance (OAM) a channel of approximately 64 kBit/s, is available.
The load of a specific cell can be requested using these interfaces. However, the
usual OAM interface is realized by uploading ASN.1-files via FTP in intervals of
30 minutes for bandwidth reasons. This kind of interface is not suitable for quick
mobility decisions, so alternatives need to be explored.

Flat hierarchies in future mobile networks make the process of data collection even
more difficult. In LTE networks there will no longer be a node like the UMTS RNC,
which already has load and radio data of hundreds of cells, but only evolved nodeBs

11.3. Requirements 129

located much closer to the antennas. With wireless LAN the situation is similar
because all measurement data has to be collected at the access points.

Therefore, it is essential to save bandwidth, especially at bottlenecks in the Radio
Access Networks (RANs). Redundant transmission of data must be avoided and the
number of measurement reports should be kept as low as possible. On the other
hand, the central decision making entities need current information to make good
decisions, in some situations it is even necessary to retrieve measurement data on
the instant (i.e. in a request/reply fashion).

11.2.1 Granularity Periods

Monitoring in 3GPP networks usually does not directly deal with raw data from the
network elements, but with derived key performance indicators (KPI).

A network element collects raw data for an interval called granularity period
(GP). After the GP is finished, this data is used to calculate the KPIs [62]. With
today’s network elements like RNCs, the minimum GP is 5 minutes, while 30 minutes
are a far more typical value. Of course monitoring with such a granularity barely
helps when building a heterogeneous resource management system, near-realtime
data is required for this.

For the future we expect the meters to work the same way as they do today, but
with shorter granularity periods in the order of minutes or seconds. Each KPI has a
specific minimum GP, new data for handover decisions is only available when a GP
has ended.

11.3 Requirements

Based on research of our project partners at DAI-Laboratories [63] four exemplary
categories of data have been identified that are required for their Network Re-
source Management (N-RM) decisions.

• Load information is required for prevention or handling of overload situations.
Thus in case of an overloaded cell or access network, UEs can be moved to
different networks.

• Signal quality gives the N-RM the chance to move users to a different access
network, if the radio conditions are insufficient.

• Mobility and location information about a user helps the N-RM to estimate,
which alternative networks or cells are available at the user’s location.

• Perceived Quality of Service (QoS) can be a general indicator that tells the
N-RM about a customer whose service quality is degrading. The reason for
this will usually be either network overload, an inappropriate access selection
or bad signal quality - or a combination of these factors.

Having identified these categories of information we will focus on the question of
how the data should be reported to client applications of the GMI (e.g. the Net-
work Resource Management). We distinguish three types of information delivery
mechanisms that address different requirements to serve a client’s needs:

130 11. Overview

• Periodic reports keep the client constantly informed about the network’s state.
By monitoring certain measurements the client may be able to act proactively
on changing conditions before critical situations occur.

• If nevertheless a critical situation occurs, reports should be triggered immedi-
ately when the data is available, so the client can react as quickly as possible.

• Additionally, it should be possible for a client to get direct access to a value
in a request/reply fashion. Unlike the former methods that require a previous
announcement of interest in measured data, such a request is only sent once
and is answered immediately.

The design of a monitoring system based on these requirements is presented in
the following Chapter 12. Simulation results of heterogeneous handovers using the
proposed system are shown in Chapter 13.

12. GMI — Concepts and
Implementation

To get an efficient view on the state of the network, the Generic Metering In-
frastructure (GMI) [64] was designed, a publish/subscribe system for collecting
and distributing measurement data in an operator’s network. It uses various tech-
niques to increase efficiency of data collection, i.e. by building distribution trees, by
caching data and by data compression. The GMI is intended for all kinds of man-
agement applications, i.e. for fault management, security management, and resource
management. This thesis concentrates on the usage of GMI for making handover
decisions.
The Generic Metering Infrastructure (GMI) is able to provide decision making en-
tities with the desired information and brings the following benefits:

• It can significantly reduce the number of signaling messages by generating
optimized information delivery paths and combining multiple aggregation and
compression techniques (aggregation of triggers, multicast distribution trees,
caching).

• Towards the decision-making entities, the GMI offers an interface that gen-
eralizes the configuration of measurement tasks and provides generic API for
obtaining measured information.

• It offers an information collection and delivery service that may serve clients
in soft real-time and enable faster and more precise decision making.

This chapter is organized as follows. Section 12.1 discusses related work. The
description of the GMI concept and design follows in Section 12.2. The components
that make up the Generic Metering Infrastructure were implemented, Section 12.3
focuses on this subject. A preliminary evaluation is given in Section 12.4, while more
extensive simulations are subject of the following Chapter 13.

132 12. GMI — Concepts and Implementation

Figure 12.1: Basic concept of an Event Service.

12.1 Related Work
The Publish/Subscribe paradigm is an event-driven way of information dissemina-
tion. Publish/Subscribe Systems decouple senders and receivers in two dimensions:
Instead of polling the source of information regularly, an interested party registers
for events only once (decoupling of time). There might be more than one interested
party for some information and the source of the information may not want to or
not even be able to send a copy of the information to each recipient. Again it would
be desirable to publish the information only once for all recipients (decoupling of
space). This concept leads to highly asynchronous communication.

Figure 12.1 illustrates the basic concept of P/S-Systems. As can be observed the
interaction is entirely information-driven, thus the source of information and the
receiver of information are unaware of each other. Objects of interest or producers
may advertise events to the event-broker system in form of a topic or type that
specifies the sort of information they may publish. On the other hand, interested
parties or consumers may subscribe at the P/S-System for certain sorts of informa-
tion they’re interested in. As soon as a source of information publishes some “news”
the event-broker-system starts to dispatch this message and notifies all interested
parties of the occurred event.

As not all published information is relevant to each of the consumers, there must be
a way to reduce the amount of information that will be delivered to a single client.
After a consumer submitted a subscription, the event broker is in charge of deciding
whether a notification is of interest for a consumer or not. This issue is solved by
the introduction of filters. A filter is a boolean function that can be applied to all
notifications and evaluates to true, if the consumer is interested in the notification,
or false, if he is not.

The filter model determines the degree of flexibility a P/S-System achieves. Basically
there are two categories of approaches for filter models. The first category defines
a fixed set of topics. The producer of information may decide under which topic it
publishes its information.

Channel-based filters offer a predefined set of topics to publish information. The
flexibility for classifying the messages is limited by the amount of existing channels,
thereby additional filtering of information on the client’s side is often needed. The
subject-based model is similar, but it organizes notification topics (or subjects) in a
tree-structure. Again the object of interest chooses the subject to publish its reports.

12.2. Design 133

A subscribing consumer may specify a single leaf of the tree or an intermediate node.
After subscribing to an intermediate node a consumer receives all reports that are
published at any leaf of the corresponding sub-tree.
These two approaches are simple and easy to implement, but they hinder changes.
If the topic-assignment for a type of notification is changed, both producer and
consumer have to switch topics simultaneously, to avoid losing information.
The second category of filter models are content-based filters, which enable subscrip-
tions that refer to the actual content of a message ([65, 66]). A producer does not
have to categorize its notifications anymore. The event system is responsible for
deciding whether the information contained inside the message is relevant for each
subscriber or not. Although this approach is more flexible in terms of specifying sub-
scriptions, it is also much more complex to realize and requires the costly evaluation
of search patterns on each message.
In [67], a publish/subscribe system for mobile devices is developed, with features like
location-based notifications. Our work is orthogonal as we build a publish/subscribe
system for the network-side.
In the real world, CORBA1 and Java2 provide distributed event notification services.
Twitter3 can be seen as a publish/subscribe system, in which users write and receive
news with channel- or content-based filtering. Similar to the GMI, senders and
receivers are not completely unaware of each other, as user IDs are used as channel
names.

12.2 Design
Most of today’s protocols for network management (for example SNMP [68]) are
based on the client-/server-paradigm that relies on a closely time-constrained request-
/reply-message architecture. But this approach does not suit well for our field of
operation. A basic assumption that has already been stated by T. Bandh [69] is that
information is of most interest in critical situations. If e.g. the load in a cell rises to
a critical level, an N-RM will surely want to be informed immediately and regularly,
but if the level of load reduces to a “normal” level the information is of less impor-
tance. This observation led to the design of a modified Publish/Subscribe System
(P/S-System) which is described in the following sections. Further information is
available in [70].

12.2.1 GMI Event-Service: Overview and Signalling

The GMI adapts and modifies the concept of P/S-Systems. Its event-brokers are
called Metering Management and Collection Entities (MMCE).
An overview of the GMI can be seen in Figure 12.2. At the top we have the interested
parties, which are called metering clients in our terminology. At the bottom we find
the actual meters that produce the measurement data, in mobile networks they could
be placed at network nodes like RNCs or WLAN APs.
The GMI itself is split into 3 sublayers. The MMCEs that interface directly with the
metering clients are primarily meant to route requests to the correct lower MMCE.

1http://www.omg.org/spec/CORBA/
2http://www.oracle.com/technetwork/java/index-jsp-142945.html
3http://twitter.com/

http://www.omg.org/spec/CORBA/
http://www.oracle.com/technetwork/java/index-jsp-142945.html
http://twitter.com/

134 12. GMI — Concepts and Implementation

Figure 12.2: GMI signalling overview.

Here it should be noted that MMCEs are logical functions that don’t necessarily
have to be “physical boxes”, an MMCE could also be a process on the Metering
Client’s machine (analogous to a DNS resolver which is the local component of the
DNS service).
Data-specific MMCEs offer additional value-added services to the clients. On this
layer we can also build multicast-like distribution trees if multiple clients are inter-
ested in the same data.
MMCEs on the data collection layer directly interact with the meters. As the meters
may require different protocols for configuration and data delivery, the primary
purpose of these MMCEs is translation between GMI messages and the Meter’s
protocols. Of course one could also develop native GMI meters that do not require
this step (again in this case the MMCE could be a software component running on
the meter).
Figure 12.2 also shows some example signalling. This is the simplest case without
distribution trees or data-specific MMCEs - a single Client requests data from one
single Meter.
The Metering Client is interested in someWLAN data and sends a CREATEmessage
to his local MMCE (1). This MMCE performs a lookup in the DNS-like GMI-
database (2) to find the source of the requested data. Having received a reply (3), the
MMCE forwards the CREATE message to the MMCE assigned for that meter (4).
This MMCE is in charge of configuring the meter for this measurement task (5). As
soon as new data is available, the Meter sends a report to its assigned MMCE (6).
The message is translated into a GMI PUBLISH message which is forwarded to the
Client subsequently (7), (8).

12.2.2 Positioning of the MMCEs

Figure 12.3 shows, how the GMI could be deployed in 3GPP’s System Architecture
Evolution networks. Here a single Network Resource Management (N-RM) instance

12.2. Design 135

Figure 12.3: Mapping of the GMI to the SAE network architecture.

is the only metering client. In a real network, multiple resource management decision
engines and possibly other management systems would obtain their information from
the GMI.
All network elements shown in Figure 12.3 produce metering data that is of interest
to the clients of the GMI. The MMCEs are placed as close to the meters as possible,
but above bandwidth bottlenecks. This is easy to accomplish with UMTS networks,
as RNCs are central entities which possess the required information for hundreds of
cells. With HSDPA this situation partly changes, as scheduling and radio resource
management have been moved to the NodeB, so in this case a Meter on the NodeB
is required.
LTE networks have no RNC anymore, the radio resources are controlled by the
eNodeB, so a Meter is required there. With WLAN and WiMax, information about
the radio links is also available at the actual base stations.

12.2.3 Late Duplication

The MMCEs form an acyclic network of nodes that allows for building up distribu-
tion paths for published information that are similar to multicast trees. Thereby the
so-called “late-duplication” is applied here. This reduces the bandwidth consump-
tion of the event-system as the messages that have multiple recipients are duplicated
as close to the recipient as possible. C. Chalmers [71] investigated the benefit of us-
ing multicast trees compared to unicast communication. The general advantage of
multicast trees is hard to predict because it depends on multiple factors, such as the
breadth and height of the tree and the number of receivers. But it can be observed
that the number of messages sent grows logarithmically, if any of the named factors
grows linearly. This aspect is especially important in huge networks. By reducing
the number of sent duplicate messages to a minimum, the system’s complexity and
costs are kept low.
In mobile networks, most of the benefit of late duplication can already be achieved
using a very simple strategy. Only one copy of each measurement value should be
sent via the backhaul link. As soon as we are in the operator’s core network, data
volume is no longer an issue, so from that point we can route individual copies of
the data to the receivers.
Such a simple dissemination strategy or the formation of real multicast trees can be
organized by the GMI-database. As mentioned before, it is a service similar to DNS,

136 12. GMI — Concepts and Implementation

it resolves the ID of a desired measurement value to the address of the responsible
MMCE. The GMI-database knows the location of every GMI node, so it can give
different nodes different answers to the same request.

For example a client that asks the GMI DB about the location of certain data may
be advised to contact MMCE A for obtaining it. If MMCE A receives the task and
does not yet know about the data, it will query the GMI-database again and will
receive a different answer — the address of an MMCE which is closer to the data
source.

12.2.4 Addressing

The GMI is a modified Publish/Subscribe System. The major difference to other
Publish/Subscribe systems lies in the amount of decoupling of senders and receivers.
The decoupling in space would prevent the metering clients from directly assigning
metering tasks to specific meters. This aspect has been overcome by introducing a
scheme that combines the addressing of meters and the filter model of the GMI’s
event service.

This approach introduces a DNS-addressing scheme that is based on the 3GPP TS
TS23.003 [72] (Annex C and D). This standard proposes DNS-like addressing of
network functions such as a Serving GPRS Support Node (SGSN). An SGSN can
be addressed by appending its name and identifier (e.g.: 1B34) to an operator’s
top-level domain:

sgsn1B34.<mobile national code>.<mobile country code>.3gppnetwork.org

3GPP only defines DNS-names for those network nodes that are addressable by IP.
But as we want to be able to address meters like UMTS NodeBs that are not capable
of IP, we propose an easy extension of the naming scheme to these entities.

The introduction of a new MMCE-domain below the operators top-level domain
spans a new overlay network of Metering Management and Collection Entities where
each meter forms its own DNS-domain within the mmce-domain. That way a self-
explaining addressing scheme can be deployed, for example data regarding an UMTS
NodeB could be found under the address

nodeB0123.mmce
.mnc123.mcc123.3gppnetwork.org

Obviously this scheme introduces an intended indirection. The DNS-names do not
refer to the meters themselves but to their correspondent MMCEs. They are re-
sponsible for administering metering tasks and forwarding measurement reports.

12.2.5 GMI Subject-Tree

The GMI uses the subject-based filter model. Because the previously defined domain-
names already imply a hierarchical structure, they can directly be mapped into a
subject-tree. This tree does not only allow addressing of meters but it also contains
addresses for the data that is measured there. Each measurement forms a new sub-
domain within its meter’s domain. That way, a measurement can be addressed by
appending its name to the address of the meter.

12.2. Design 137

For instance the topic FailOutintraNodeB (number of failed outgoing intra-NodeB
hard handovers) can be measured at each NodeB [73]. Because there can be mul-
tiple reasons for a handover-failure this topic is split up into several reasons or
sub-measurements. Among others these can be: NoReply, ProtocolError, Radi-
oLinkFailure or sum. The resulting name of the measurement NoReply would be:

NoReply.FailOutintraNodeB.nodeB0123
.mmce.mnc123.mcc123.3gppnetwork.org

It shall be understood that the other parameters can be addressed accordingly.

These capabilities can be advertised on start-up of the network to the attached
MMCE of a meter. Thereby each MMCE has to cope only with the information of
its attached meter and doesn’t have to be aware of the information that can be found
on other Metering Management and Collection Entities distributed in the network.

12.2.6 Measurements and Events

As already mentioned in section 11.2, a basic requirement of our architecture is the
support of a flexible set of measurement tasks.

To emphasise that a subscription in the GMI’s sense differs from the classic sense
of a P/S-System, we replaced the SUBSCRIBE message with a CREATE message.
Its basic functionality remains the same (declare the interest in a certain type of
information). But a CREATE-message may also cause new measurement tasks to
be created at the meter.

Periodic measurements: A metering client can subscribe to periodic metering tasks.
In this case the subscriber specifies a desired report period (RP) (usually a mul-
tiple of the granularity period introduced in Section 11.2.1) and the measurement
value it wants to stay informed about. If there already is a subscription that matches
the desired measurement, the sender of the CREATE message is appended to the
already existing list of receivers. If there is no matching subscription, a new metering
task will be started. Thereby the GMI ensures that only one periodic measurement
task with the given report period is active at a time.

Triggers: It is also possible to set triggers for measurements. Such a subscription
sets one or multiple thresholds for a metered value. If the value rises above or falls
below the given threshold the metering client is informed immediately. Trigger sub-
scriptions contain a hysteresis parameter to make sure that a value which oscillates
around the threshold does not cause an unnecessarily large amount of messages.
A trigger notification consists of two values: the former value and the currently
measured value that caused at least one trigger to fire. This enables an implicit
aggregation of triggered measurement reports. If a single new value causes mul-
tiple triggers to fire, only one message is sent. Each intermediate MMCE in the
distribution tree can decide which subscribers of triggers have to be informed. This
enables “late duplication” according to the classic P/S-scheme: Messages that are
of interest for multiple recipients are duplicated on their way to the destinations
as late as possible to avoid redundant message transmissions over the same links.
Additionally, a client may subscribe to classic events like handovers and connection
losses. These events are not associated with a numerical measurement value inside
the meter, but stand on their own.

138 12. GMI — Concepts and Implementation

Interested
Party

UE
Meta

MMCE

NodeB0123

GMI Create
for

DownlinkCQI.
imsi1234.uehook.

UEMetaMMCE

Configuration

MMCE
responsible

for
NodeB0123

HSS

Location request for imsi1234

Response: imsi1234 is at NodeB0123

GMI Create
for

HandoverEvents.
imsi1234.uehook.

nodeB0123

GMI Create
for

DownlinkCQI.
imsi1234.uehook.

nodeB0123

1

2

3

4

5

6

7

8

Figure 12.4: Concept of a data-specific MMCE that hides UE-mobility from the clients.

Request/Reply: The last type of reporting is an immediate response to a request
of a metering client for a certain value of data. This notification is not an event
in the classic sense of a P/S-System. In this case the metering client simply sends
a request for the data (which is a message similar to a subscription) and receives
a reply containing the value (which is handled like a notification). In this case no
aggregation is possible as the message is only sent to a single client. However caching
of values can limit the number of requests to the meters, if the cached information
is still current enough.

12.2.7 Tracking mobile Sources of Data

As mentioned before, subject-trees do have their drawbacks, especially when the
source of certain information changes its location. For example, an N-RM applica-
tion may want to be kept informed about the signal quality of a single user. But the
source of information may change when the user switches to a different base station.
If the metering client is unaware of that, it will not receive updates anymore.

This means that the proposed approach has to be extended to meet the requirement
of keeping track of changing sources for the same data. The introduction of “hooks” is
meant to address this problem. Event producers with dynamically changing subjects
of information may advertise hooks to announce predefined sorts of information, that
contain variable content.

A hook is defined by a template and its available instances. The template defines
a sub-tree structure containing measurements that can be found at each instance.
Each meter that can provide dynamically changing data must use hooks to announce
its changing capabilities. An MMCE that is attached to such a meter advertises a
template for its hook and its current instances instead of only specifying a static
configuration. An example for such a hook is

DownlinkCQI.imsi1234.uehook.nodeB0123
.mmce.mnc123.mcc123.3gppnetwork.org

12.3. Implementation 139

A so-called “data specific MMCE” (DS-MMCE) can be used to hide this mobility.
Such an MMCE would offer data about all of the operator’s UEs or a subset thereof.
When first receiving a request about a specific UE (step 1 in Figure 12.4), it needs to
look up the UE’s location at the HSS (step 2 and 3). It subscribes to the data at the
responsible low-level MMCE, and sends an additional subscription to get notified
about handovers (4). It receives the measurement data (7) and forwards it to the
client (8). In case of a handover, it would be notified about this event, delete the
old subscriptions and subscribe to the UE’s new location. Therefore this DS-MMCE
makes the data available to other MMCEs and clients at a constant location.

12.2.8 Generic Measurements

Another feature of our system are so-called “generic measurement tasks”. Meters
can contain plug-in modules for specific tasks, i.e. flow-based QoS measurements. A
configuration for such a plug-in may be sent to a meter using normal GMI mech-
anisms, which means that it is encapsulated in a GMI-subscription. At the meter,
the configuration is forwarded to the plug-in. The results of the measurements are
assigned to an identifier (i.e. a flow ID) and published in the P/S tree at a special
hook.

AvgDelay.flow0123456.qosplugin.ggsn0123
.mmce.mnc123.mcc123.3gppnetwork.org

This is useful when a metering task requires configuration that is too complex to be
encoded in a GMI address.

12.2.9 Interface towards the Clients

The GMI is a service that acts as a middleware between metering clients and the
meters. A metering client is expected to connect to only one MMCE that serves as
its access point to the GMI. This MMCE is assigned by the network operator.

The GMI provides an abstraction layer that allows a metering client to create mea-
surement tasks for every meter within the network the same way. The message
format for different meters (e.g. a WLAN access point and an SGSN) has the same
structure although the actual configuration of measurement tasks at these meters
may be very different since vendor and implementation-specific aspects often have to
be considered. Here the lowest MMCE, which directly interfaces with the meters, is
in charge of translating the requests according to the meters’ specification. Thereby
a metering client does not have to worry about device-specific aspects of different
meters.

12.3 Implementation
The key components of the envisioned system have been implemented in our lab-
oratory. As the GMI is middleware, it needs data sources and metering clients to
run. As a data source we have implemented a network emulation application, which
allows simulated users to move on a map, connect to different radio cells and start
sessions. Each cell maintains a capacity counter. The model is simple, but it allows
for homogeneous and heterogeneous handovers and is sufficient for initial tests of
the GMI. Figure 12.6 shows a screenshot of our simulator.

140 12. GMI — Concepts and Implementation

<gmi-message messageType="CREATE">
<header>

<sender ip="127.0.0.1" />
<receiver ip="127.0.0.1" uri="cell0.mmce.plmn" />
<messageId>127.0.0.1:0</messageId>
<timestamp>2007-11-12T15:59:39</timestamp>

</header>
<node name="plmn">

<node name="mmce">
<node name="cell0">

<node name="bandwidth">
<node name="used">

<periodic repPeriod="3" startAt="2007-11-12T15:59:39"
stopAt="2007-11-13T15:59:39" />

</node>
</node>
<node name="numSessions">

<periodic repPeriod="7" startAt="2007-11-12T15:59:39"
stopAt="2007-11-13T15:59:39" />

</node>
</node>

</node>
</node>

</gmi-message>

Figure 12.5: A GMI CREATE message.

12.4. Data Accuracy of Periodic Measurements and Triggers 141

Figure 12.6: Screenshot of the Simulator that generates input data for the GMI. Here
three different access technologies (UMTS, WLAN, LTE) and 50 mobile users are shown.
The number printed on the users are the currently active sessions.

Our MMCE instances maintain the subscriptions in a tree. In our current imple-
mentation all messages are XML-based (the choice of XML as the message format
will be discussed and evaluated in Section 13.4) and also interpreted as tree-like data
structures.
Figure 12.5 shows a GMI CREATE message. The “node”-elements form a subtree
of the GMI subject tree, the “periodic”-elements create new periodic measurement
jobs for the used bandwidth and the number of users of the given cell. The message
is addressed to the responsible MMCE for this cell.
Metered information must be advertised in advance, so the system can add it to
the subject tree. New meters and new values in existing meters can be dynamically
added and removed at runtime. The MMCEs that receive advertise-messages store
routing information as annotations in their local subject-tree datastructure. Each
MMCE only holds the routing information that is relevant for its own operation.
Received “PUBLISH” messages are interpreted as a subset of the subject-tree. The
forwarding decisions made at each intermediate MMCE are based on an algorithm
that traverses the received tree node by node and matches it to the subject-tree.
This easily allows to determine the receivers of an event.
We have implemented our concept in the Python programming language. Our MM-
CEs are individual applications that communicate via TCP sockets. An initial
evaluation of the metering possibilities is given in the following Section 12.4.

12.4 Data Accuracy of Periodic Measurements and Triggers
In this initial evaluation, the load of one cell of our simulator is measured. The load
value is updated at the meter in intervals of one second. A light-weight metering
client sends a subscription for the data and compares the received result with the
expected original curve using the L2 norm. Basically a subsampling of the original
curve is applied, for example each 10th value is transmitted if the metering task is
set to “periodic, 10 seconds”.
Besides using simple periodic measurements, we tested a combination of periodic
measurements and triggers. The upper hysteresis thresholds of four triggers are set

142 12. GMI — Concepts and Implementation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2700 2800 2900 3000 3100

pe
rc

en
tL

oa
d

Time in Granularity Periods

Meter
Client

Figure 12.7: Example from our evaluation data set. The filled curve is the original load
value that appears in a simulated cell (view of the meter). The black curve is the output
of a GMI-measurement job using four triggers (view of the GMI’s client). Pairs of dashed
horizontal lines indicate the upper- and lower thresholds for the triggers.

to 50%, 65%, 80% and 90% of the cell’s total capacity (the lower thresholds are at
48%, 63%, 78% and 88%). Figure 12.7 shows a small part of the data sampled with
these triggers. Here the filled curve is the original data while the black lines show
what the metering client sees.

During the 10 000 seconds of simulation time, the load in the cell varies, but it is
generally above 50%; some peaks even touch the cell’s capacity limit.

Figure 12.8 shows the result of the evaluation. Here the accuracy of the measurement
(L2 distance between measured curve and real curve) is drawn against the number
of reports that had to be sent to achieve this accuracy - so values that are closer to
the origin are better. With the “periodic” curve, one can see the trade-off between
accuracy and report period - more reports produce a higher accuracy. The “both”
curve shows that adding triggers increases the accuracy. Without triggers, a report
period of 5 seconds (which equals to 2000 messages) is needed to achieve an accuracy
of 0.0026 in the L2 norm. The same accuracy can be reached by activating the
triggers as described above and setting the periodic report period to 35 seconds -
and with this setting only 1470 messages are necessary.

In our tests, the size of the GMI-XML PUBLISH messages was approximately 370
bytes per message on application layer. However, XML is only used in our im-
plementation and not conceptually required, the message size can be reduced by a
factor of 10 when using a more compact representation like WBXML ([74]). The
aspect of data volume is further discussed in Section 13.4.

As expected we see that more measurement values lead to an improved accuracy.
However, we also see that the accuracy can be improved by smart metering, the
curve using triggers is generally better than the pure periodic curve as triggers are
better for capturing changes. It should be noted that the evaluation metric did not
even consider the effect that motivated the introduction for triggers — the fact that
some information (e.g. the load in an unloaded cell) is simply not interesting.

12.5 Conclusions

In this chapter we have presented a publish/subscribe system for distributing mea-
surement data in future mobile networks.

12.6. Acknowledgements 143

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

W
ei

gh
te

d
av

er
ag

e
E

rr
o

r

Number of Messages

rp=1

rp=2

rp=3

rp=4

rp=5

rp=6

rp=7
rp=8

rp=9

rp=10

rp=2
rp=3

rp=4
rp=5

rp=10

rp=20

periodic
both

trigger

Figure 12.8: Evaluation results: Measurement accuracy versus the number of sent mes-
sages.

As a hierarchical naming scheme already existed in mobile networks, these names
were used to populate the subject tree of the publish subscribe system. This reduces
the “decoupling of space”, however, in an environment with standardized names this
is not a huge disadvantage.

In mobile networks, three ways of requesting data are desirable: Periodic reporting,
triggered reporting and explicit requests for certain data. We have implemented
these, an initial evaluation showed that these flexible report types help to achieve a
higher accuracy than purely periodic reporting.

Triggers can be aggregated to a single message by sending the current and the last
value of the associated variable. This way each entity that has to process the trigger
message can determine by itself, which triggers have fired.

The GMI was designed to transport measurement data that is required for central-
ized control of heterogeneous handovers. In the following Chapter 13 we evaluate
the GMI in this use-case.

In the implementation, the GMI’s message format is based on XML. This choice
was mainly made to simplify the implementation in our demonstrator. In a real
network, a more compact representation of the data is desirable. This open point
of the GMI’s design will be discussed in Section 13.4 in the context of simulation
results.

12.6 Acknowledgements
Several people were involved in the design, implementation, evaluation and demon-
stration of the GMI. A large contribution was made by Andreas Monger who did a
lot of conceptual work as well as the initial implementation of the MMCEs for his
diploma thesis and later helped to build a demonstrator of GMI components. Mark
Schmidt implemented large parts of the simulator and also enhanced the GMI in
his diploma thesis. Vladimir Maldybaev also participated in implementing the GMI
demo.

For further fruitful discussions I want to thank Tobias Bandh, Christian Hoene,
Morten Schläger and Frank-Uwe Andersen. Frank-Uwe also created the picture
that was re-used by me as the basis of Figure 12.3.

144 12. GMI — Concepts and Implementation

13. Using the GMI for Resource
Management in Future Mobile
Networks

The evaluation of the GMI is a difficult task, since the software is middleware. The
behavior and the performance of the GMI greatly depend on the underlying meters
and — especially — on the subscriptions of the metering clients.
Section 12.4 uses a pre-defined data set and measures the error between the actual
and the transmitted data with periodic or triggered sampling. This work was con-
ducted as an initial evaluation of these two methods. However, the evaluation metric
does not incorporate the actual incentive for introducing triggers: In many cases we
only need information if some measurement value is in a critical region. For example
we do not need to monitor the load of cells constantly if it is low, we just have to
be informed at once when an overload occurs.
Therefore, we built a simulated environment that mimics the actual use-case of the
GMI. Besides the radio network simulation we added a network resource manage-
ment (N-RM) that bases its decisions on data supplied by the GMI.
After discussing related work in Section 13.1, the complex evaluation scenario is
explained in Section 13.2, results are shown in Section 13.3. Section 13.4 translates
the results from the simulations into the real world.

13.1 Related Work
In recent years, there has been a lot of research on handovers in heterogeneous
networks. The approaches in [60], [75] and [76] leave the decision which network
to choose to the mobile terminal. This is a reasonable design concept since the
information about signal quality of the surrounding base stations is available there,
while with network-centric decision engines this information must be transported to

146 13. Using the GMI for Resource Management in Future Mobile Networks

the core network. Transporting this data also introduces undesired delay that leads
to potentially imprecise values.
On the other hand a management facility inside the network is able to take global
information, e.g. on the load situation into account and therefore is able to make
better decisions. Additionally, it can help the mobile terminal to find adjacent
networks without forcing it to scan for available access points which would deplete
its battery power.
The authors of [77] use a network-centric approach which basically integrates WLAN
into an UMTS UTRAN network. Our approach attempts to be more general by ab-
stracting the handover-logic from details of the RANs. The authors of [78] adjust
load triggers on the network-side to optimize handover performance. This work is
about the actual handover decision process, i.e. in a combined GERAN/UTRAN
network, while we primarily focus on data collection and intentionally keep the de-
cision process as simple as possible. In our approach ping-pong effects are mitigated
by the score calculation of the local resource management (Algorithm 3).
The authors of [63] use a network-assisted policy-based approach. They’re using two
decision engines, one of which is located in the core network while the other resides
on the mobile terminal. This scenario is also the base of our work, the GMI could
be used here to provide the network and RAN-related information which is required
by the decision engine on the network side.
A related standard is IEEE 802.21 [79], which specifies an information service, an
event service and a command service to support heterogeneous access decisions and
therefore consists of several building blocks that were similarly realized for our sim-
ulations. However IEEE 802.21 leaves the actual question of data transport open.

13.2 Setup for N-RM Experiments

MMCE

CREATE PUBLISH

N
-R

M
 C

O
M

M
A

N
D

S

R
A

N
 S

im
u

la
to

r
w

it
h

 l
o
ca

l
R

M

GMI Meter Emulation
Dynamic sampling

according to N-RM's
CREATE-messages.

N-RM
Network Resource

Management

MMCE MMCE

Figure 13.1: Experiment setup
including N-RM.

In this section we describe the setup of our exper-
iments. All components of our simulations can be
seen in Figure 13.1, and are described in this section.
They were run on a single machine, but as separate
applications using TCP/IP communications.

13.2.1 The User and Radio Network Simula-
tor
The simulator is an application that simulates the
mobile networks and their users. Several cells belong-
ing to different radio access networks (RANs)
are placed on a map. The users move around on this
map and start and stop sessions. We use an “accel-
erated real-time” simulation, events in the simulator
happen 15 times faster than they would in reality.
The simulator is able to accept GMI subscriptions
for a large number of parameters regarding cells and
users. The minimum granularity period of all me-
ters is one second, which would be 15 seconds in the
real system. In the following text we will give the
report period in multiples of the granularity period
— and not in seconds — to avoid confusion between
real time and simulated time.

13.2. Setup for N-RM Experiments 147

13.2.1.1 Map and Radio Access Networks:

The map which was used in our simulations is shown in Figure 13.2. There are
three different radio access technologies, which differ in the capacity and range of
their cells. The range is given in meters while the capacity is defined as the number
of simultaneous sessions that a cell supports. Sessions require a fixed amount of
bandwidth and there is only one type of sessions. Compared to the cell capacity,
the sessions can be regarded as video calls. We also do not distinguish between
upstream and downstream traffic.

RAN A is a network of high capacity and high range, it could be realized using real-
world technologies like LTE or WiMAX. RAN B is a cellular network. The individual
cells have a lower capacity, but RAN B has coverage everywhere on the map and
in most areas there is even an overlap between the cells. One could imagine RAN
B as being GSM or UMTS. RAN C consists of cells with relatively high bandwidth
but a very small range — they can be considered to be WLAN hotspots. On our
map there is a total of nine cells in an area of 1.44 km2. We assume freespace radio
propagation, users will lose connectivity as soon as the distance to the base station
is larger than the range given in Table 13.1.

There is a network-internal resource management built into the simulator, which
allows handovers between cells of the same RAN, the handover logic for this case is
given in Algorithm 3 which is executed for each user periodically.

Access Number Capacity Range
Technology of Cells (simultaneous Sessions) (m)

RAN A 1 31 800
RAN B 5 12 600
RAN C 3 20 120

Table 13.1: Different radio access networks.

RAN A

RAN B

RAN C

Figure 13.2: The map for the simulations, with nine cells of three different radio access
technologies.

13.2.1.2 Users:

The movement model of the simulated users is a modified random waypoint pattern.
The users select a new waypoint somewhere on the map with a probability of 40%.
With 10% probability they will move to one of the three interesting locations that

148 13. Using the GMI for Resource Management in Future Mobile Networks

are covered by the RAN C hotspots. In 50% of the cases a user will stay at his
current position for an exponentially distributed random time. On average, users
move at a “pedestrian” pace of 1 meter per second.

In reality users of mobile devices are inactive most of the time, but for our simu-
lation it makes little sense to model inactive users. To keep our model simple, we
have chosen users who start sessions with an exponentially distributed inter-arrival
time. Session length is exponentially distributed with the same expectation. By this
construction, each user has 0.5 active sessions on average.

The users produce actual load on the air interface by opening sessions, while the
GMI produces signalling load which only occurs on the backhaul links between the
base stations and the core network. Our assumption here is that there is no direct
interaction between these two kinds of traffic, even though in reality they have to
share the backhaul link. One primary goal of this paper is to estimate the load on
the backhaul link which is caused by the measurements — therefore, this parameter
is monitored but not limited.

13.2.2 The MMCEs

As explained in Chapter 12, the MMCEs are the message brokers of our pub-
lish/subscribe system. In a real network they would collect data for the N-RM and
other applications from various different locations in the network. In our current
setup, all data comes from the simulator.

Algorithm 3: Mobile terminal and RAN-internal RM decisions
input : users, cells
constants: δ > 0
foreach u ∈ users do

// mobile terminal-side logic. If N-RM recommended cells, the mobile
terminal tries to connect there.

foreach c ∈ cells_recommended_by_global_rm(u) do
// check signal quality
if sq(c, u) > thacceptable_sq then

u.handoverTo(c);
continue_with_next_user;

// This is the "local RM" logic. It only makes handovers within cells
of the same RAN.

foreach c ∈ nearby_cells_of_current_ran do
// check minimum requirements for load and signal
if sq(c, u) > thcritical_sq and load(c) < thcritical_load then

// find best available cell
score(c)← calculate_score(load(c), sq(c, u));
if score(c) > score(former_best_cell) + δ then

new_best_cell← c;

if new_best_cell found then
u.handoverTo(new_best_cell);

else
// stay in current cell.

13.2. Setup for N-RM Experiments 149

Algorithm 4: N-RM decision logic on bad signal quality
precondition: u ∈ users, sq(u) < thcritical_sq

input : users, cells
cellsrecommended ← ∅;
foreach n ∈ neighbour_cells(cell(u)) do

if load(n) < thacceptable_load then
cellsrecommended ← cellsrecommended + {n};

sort_by_load(cellsrecommended);
send_recommendation(u, cellsrecommended);

Algorithm 5: N-RM decision logic on cell overload
precondition: c ∈ cells, load(c) > thcritical_load

input : users, cells, user_list(c)
cellsrecommended ← ∅;
foreach n ∈ neighbour_cells(c) do

if load(n) < thacceptable_load then
cellsrecommended ← cellsrecommended + {n};

sort_by_load(cellsrecommended);
receivers = random_subset(users(c));
foreach r ∈ receivers do

send_recommendation(r, cellsrecommended);

13.2.3 N-RM

The Network Resource Management (N-RM) is our global application for handover
management. It gets data from the simulator via GMI after subscribing by sending
CREATE messages. Its decisions are passed back to the simulator and influence the
mobile terminal’s cell selection (see Figure 13.1).
We assume that N-RM does not know the exact location of the user — it only
knows the user’s location on a “per cell” granularity. Therefore, it can not tell
exactly, which cells are available at the user’s current position, it only knows which
cells overlap.
The mobile terminal initially does not know about cells of other RANs. In real life it
would have to scan different frequencies to find alternative cells — and this constant
scanning would waste battery power. So in our case, N-RM will give the mobile
terminal hints, which cells to search for. In reality these hints would also contain
radio parameters. The mobile terminal will only scan for cells of different RANs
after receiving such a hint or after losing connectivity with its current cell.
We are testing five different setups:

• Experiments without N-RM
In these runs, the users will stay in their RAN as long as they have connectivity.
A user who leaves the coverage-area of his RAN will lose his active session,
then he will start scanning for other radio access networks and connect to the
strongest cell he receives. Therefore there are no inter-RAN handovers without
N-RM.

• Experiments with a purely trigger-based N-RM

150 13. Using the GMI for Resource Management in Future Mobile Networks

The N-RM subscribes to the load in each cell and the signal quality of each
user. The subscriptions are trigger-based, which means that N-RM is notified
whenever a threshold-value is crossed.
In case of a user with bad signal quality, N-RM will request load information
from surrounding cells in a request/reply fashion. Based on the results it will
recommend cells to the user (see Algorithm 4). This recommendation will have
an impact on the next run of the local RM (Algorithm 3) inside the simulator.
In case of an overloaded cell, N-RM will again be informed by a trigger and
then request load information from the neighbour cells. It will choose a subset
of the current users in the overloaded cell and send its recommendations to
this subset (see Algorithm 5).
With this basic triggered N-RM, the resource management will only be in-
formed when a critical situation occurs, there is no feedback whether the sit-
uation persists despite the countermeasures. As our triggers are defined with
hysteresis, N-RM will only take action again when i.e. the load in a cell crosses
the upper threshold again after it has crossed the lower threshold.

• Experiments with an N-RM based on periodic reports
N-RM subscribes to load information of each cell and signal quality informa-
tion of each user on a periodic basis. This means that there is a constant flow
of reports which does not change during the simulation. When receiving in-
formation, N-RM will check if a parameter is critical. With this measurement
strategy N-RM will never request current information when it needs specific
data, but it uses the last reported value.
The basic decision algorithms are still Algorithm 4 and Algorithm 5. These
are run periodically whenever new data has arrived.

• Combination of triggers and periodic reports
This variant works with triggers again, but after a trigger has fired and N-RM
has taken action, it enters a success control loop. In this state the trigger
is turned off and replaced by a periodic measurement job which continuously
monitors the critical value.
With each arrival of a current value, N-RM will check if the system still is in a
critical state. If this is the case, it will again request additional data which is
needed for the decision and take action accordingly. There is a different (much
lower) threshold for cancelling the periodic measurement job and returning to
triggered measurements when the situation has been resolved.

• N-RM with full information
For comparison all simulations have also been run using a N-RM which sub-
scribes to periodic reports of all values in the simulator with a report period
of 1 GP. This can be seen as the theoretical maximum amount of data that
N-RM could possibly subscribe to. The decision algorithms are still the same.

13.2.3.1 Triggers and threshold values

Table 13.2 shows the different threshold values that were used in the simulations.
Always the “critical” threshold (0.94 for the cell load, 0.06 for the signal quality) is
the one that causes N-RM to take action when being crossed. For the cell load of
RAN B this concretely means, that N-RM will only send recommendations when

13.2. Setup for N-RM Experiments 151

Parameter Threshold Value
Load Hysteresis higher threshold (thcritical_load) 0.94

Hysteresis lower threshold (thacceptable_load) 0.89
Control loop stop threshold 0.70

Signal Quality Control loop stop threshold 0.15
Hysteresis higher treshold (thacceptable_sq) 0.07
Hysteresis lower threshold (thcritical_sq) 0.06

Table 13.2: Threshold values for N-RM.

a cell is operating at full capacity. This is by design, as the load reduction proce-
dure causes a lot of overhead and multiple handovers, so it should not be triggered
unnecessarily.

The “acceptable” threshold (0.89 for the cell load) re-activates the load-trigger after
it has fired once. This avoids a message storm if the value oscillates around the
actual critical threshold.

The third threshold (0.70 for the cell load) is only active when triggers and periodic
reports are combined. Crossing this threshold from above causes the reporting to
switch back from periodic to triggered.

13.2.4 Simulation Flow

On startup, users will connect to the strongest cell in range. RAN A and RAN C
have no overlapping cells, so there are no horizontal (intra-RAN) handovers. For
users of the cellular RAN B, it is assumed that there is a local resource management
instance in the RAN (i.e. an UMTS RNC), which knows the load of all cells and the
signal quality for all users. For each user, this controller calculates a score based on
the signal quality of the radio link between the user and each cell and the load of the
cell. If the score of a different cell is better by a certain delta than the user’s current
cell’s score, the user will conduct a handover to the new cell (see Algorithm 3). There
are no handovers between different RANs as long as no global resource management
application (N-RM) is running. When users leave the coverage area of the current
RAN they will lose their sessions and scan for a new RAN as soon as they notice
that the old one is no longer reachable.

When a user decides to create a session, it has to pass an admission control. The
admission control checks, if there is enough capacity in the cell to allow the session,
otherwise the session is denied.

In case that an N-RM is active, it monitors load and signal quality of the user’s
devices. Assume that a user approaches the border of his current cell. There is
no other cell of the same RAN in range, so the local resource management has no
possibility to improve the situation. Depending on the measurement strategy, N-RM
might now be informed and decide to take action. N-RM does not know the exact
location of the user and signal qualities between the user and other cells, it only
knows which cells overlap with the user’s current cell. Further, it aims for sending
the user into a cell with low load. Therefore, it has to request load information from
the overlapping cells if there is no sufficiently current data in the local cache.

With this information, N-RM will sort the cells by load and send the sorted list of
cells to the user’s device. The UE will then try the alternative cells in the given

152 13. Using the GMI for Resource Management in Future Mobile Networks

order and make a handover if the signal quality is sufficient and if admission control
for the user’s possibly active session succeedes.

The other situation which is handled by N-RM is an overloaded cell. Again N-
RM might be informed about this in time depending on the chosen measurement
strategy. If N-RM decides to take action, it fetches the list of users of the cell and
the load of all other cells that overlap with it. Then it creates a list of recommended
cells, ordered by load, and sends this list to a subset of the users in the cell (i.e., to
10% of the users). Again the users will change to a recommended cell if possible.

13.3 Results of N-RM Experiments

0

2000

4000

6000

8000

10000

0 20 40 60 80 100 120 140 160 180 200 220

R
ep

or
te

d
Va

lu
es

 /
h

User Density (Users per km^2)

No RM
Triggers only

Combined Reports, RP 10
Periodic Reports, RP 10

Full information (RP 1)

Figure 13.3: Number of transmitted values.

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200 220

Fa
ile

d
Se

ss
io

ns
 (%

)

User Density (Users per km^2)

No RM
Triggers only

Combined Reports, RP 10
Periodic Reports, RP 10

Full information (RP 1)

Figure 13.4: Failed sessions.

In this section the results of our simulations are described. The values have been
normalized to 1 hour of simulated time and 1 km2 wherever possible.

Figure 13.3 shows the amount of traffic which is produced by GMI reports. On the
horizontal axis we have increased the user density and, therefore, the offered load.

One can see that the curve for periodic reports with a report period of 10 GP is
linear in the number of users as expected. The curve for a report period of 1 GP is
also linear but comparably high.

When the system load is low, triggers produce only very few messages as almost no
critical events happen. However, when the load increases, the number of trigger-
messages explodes. As one can see, the number of messages decreases again when
the load is extremely high, as the parameters always stay above their thresholds.

The “combined reports” curve shows the result of an N-RM algorithm which switches
to periodic reports after receiving a trigger for a subject. As one can see this curve
always produces less messages than the triggered or periodic curves.

The quality of the decisions is evaluated using Figure 13.4, which shows the per-
centage of failed sessions. Here one can see that the three “realistic” systems are
in the middle between the resource management with perfect information and the
complete lack of resource management.

One astonishing fact is that the trigger curve is better than periodic reports and
combined reports. This was not expected as the used trigger algorithm is quite
primitive, it only acts when it gets an ascending trigger and does not control the
success of its actions. However, the variance in the measured parameters is high, so
the resource management is still triggered very often — which causes N-RM to send
more recommendations to the users.

13.3. Results of N-RM Experiments 153

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180 200 220

Av
er

ag
e

Lo
ad

 in
 th

e
Sy

st
em

 (%
)

User Density (Users per km^2)

No RM
Triggers only

Combined Reports, RP 10
Periodic Reports, RP 10

Full information (RP 1)

Figure 13.5: Average load.

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180 200 220

Av
er

ag
e

Lo
ad

 in
 R

AN
 A

 (%
)

User Density (Users per km^2)

No RM
Triggers only

Combined Reports, RP 10
Periodic Reports, RP 10

Full information (RP 1)

Figure 13.6: Load in RAN A.

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180 200 220

Av
er

ag
e

Lo
ad

 in
 R

AN
 B

 (%
)

User Density (Users per km^2)

No RM
Triggers only

Combined Reports, RP 10
Periodic Reports, RP 10

Full information (RP 1)

Figure 13.7: Load in RAN B.

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180 200 220

Av
er

ag
e

Lo
ad

 in
 R

AN
 C

 (%
)

User Density (Users per km^2)

No RM
Triggers only

Combined Reports, RP 10
Periodic Reports, RP 10

Full information (RP 1)

Figure 13.8: Load in RAN C.

Figure 13.5 shows the average load in the system. Again the user density can be
seen as a measure of the offered load, while the vertical axis is the actual load which
could be handled by the RANs. All five curves are very similar as long as the number
of users is low. At around 80 users per km2, the curves split. Without a resource
management, the system is almost saturated at this point. At 210 users per km2, the
system runs at 54% load. The actual realistic systems are able to run the system at
62% to 64% load, again the triggered resource management achieves the best results.
Using the resource management with perfect information, the system runs at 76%
load with 210 users per km2.

RAN A (Figure 13.6) which consists of one large cell with high capacity is always
well-utilized for geographical reasons. The curve for “No RM” crosses the other
curves. When the overall load is low, N-RM moves users from RAN B into RAN
A when they experience bad signal quality in the center of the map. With a high
user density, the load in RAN A becomes very high, so N-RM moves users away
from RAN A — mostly to RAN B. As expected, RAN B which has a higher overall
capacity shows the opposite effect, but on a smaller scale (Figure 13.7).

The most interesting curve is the load in RAN C (Figure 13.8) which is equivalent
to WLAN. Without resource management, the users will never switch to one of the
very small RAN C cells but stay in RAN A or RAN B even when passing by a RAN
C cell. However, with N-RM, some users can be moved to RAN C, therefore, the
available bandwidth of the whole network can be used better. This can be seen in
Figure 13.8.

Finally, Figure 13.9 shows the number of handovers that occur in the system. Here
one can see that a perfect resource management results in a very large number of
handovers. This is mostly due to the event-triggered nature of the N-RM, which

154 13. Using the GMI for Resource Management in Future Mobile Networks

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 100 120 140 160 180 200 220

H
an

do
ve

rs
 /

h

User Density (Users per km^2)

No RM
Triggers only

Combined Reports, RP 10
Periodic Reports, RP 10

Full information (RP 1)

Figure 13.9: Number of Handovers.

0

1000

2000

3000

4000

5000

6000

7000

8000

2 4 6 8 10 12

By
te

s

Number of Values

XML-uncompressed
Google_protocol_buffers
XML-compressed_ZLIB

XML-compressed_WBXML
IPFIX

DIAMETER

Figure 13.10: Data volume when transport-
ing measurement data using different pro-
tocols.

takes action more often if it gets more input data. This is another type of overhead
which can be caused by N-RM besides the signalling data on the backhaul links.
Again there is a trade-off between the benefits like better load distribution and
these extra handovers.

13.4 Data Volume
Resource Users Failed Data Volume
Management per km2 Sessions per Cell
None 56 2.28% 0.00 kBit/s
Combined Reports (RP 10) 56 0.40% 0.01 kBit/s
Maximum Information (RP 1) 56 0.09% 0.64 kBit/s
None 112 28.01% 0.00 kBit/s
Combined Reports (RP 10) 112 22.09% 0.09 kBit/s
Maximum Information (RP 1) 112 14.16% 1.18 kBit/s

Table 13.3: Data volume vs. success

So far, we have only been talking about the number of values that were sent through
the GMI. In this section we will discuss the volume of management data which has
to be sent over the backhaul links for heterogeneous resource management.
In our implementation, the GMI uses an uncompressed XML data format. However,
in a production environment it would be favourable to use more bandwidth-efficient
protocols. Basically any protocol which transmits key-value-pairs is suitable for
transporting the GMI messages.
Figure 13.10 shows the performance of six different candidate protocols when trans-
mitting a representatively chosen GMI dataset. One should note that with each of
the candidates there are almost unlimited possibilities to encode the data differently
which of course affects the volume. It was tried to select a meaningful encoding and
to be fair among the candidate protocols. It should also be noted that only appli-
cation layer data volume is considered, there are no IP-headers and also no headers
of the layer 4 protocols that might be used in combination with our six candidates
(TCP, UDP, SCTP).

• Uncompressed XML has advantages in terms of transparency as the data is
transmitted in plain text. However it wastes bandwidth on the expensive
backhaul links.

13.4. Data Volume 155

• WBXML [74] is a standard by the Open Mobile Alliance, which replaces XML
tags by shorter binary strings, but leaves the actual content of the tags un-
changed. In absence of a DTD, it builds a string table from the tag names
and uses references to this table afterwards, which was the case here. In our
example the data has been compressed to 69% of the size of the original XML.

• Google Protocol Buffers [80] is another representation which preserves the hier-
archical structure of XML. In the example the data was compressed to 45% of
the original size. The direct comparison with WBXML may be a bit unfair, as
the Protocol Buffers encoder was able to use meta-information on the structure
of the document. With a DTD, we would expect WBXML to perform roughly
equivalent to Google Protocol Buffers.

• Diameter [81] is shown in this comparison as it is a common accounting protocol
in 3GPP networks. It is the first protocol in the comparison, which has to
map the document structure to flat key-value-pairs. However using meta-
knowledge about GMI messages, the whole information can be reconstructed
at the receiver. With our example data, the data volume used by Diameter
was 25% of the original XML.

• IPFIX [82] is based on Cisco’s Netflow v9 protocol. It is basically meant to
export traffic flow data, but it is flexible enough for our purpose. IPFIX also
works on flat attribute-value-pairs, but on the link it separates the attributes
from the values. The attributes are sent once in so-called template records in
the beginning of the transmission, while the values are sent separately in data
records. It is also possible to use options templates for redundancy reduction,
so values like long strings that appear in the data quite often only have to be
sent once. Therefore IPFIX can save bandwidth compared to Diameter, our
example-data was compressed to 12% of the original size.

• The last candidate protocol is a simple LZ77-zipped [83] version of the original
XML data. The messages have not been compressed one by one, but the
state on both sides is held during the transmission of multiple messages. This
method of transmission is very efficient. In the long term, after 50 messages,
the data volume could be reduced to 7% of the original XML size. However
this advantage comes with increased costs in terms of memory and CPU-usage
at sender and receiver.

For Table 13.3 the results from Section 13.3 have been combined with knowledge
about message sizes. Here we assume data transport by IPFIX, which was the
second-best solution in the comparison above, as we want to avoid the computational
effort of compressing the data using LZ77. We also assume that each value is sent in
a separate packet — which is a worst-case scenario — and add TCP and IP headers.
As mentioned in Section 13.2.1, our granularity period is 15 seconds.
As we can see, heterogeneous access management gives a high benefit while using
very little bandwidth. At 56 users per km2 in the system the result with our com-
bined periodic and triggered reporting is almost as good as the result obtained with
the maximum available information.
At 112 users per km2 the radio network is already overloaded as we can see from the
success rate of the sessions. However, the number of messages we need for N-RM
still remains negligible compared to the amount of user data transferred through

156 13. Using the GMI for Resource Management in Future Mobile Networks

HSDPA or LTE cells. Here one could even consider sending all available data (GP
1) to the N-RM, which produces 14 times the data volume of the combined reports
method, but still stays around 1 kBit/s per cell.

13.5 Relation to Mobile Botnets

In Chapter 10 possible denial-of-service attacks by mobile botnets were discussed.
The target of these attacks were the cells of the mobile operator network.

With today’s technology, a mobile network operator’s options for responding to
this kind of threat would be very limited. Today’s networks support moving users
between the cells of the same access technology for load reasons. The general effec-
tiveness of this load-balancing strategy against this type of attack has been explored
in Section 10.3.3.

The GMI would allow for new defenses during a denial-of-service attack by bots on
the customer’s devices:

• The resources of heterogeneous access networks network could be used more
efficiently. A GMI-based Network Resource Management could make use of all
available access technologies to distribute the load better. With the assumption
that the worm is a userspace application on the mobile device which has no low-
level control over handovers, this would already counter this denial-of-service
attack very well.

• The GMI is not only suitable for mobility management, data collection for a
mobile intrusion detection system would be possible as well. A large number
of similar high-volume sessions that start at the same time would trigger an
alarm, closer investigation would give the operator direct information about
the reason for the traffic increase. So the operator would be able to apply
countermeasures like temporarily disabling the user’s account or rate-limiting
their bearers.

A full analysis of attacker/defender interaction in this scenario would be an inter-
esting future work.

13.6 Conclusions

Today, users of mobile networks increasingly demand data services and voice-calls
for flat prices. This makes business difficult for network operators, there is hard
competition on the market and revenues are shrinking. Operators have to cut costs
— one way to do so is increasing network efficiency. This requires heterogeneous
networks, as different access technologies have different strengths and weaknesses.
It also leads to a need for new methods of data collection, as smart management is
needed to take advantage of the different networks.

We have presented the Generic Metering Infrastructure, an information distribution
system for mobile networks that has been developed with heterogeneous mobility
management in mind, but which is general enough to support other applications.
The GMI is based on a modified Publish/Subscribe System which employs subject-
based addressing using domain names and subject-based filtering.

13.7. Acknowledgements 157

Optimized information distribution mechanisms are applied to reduce the number
of messages that need to be transported. When using the GMI for heterogeneous
access management, measurement data has to be sent over expensive backhaul links.
Therefore we investigated how data can be compressed to save costs here.

We have shown that the flexibility provided by the GMI gives advantages when
making heterogeneous handover decisions. It is possible to take good decisions with
fewer data by switching between periodic reporting and setting triggers. Our sim-
ulation results show that customer experience can be enhanced significantly, while
the cost in terms of produced overhead are comparably small.

The concept of the GMI is not only suitable for heterogeneous access management,
but also for general management or security tasks (e.g. distributed intrusion detec-
tion). If the GMI was to be used for those purposes as well, the gains could be even
bigger thanks to the “late duplication property” of the GMI’s publish/subscribe
system.

Key findings in Chapter 13:

• Mobile networks can greatly benefit from network-assisted handovers.
The increased network performance comes at very low costs in terms
of extra measurement data on the backhaul link.

• Smart monitoring using the GMI can reduce this extra measurement
traffic. In a scenario with moderate load, the handover failure rate
increased only from 0.09% with perfect information to 0.40% using
the GMI configured for a combination of triggers and periodic re-
porting. At the same time, the amount of measurement data could
be reduced by a factor of 64.

13.7 Acknowledgements
The author would like to thank Vladimir Maldybaev for the results in Section 13.4
and Morten Schläger and Christian Hoene for fruitful discussions.

158 13. Using the GMI for Resource Management in Future Mobile Networks

Part IV

Conclusion

14. Conclusions

Resource management problems are common in computer networks. For this thesis,
two selected topics on resource management were investigated. Part I of this thesis
laid the fundamentals for that and discussed related work.

In Part II of this thesis we looked into strategic resource management decisions that
arise in the context of denial-of-service attacks. The results of this research are
summarized in Section 14.1.

Part III was about resource management decisions in future mobile networks. It
is advantageous to make heterogeneous handover decisions on the network side —
opposed to letting the mobile device decide alone — to improve the utilization of
the air interface. For this however, measurement data needs to be transported to
the operator’s core network which uses bandwidth on the backhaul links. These
links are already a bottleneck, even without this extra traffic. The trade-off between
handover efficiency and the volume of measurement data was investigated. The
results are summarized in Section 14.2.

14.1 Denial-of-Service Attacks and Defenses

Before actually working on DoS defenses, we first looked into real-world denial-
of-service attacks. In Chapter 2 we investigated the history of these attacks and
common defense mechanisms. During this investigation we found the following facts:

Key findings in Chapter 2:

• Denial-of-Service Attacks are very common on the Internet, they
were considered the most serious operational threat in a survey
among ISPs.

162 14. Conclusions

• In 2009, the bandwidth of the strongest documented denial-of-service
attack was 49 Gbit/s. However most attacks use far less bandwidth,
the current trend is a shift from flooding to semantic attacks. For
example the Slowloris attack works with partial HTTP requests and
is very effective.

• Motivations of the attackers are extortion of businesses or the de-
sire to make a political statement. Another common motivation —
probably with younger script kiddies — is loosing in online games
or being dissatisfied with the policies of computer game companies.

• By combining sufficient overprovisioning with filtering, a very effec-
tive denial-of-service defense can be achieved. Such methods make
many potentially attractive targets like big company websites, gov-
ernment websites and critical Internet infrastructure like the DNS
root servers robust against DoS attacks.

• Most successful DoS attacks target small businesses, less-defended
government websites or private persons.

Overprovisioning as a defense strategy turns denial-of-service attacks into a resource
allocation problem from the defender’s perspective. In Chapter 3 we investigated
a denial-of-service attack against Microsoft that exploited a specific weakness in
the company’s network infrastructure. The critical DNS servers that almost all of
Microsoft’s public services depended on were placed behind a single router. This
single point of failure collapsed under the attack, making virtually all of Microsoft’s
services unavailable.

Key findings in Chapter 3:

• Whether or not a network can be DoS-attacked not only depends on
the amount of resources which are available for defending it. The
network topology and service dependencies are key factors, as they
can create weaknesses that an attacker can exploit to amplify his
attack.

In Chapter 4 we looked at Game Theory, as it promises a deeper understanding of
situations that involve strategic interaction. We found the Colonel Blotto Game, in
which two generals have to distribute their forces among a fixed number of battle-
fields. The general with the larger force will win a battlefield, while the general who
wins most battlefields will win the war. This model is applicable to the resource
distribution problems of attacker and defender in our scenario.

Key findings in Chapter 4:

• A sequential version of the Colonel Blotto Game can be applied to
the DoS problem. In this case the defender acts first, as he has
to choose a static configuration for his network. The attacker can
observe this configuration and attack accordingly.

14.1. Denial-of-Service Attacks and Defenses 163

• This gives the DoS attacker a huge advantage over the defender since
he can exploit weaknesses in the defender’s network. With about
equal resources, the attacker will always win.

With these preliminary investigations in mind, we started working on denial-of-
service attack scenarios. First we needed a tool to simulate the attacks and the effects
of the defender’s resource distribution. For this, the network simulator Flones 2 was
developed, which is presented in Chapter 6.
For Chapter 7 we initially made some theoretical observations on attacker- and
defender strategies. After that we developed a method for finding DoS weaknesses
in network and service topologies. The network is simulated using Flones 2, during
the simulation a Good Client’s success in getting answers to requests is monitored.
Using standard optimization algorithms, the attacker improves his attack. As a
result, we can see the network’s most vulnerable spots. We also tested an outer
optimization loop for the defender to fix these problems, however in this case the
runtime of the nested optimizations explodes.
Key findings in Chapter 7:

• We use the Good Client’s packet loss as a metric for an attack’s
success. When increasing the attack traffic to a service, this metric
follows a concave curve: When the service is already overloaded,
further increasing the strength of the attack gives the attacker less
and less benefit.

• An attacker with limited resources will concentrate his attack to a
single target. The stronger the attacker is, the more targets he wants
to attack.

• If multiple services have to be defended and all of them are equally
valuable, the defender should split the defensive resources equally.

• In the case that m services run on n physical servers with m>n,
the attacker will first choose the servers to attack, depending on his
resources. Then he will attack all services on the chosen servers.

• Weaknesses in networks can be found by optimizing the attacker’s
strategy. However, adding an outer optimization for improving the
network leads to very long simulation times.

Chapter 8 builds on the theoretic observations from Chapter 4, where we saw that
the attacker has a huge advantage in the Blotto/DoS game, as he can react to the
defender’s resource distribution decision.
Therefore, for Chapter 8 we used virtualization to strengthen the defender, allowing
him to move his services between his servers during the attack. We have shown that
periodic re-allocation of services based on the current load situation is beneficial
because of the attacker’s limited information about the attacked network. After
each move of a service the attacker has to search for a new attack strategy using
random probing.
There is a large space of solutions for both, the attacker and the defender. Only a
subset of these was investigated in this thesis.

164 14. Conclusions

Key findings in Chapter 8:

• Moving services at runtime brings a great benefit against an attacker
who is not aware of this and will therefore not react effectively.

• A smart attacker can greatly reduce the benefit of this method.

• As a defender, it is dangerous to base decisions on the attacker’s
past strategy. The performance of the new strategy against its own
best response should be the main criterion.

• Testbed experiments have shown that VM migration during a DoS
attack is practically feasible and can be expected to bring a benefit
as long as attackers do not adapt.

Often DoS victims start thinking about defense only after the attack has already
started. In this case a proxy-based solution like the one introduced in Chapter 9 is
helpful. Our method is purely based on HTTP redirects as a proof of work, it does
not require JavaScript or Captchas. We have shown that the method is effective
if the defender has enough proxies and can therefore claim the resource advantage.
However when purely looking at the effectiveness of the proxies, a JavaScript-based
computational puzzle is superior.

Key findings in Chapter 9:

• The designed proxy system is effective if the defender has enough re-
sources. However if the use of JavaScript is possible, computational
puzzles should be preferred.

• Load-balancing acts on information from the past. Therefore it has
to be used carefully, a smart attacker can exploit its properties.

• The DoS model used in Section 9.5 does not include timing effects.
Real-life experiments support the simulation results, but depending
on the situation, considering increased delays due to the DoS attack
might be important.

Finally in Chapter 10 we have shown that botnets consisting of mobile devices can
DoS the cells of a cellular mobile network. In the considered attack, the infected
mobile phones are coordinated to strike only when their numbers are high enough
to actually cause damage.

We have shown that this attack is feasible, but it is not clear if there is sufficient
incentive for an attacker to implement this attack. However network operators
should be prepared for the worst-case.

14.2. Data Collection for Heterogeneous Handover Decisions 165

Key findings in Chapter 10:

• The investigated DoS attack on the individual cells of mobile net-
works is technically feasible and a threat to mobile network opera-
tors. With central coordination by a botmaster, the mobile devices
will only strike when they can actually cause harm.

• The purely decentralized variant of this attack, which is based on
ad-hoc networks, has been found to be ineffective. However, this is
not a 100% reliable result, as humans tend to cluster more than the
randomly distributed users in the simulation. During events which
are visited by thousands of people, critical masses of users might still
be reached.

• It is not clear, what the incentives of an attacker who builds such a
worm would be. However, the same can be said about the Stuxnet
worm ([59]).

• One possible countermeasure is load balancing by moving users to
neighboring cells. This improves the situation as long as those cells
still have free capacities.

• The best defense is the prevention of malware-spreading on mobile
phones. This will be harder as these devices become more and more
open.

As load balancing has shown to be an effective countermeasure, this investigation is
one possible motivation for employing advanced resource management strategies in
mobile networks. Such methods are investigated in Part III of this thesis, which is
summarized in the following section.

14.2 Data Collection for Heterogeneous Handover Decisions

Handovers between different access technologies, i.e. GSM/UMTS and WLAN, are
usually triggered manually by the user today. For increasing the network’s efficiency
it would be desirable to make handover decisions in the operator’s core network.
This would make it possible to assign each user to an optimal cell in terms of radio
conditions and cell load.

The drawback of a centralized approach is that metering data about the situation
in the radio access networks has to be transported to the handover decision engine
that resides in the operator’s core network. This measurement data has to be trans-
ported over the backhaul links between the base stations and the actual packet core.
Unfortunately, the measurement traffic has to compete with user data on these links,
and the backhaul is considered to be a major bottleneck in mobile networks for years
to come.

In Chapter 12 we have described the Generic Metering Infrastructure, a modified
publish/subscribe system for future mobile networks. The GMI is able to efficiently
provide information about the network state, using triggers, periodic measurements
or in a classic request/reply fashion.

166 14. Conclusions

In Chapter 13 we have set up a simulation of a mobile network consisting of three ra-
dio access technologies. This simulation has shown that network-assisted handovers
as suggested by Fan et. al. in [63] are feasible when the required measurement data
is transmitted efficiently by the GMI and that the benefits outweight the additional
costs induced by measurement traffic on the backhaul-link.

Key findings in Chapter 13:

• Mobile networks can greatly benefit from network-assisted handovers.
The increased network performance comes at very low costs in terms
of extra measurement data on the backhaul link.

• Smart monitoring using the GMI can reduce this extra measurement
traffic. In a scenario with moderate load, the handover failure rate
increased only from 0.09% with perfect information to 0.40% using
the GMI configured for a combination of triggers and periodic re-
porting. At the same time, the amount of measurement data could
be reduced by a factor of 64.

Appendix

A. Flones 1

In this chapter the description of the original Flones network simulator is provided.
As already mentioned in Chapter 6, Flones had a number of interesting concepts.
However, it was more an “implemented formal model” than a network simulator.
Therefore, it was impractical to use and had to be replaced by Flones 2.

A.1 Reasoning vs. Simulation
There are were two basic approaches to consider, for developing a tool that investi-
gates networks for DoS vulnerabilities. The tool could do “reasoning” on the input
parameters or perform some kind of network simulation.
A “reasoning” tool works as follows: After receiving the input, the tool constructs an
appropriate internal model of the situation. This model is a static snapshot of the
network state; it does not contain a concept of time. In this static model, different
attack vectors are explored to find the best possible one. Approaches like this have
already been used to find configuration problems in networks of Unix PCs, which
allow users to increase their access permissions [84]. The difference to a simulation
tool is that the later one has a concept of time. Events can trigger other events.
This concept is more similar to classic network simulation. At first glance it seems
like the static tool is much simpler. However in our context, flows can depend on
each other and with a static tool it is not clear how circular dependencies can be
resolved.
Figure A.1 shows an example of a circular dependency. Three data streams of 80
bandwidth units each pass through a triangle of routers each of which can handle
100 bandwidth units. It is not clear from the start, what the result of this situation
should be. Assuming that all data streams lose an equal percentage of the incoming
bandwidth in an overloaded router, the situation converges towards the blue num-
bers. In the general case it is not clear that there is any convergence at all. A static
tool which explores networks for DoS-vulnerabilities would require a mechanism for

170 A. Flones 1

80

80

80

100

100100

58

42

58

58

42

42

Figure A.1: A circular dependency.

handling such situations. From a network simulator one would expect that it be-
haves similar to reality in this situation — as time dynamics is considered, we do
not need convergence to an equilibrium. One can say that a simulation tool which
considers time dynamics appears to be closer to reality and is probably more intu-
itive to use, as it behaves similar to common network simulators and can generate
a real-time output of the current simulation state. Therefore a simulation-approach
was chosen for Flones.

A.2 Basic Concepts

Flones 1 has two basic ideas:

• Time is divided into rounds. All events that occur within one round are as-
sumed to happen simultaneously.

• Services consist of state machines that communicate with each other. We
aggregate multiple state machines to process aggregates of packets.

In Flones 1 terminology, a flow is an aggregate of packets with the same source node
and the same destination node (where source and destination may be aggregated
nodes, i.e. 1000 clients may be represented by a single simulation node) that have
been sent in the same round. An alternative terminus would be packet aggregate
or message aggregate — the later one was chosen for the Flones 2 terminology.
However, as this section describes Flones 1, the original terminology is used.

A flow may consist of packets that belong to the same connection, i.e. 1000 RTP
packets that belong to a video streaming session, however, it may also consist of
1000 TCP SYN packets that obviously belong to different sessions.

On both endpoints of a connection, finite state machines are used to keep track of the
connection status. The state machines are aggregated the same way as packets, so
each state in the state machine is annotated by a number that indicates the number
of connections in this state.

A.3. Resources 171

s1
5

in: m1

s2
7

in: m2

Figure A.2: A finite state machine with two states.

Figure A.2 shows such an Aggregate State Machine (ASM). There are two states
s1 and s2, with five connections being currently in state s1 and seven connections
in state s2. An incoming packet of type m1 causes one transition, one connection
switches from s1 to s2. Transitions also trigger outgoing packets. Usually packets
arrive in form of a flow aggregate which contains multiple packets of the same type,
i.e. a flow aggregate consisting of four m1-packets would cause four connections to
transition to state s2 and possibly a new flow of multiple packets would be triggered.

A.3 Resources

There is a finite number of resources R1 . . . Rn (i.e. CPU, network bandwidth, RAM).
Connections that are in a specific state can use resources (i.e. a TCP connection in
state ESTABLISHED required a certain amount of RAM). Further, transitions also
use resources. Each node has a fixed amount of resources to spend per round.

If a resource is exhausted in one node, the simulator has to decide about the con-
sequences. An algorithm that selects flows to be dropped must be independent of
the request-order. All requests within a round occur logically simultaneously. The
actual order in which they arrive is determined by simulation-internal mechanisms
that should not affect the result.

If a flow aggregate A of 1000 flows arrives at node N and a flow aggregate B of 10
flows arrives “later” in the round, the 1000 earlier flows should not completely block
the 10 flows of aggregate B. The logic behind this is that each simulation round
stands for a real time interval. If a simulation round is 1 second long, flow aggregate
A may consist of flows arriving with a rate of 1 flow per millisecond, while flow
aggregate B consists of flows arriving each 100 ms. So the flow aggregates have not
arrived one after the other but their individual flow arrival times were distributed
within the time interval that forms the round.

In Algorithm 6 all states/flow aggregates that require a resource equally loose con-
nections/flows if this resource is overloaded. This calculation is performed before
committing the transitions in the finite state machine. The loss is calculated in
two steps, first the resource usage by the states is calculated. Only if resources are
available after this, transitions are considered. The idea behind this is that a node
can be overloaded in a way that it cannot accept any incoming flows.

172 A. Flones 1

Algorithm 6: The constraint checker calculates the consequences of overload at a certain
node. For simplicity this considers only a single service at the node.
input : states, potential transitions, available_resources
output : updated states, committed transitions
// First handle load by states.
foreach r ∈ resources do

resource_usage_by_statesr = 0
foreach s ∈ states do

resource_usage_by_statesr += calculate_resource_usage(r, s)
if resource_usage_by_statesr > available_resourcesr then

factor = resource_usage_by_statesr / available_resourcesr

foreach s ∈ states do
state.remove_flows(factor)

// Then try to commit transitions using the remaining resources.
foreach r ∈ resources do

resource_usage_by_transitionsr = 0
remaining_resourcesr = available_resourcesr - resource_usage_by_statesr

foreach t ∈ transitions do
resource_usage_by_transitionsr += calculate_resource_usage(r, t)

if resource_usage_by_transitionsr > remaining_resourcesr - then
factor = resource_usage_by_transitionsr / remaining_resourcesr

foreach t ∈ transitions do
t.remove_flows(factor)
t.commit()

A.4 Knowing the Previous state

In Flones 1, connections between nodes are not individually identifiable, but part
of aggregates and handled by Aggregate State Machines. This leads to problems if
multiple transitions expect the same message, as shown in Figure A.3. As both s1
and s2 expect a message of type m, it is not clear whether on arrival of such a flow
aggregate, connections should be moved from s1 to s2 or the other way round.

Practically this means that when a TCP ACK arrives, Flones 1 is unable to dis-
tinguish between an ACK from TCP states SYN_RCVD to ESTABLISHED, from
ESTABLISHED to ESTABLISHED, from FIN_WAIT_1 to FIN_WAIT_2 or from
CLOSING to TIME_WAIT.

This was not intended, but is a side-effect of the model. Accuracy was traded for
a simulation speedup and this information got lost in the process. The idea behind
these flows is still that they are individual sessions which do something individually,
i.e. some TCP sessions between a web browser and a web server.

There are several possible solutions to this problem:

• One could give up determinism and choose the session for each incoming mes-
sage m by chance among the connections that are currently able to process a
message of type m.
There is one strong argument against this. The method would mean that each
individual flow is randomly assigned a session upon arrival. This can either

A.4. Knowing the Previous state 173

s1
100

in: m

s2
100

in: m
Figure A.3: Two transitions expect the same message.

happen uniformly (all available connections have the same chance of being
assigned to the new flow) or according to any other probability distribution.
Assuming that we have a protocol state machine as shown in Figure A.3, with
100 sessions in state s1 and another 100 sessions in state s2. Also assume that
the transition from s2 to s1 is computationally expensive, while the transition
from s1 to s2 is not. Now 100 flows with message m arrive. One could now
assume that 50 flows change from s1 to s2 and 50 flows vice versa. However,
the goal of Flones is not the simulation of “random” or “normal” behavior, but
attacks performed by a smart attacker. This attacker would know that he can
cause much more load by sending flows that cause a transition from s2 to s1
than the other way round, so he would probably want to send 100 flows that
cause a transition from s2 to s1. This is not covered by the random model.

• Include the information about the previous state explicitly in the flow. In
the example above, an incoming flow aggregate would contain the information
“Expected state at destination: s2 → s1”. This method has a number of
drawbacks. It requires flows to contain state information, which contradicts
the idea of a finite state machine. It also contradicts our every-day experience
with many network protocols. Therefore it is unintuitive to use.

• Introduce a way to uniquely identify flow aggregates. Not individual flows, but
flow aggregates would be associated with an identifier. The states would keep
a mapping which assigns a session counter to each flow aggregate identifier.
This way, modeling the network with flow aggregates could be done in a rather
intuitive way. A session identifier can be thought of as an “IP-5-Tuple”, even
though it does not identify a single connection but multiple connections.
In the above example, each message of type m would be annotated by an ID,
e.g. m(A). If the flow with ID A is currently in state s1, incoming messages
m(A) would cause it to transition to state s2.
This also has obvious disadvantages. It reduces the amount of aggregation,
and it implicitly assumes that the same fate applies to all connections with the
same ID. What should happen if m(A) in the example only contains 50 flow
aggregates. To avoid ambiguity, the remaining flows would have to be dropped,
there is no way of handling them e.g. in the next round.

When writing Flones 1 simulations, usually the second option was chosen. However,
the combination of Aggregate State Machines and having to think of the state at the

174 A. Flones 1

destination when sending a message turned out to be unintuitive and complicated.
This is the main reason why Flones 1 was rarely used.

After recognizing this drawback, the conceptual work on Flones 2 was started to
create a much more usable network simulator which is described in Section 6.

A.4. Knowing the Previous state 175

176 A. Flones 1

Bibliography

[1] Arbor Networks, “Worldwide infrastructure security report,” 2009.

[2] J. D. Howard, An analysis of security incidents on the Internet 1989-1995. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1998.

[3] R. Bush, D. Karrenberg, M. Kosters, and R. Plzak, “Root Name Server Oper-
ational Requirements.” RFC 2870 (Best Current Practice), June 2000.

[4] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage, “Infer-
ring internet denial-of-service activity,” in ACM Trans. Comput. Syst., vol. 24,
pp. 115–139, New York, NY, USA: ACM, 2006.

[5] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos defense mech-
anisms,” in SIGCOMM Comput. Commun. Rev., vol. 34, pp. 39–53, New York,
NY, USA: ACM, 2004.

[6] P. Vixie, G. Sneeringer, and M. Schleifer, “Events of 21-oct-2002,” tech. rep.,
ISC, UMD, Cogent, 2002.

[7] J. Xu and W. Lee, “Sustaining availability of web services under distributed
denial of service attacks,” in IEEE Trans. Comput., vol. 52, pp. 195–208, Wash-
ington, DC, USA: IEEE Computer Society, 2003.

[8] X. Liu, X. Yang, and Y. Lu, “To filter or to authorize: network-layer dos defense
against multimillion-node botnets,” in SIGCOMM ’08: Proceedings of the ACM
SIGCOMM 2008 conference on Data communication, (New York, NY, USA),
pp. 195–206, ACM, 2008.

[9] J. Mirkovic, D-WARD: Source-End Defense against Distributed Denial-of-
Service Attacks. PhD thesis, University of California, Los Angeles, 2003. Chair-
Gerla, Mario and Chair-Reiher, Peter.

[10] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical network sup-
port for ip traceback,” in In Proceedings of the 2000 ACM SIGCOMM Confer-
ence, pp. 295–306, 2000.

[11] J. Ioannidis and S. M. Bellovin, “Implementing pushback: Router-based defense
against ddos attacks,” in In Proceedings of Network and Distributed System
Security Symposium, 2002.

[12] T. M. Gil and M. Poletto, “Multops: a data-structure for bandwidth attack de-
tection,” in SSYM’01: Proceedings of the 10th conference on USENIX Security
Symposium, (Berkeley, CA, USA), p. 3, USENIX Association, 2001.

ii Bibliography

[13] A. Hussain, J. S. Heidemann, and C. Papadopoulos, “A framework for classify-
ing denial of service attacks,” in SIGCOMM, pp. 99–110, 2003.

[14] A. D. Keromytis, V. Misra, and D. Rubenstein, “Sos: Secure overlay services,”
in In Proceedings of ACM SIGCOMM, pp. 61–72, 2002.

[15] A. Stavrou, D. L. Cook, W. G. Morein, A. D. Keromytis, V. Misra, and
D. Rubenstein, “Websos: An overlay-based system for protecting web servers
from denial of service attacks,” in Elsevier Journal of Computer Networks, spe-
cial issue on Web and Network Security, vol. 48, 2005.

[16] R. Thomas, B. Mark, T. Johnson, and J. Croall, “Netbouncer: Client-
legitimacy-based high-performance ddos filtering,” in Proceedings of DISCEX
III, pp. 14–25, 2003.

[17] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker, “DDoS
Defense by Offense,” in ACM SIGCOMM 2006, (Pisa, Italy), September 2006.

[18] A. Mahimkar and V. Shmatikov, “Game-based analysis of denial-of-service pre-
vention protocols,” in CSFW ’05: Proceedings of the 18th IEEE workshop on
Computer Security Foundations, (Washington, DC, USA), pp. 287–301, IEEE
Computer Society, 2005.

[19] E. Kaiser and W. chang Feng, “mod_kapow: Mitigating dos with transparent
proof-of-work,” in CoNEXT 2007 Student Workshop, CoNEXT.

[20] T. A. Timothy, T. Roscoe, and D. Wetherall, “Preventing internet denial-of-
service with capabilities,” in SIGCOMM COMPUT. COMMUN. REV, p. 6,
2003.

[21] K. Argyraki and D. R. Cheriton, “Network capabilities: The good, the bad and
the ugly,” in ACM Hot Topics in Networks (HotNets) Workshop, 2005.

[22] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and
R. L. Braynard, “Networking named content,” in CoNEXT ’09: Proceedings
of the 5th international conference on Emerging networking experiments and
technologies, (New York, NY, USA), pp. 1–12, ACM, 2009.

[23] W. Eddy, “TCP SYN Flooding Attacks and Common Mitigations.” RFC 4987
(Informational), Aug. 2007.

[24] C. Meadows, “A cost-based framework for analysis of denial of service in net-
works,” in J. Comput. Secur., vol. 9, pp. 143–164, Amsterdam, The Nether-
lands, The Netherlands: IOS Press, 2001.

[25] J. V. E. Mölsä, “A taxonomy of criteria for evaluating defence mechanisms
against flooding dos attacks,” in In Proceedings of the 1st European Conference
on Computer Network Defence, 2005.

[26] “HP OpenView.” http://openview.hp.com/.

[27] P. Barham, R. Black, M. Goldszmidt, R. Isaacs, J. MacCormick, R. Mortier,
and A. Simma, “Constellation: Automated discovery of service and host de-
pendencies in networked systems,” tech. rep., Microsoft Research, Cambridge,
CAM, UK, 2008.

http://openview.hp.com/

Bibliography iii

[28] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl, “Automating Network Applica-
tion Dependency Discovery: Experiences, Limitations, and New Solutions,” in
Proceedings of the 8th USENIX Symposium on Operating Systems Design and
Implementation, 2008, (San Diego, CA, USA), pp. 117–130, USENIX Associa-
tion, 2008.

[29] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and M. Zhang,
“Towards highly reliable enterprise network services via inference of multi-level
dependencies,” in SIGCOMM ’07: Proceedings of the 2007 conference on Appli-
cations, technologies, architectures, and protocols for computer communications,
(New York, NY, USA), pp. 13–24, ACM Press, 2007.

[30] L. Popa, B.-G. Chun, I. Stoica, J. Chandrashekar, and N. Taft, “Macro-
scope: end-point approach to networked application dependency discovery,”
in CoNEXT ’09: Proceedings of the 5th international conference on Emerging
networking experiments and technologies, (New York, NY, USA), pp. 229–240,
ACM, 2009.

[31] C. Probst, “Signalbasierte Analyse von Abhängigkeiten bei Netzwerkdiensten,”
Master’s thesis, University of Tübingen, 2008.

[32] J. Schlamp, “Configuration management via frequency analysis of synthetic
load fluctuations,” Master’s thesis, Technische Universität München, 2009.

[33] R. Gibbons, A Primer in Game Theory. Pearson Higher Education, June 1992.

[34] H. Gintis, Game Theory Evolving: A Problem-Centered Introduction to Model-
ing Strategic Interaction (Second Edition). Princeton University Press, 2 ed.,
February 2009.

[35] J. Nash, “Non-cooperative games,” in The Annals of Mathematics, vol. 54 of
Second Series, pp. 286–295, Annals of Mathematics, September 1951.

[36] E. Borel, “La théorie du jeu et les équations integrales à noyau symmetrique
gauche,” in C. R. Acad. Sci. Paris, vol. 173, pp. 1304–1308, 1921.

[37] R. Golman and S. Page, “General blotto: games of allocative strategic mis-
match,” in Public Choice, vol. 138, pp. 279–299, 2006.

[38] B. Roberson, “The colonel blotto game,” in Economic Theory, vol. 29, p. 24,
September 2006.

[39] R. Powell, “Sequential, nonzero-sum "blotto": Allocating defensive resources
prior to attack,” in Games and Economic Behavior, vol. 67, pp. 611–615, 2009.

[40] V. Bier, S. Oliveros, and L. Samuelson, “Choosing what to protect: Strategic
defensive allocation against an unknown attacker,” levine’s bibliography, UCLA
Department of Economics, 2006.

[41] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based analysis of a network of
aqm routers supporting tcp flows with an application to red,” in SIGCOMM
Comput. Commun. Rev., vol. 30, pp. 151–160, New York, NY, USA: ACM,
2000.

[42] Y. Guo, W. Gong, and D. F. Towsley, “Time-stepped hybrid simulation (tshs)
for large scale networks,” in INFOCOM, pp. 441–450, 2000.

iv Bibliography

[43] B. M. Waxman, “Routing of multipoint connections,” in Selected Areas in Com-
munications, IEEE Journal on, vol. 6, pp. 1617–1622, August 2002.

[44] Y. Gu, Y. Liu, and D. Towsley, “On integrating fluid models with packet sim-
ulation,” in In Proceedings of IEEE INFOCOM, 2004.

[45] A. Gitter, “Untersuchung von netzen auf dos-schwachstellen mit hilfe der flones
simulationsumgebung.” Studienarbeit, August 2008.

[46] R. Ando, Z.-H. Zhang, Y. Kadobayashi, and Y. Shinoda, “A dynamic protection
system of web server in virtual cluster using live migration,” in DASC ’09:
Proceedings of the 2009 Eighth IEEE International Conference on Dependable,
Autonomic and Secure Computing, (Washington, DC, USA), pp. 95–102, IEEE
Computer Society, 2009.

[47] J. L. Wolf and P. S. Yu, “On balancing the load in a clustered web farm,” in
ACM Trans. Internet Technol., vol. 1, pp. 231–261, New York, NY, USA: ACM,
2001.

[48] S. Nakrani and C. Tovey, “From honeybees to internet servers: biomimicry
for distributed management of internet hosting centers,” in Bioinspiration &
Biomimetics, vol. 2, p. S182, 2007.

[49] A. Korsten, “Virtualisierung zur optimierung der verfügbarkeit bei dos-
angriffen.” Studienarbeit, March 2008.

[50] Herley, Cormac, “So long, and no thanks for the externalities: the rational
rejection of security advice by users,” in NSPW ’09: Proceedings of the 2009
workshop on New security paradigms workshop, pp. 133–144, New York, NY,
USA: ACM, 2009.

[51] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1.” RFC 2616 (Draft
Standard), June 1999. Updated by RFCs 2817, 5785.

[52] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, “Hypertext
Transfer Protocol – HTTP/1.1.” RFC 2068 (Proposed Standard), Jan. 1997.
Obsoleted by RFC 2616.

[53] T. Vogt, “Simulating and optimising worm propagation algorithms,” 2003.

[54] Y. Bulygin, “Epidemics of mobile worms,” in Performance, Computing, and
Communications Conference, 2002. 21st IEEE International, vol. 0, pp. 475–
478, Los Alamitos, CA, USA: IEEE Computer Society, 2007.

[55] G. Yan, H. D. Flores, L. Cuellar, N. Hengartner, S. Eidenbenz, and V. Vu,
“Bluetooth worm propagation: Mobility pattern matters!,” in ASIACCS ’07:
Proceedings of the 2nd ACM symposium on Information, computer and com-
munications security, (New York, NY, USA), pp. 32–44, ACM, 2007.

[56] J. Su, K. K. Chan, A. G. Miklas, K. Po, A. Akhavan, S. Saroiu, E. D. Lara, and
A. Goel, “A preliminary investigation of worm infections in a bluetooth envi-
ronment,” in Proceedings of the ACM Workshop on Rapid Malcode (WORM),
(Alexandria, VA, USA), 2006.

Bibliography v

[57] B. Zhao, C. Chi, W. Gao, S. Thu, and G. Cao, “A chain reaction dos attack on
3G networks: Analysis and defenses,” in IEEE INFOCOM 2009, 2009.

[58] W. L. Tan, F. Lam, and W. C. Lau, “An empirical study on the capacity
and performance of 3G networks,” in IEEE Transactions on Mobile Comput-
ing, vol. 7, pp. 737–750, Piscataway, NJ, USA: IEEE Educational Activities
Department, 2008.

[59] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet Dossier,” tech. rep.,
Symantic Security Response, October 2010.

[60] V. Gazis, N. Alonistioti, and L. Merakos, “Toward a generic "always best con-
nected" capability in integrated WLAN/UMTS cellular mobile networks (and
beyond),” vol. 12, pp. 20–29, 2005.

[61] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Performance
anomaly of 802.11b,” in INFOCOM 2003. Twenty-Second Annual Joint Con-
ference of the IEEE Computer and Communications Societies. IEEE, vol. 2,
pp. 836–843 vol.2, 30 March-3 April 2003.

[62] 3GPP, “TS 32.401 V7.0.0: Telecommunication management; Performance Man-
agement (PM); Concept and requirements (Release 7),” 2006.

[63] C. Fan, M. Schläger, A. Udugama, V. Pangboonyanon, A. C. Toker, and
G. Coskun, “Managing Heterogeneous Access Networks - Coordinated policy
based decision engines for mobility management,” in LCN ’07: Proceedings of
the 32nd IEEE Conference on Local Computer Networks, (Washington, DC,
USA), pp. 651–660, IEEE Computer Society, 2007.

[64] A. Monger, M. Fouquet, C. Hoene, G. Carle, and M. Schläger, “A metering in-
frastructure for heterogeneous mobile networks,” in First International Confer-
ence on COMmunication Systems and NETworkS (COMSNETS), (Bangalore,
India), Jan. 2009.

[65] A. Carzaniga, “Architectures for an Event Notification Service scalable to Wide-
area Networks.” PhD Thesis, 1998.

[66] G. Mühl, “Large-Scale Content-Based Publish/Subscribe Systems.” PhD The-
sis, 2002.

[67] A. Zeidler, “A Distributed Publish/Subscribe Notification Service for Pervasive
Environments.” PhD Thesis, 2004.

[68] J. Case, R. Mundy, D. Partain, and B. Stewart, “RFC 3410 - Introduction
and Applicability Statements for Internet Standard Management Framework,”
2002.

[69] T. Bandh, “Automated Real Time Performance Management for Mobile Net-
works,” Master’s thesis, University of Tübingen, 2006.

[70] A. Monger, M. Fouquet, M. Schmidt, G. Carle, and M. Schläger, “A pub-
lish/subscribe system for heterogeneous access management, international
patent wo/2009/112081,” 2009.

[71] R. Chalmers and K. Almeroth, “Developing a Multicast Metric,” in Proceedings
of IEEE Global Internet (GLOBECOM’00), (San Francisco, California, USA),
Nov. 2000.

vi Bibliography

[72] 3GPP, “TS 23.003 v7.4.0: Numbering, addressing and identification (Release
7),” 2007.

[73] 3GPP, “TS 32.405 V7.4.0: Performance Management (PM); Performance mea-
surements Universal Terrestrial Radio Access Network (UTRAN) (Release 7),”
2007.

[74] B. Martin and B. Jano, “WAP Binary XML Content Format.”
http://www.w3.org/TR/wbxml/, 1999.

[75] H. J. Wang, R. H. Katz, and J. Giese, “Policy-Enabled Handoffs Across Hetero-
geneous Wireless Networks,” in WMCSA ’99: Proceedings of the Second IEEE
Workshop on Mobile Computer Systems and Applications, (Washington, DC,
USA), p. 51, IEEE Computer Society, 1999.

[76] E. Stevens-Navarro and V. Wong, “Comparison between vertical handoff deci-
sion algorithms for heterogeneous wireless networks,” in Vehicular Technology
Conference, 2006. VTC 2006-Spring. IEEE 63rd, vol. 2, pp. 947–951, May 2006.

[77] R. Pries, A. Mäder, and D. Staehle, “A Network Architecture for a Policy-Based
Handover Across Heterogeneous Networks,” in OPNETWORK 2006, (Washing-
ton D.C., USA), Aug 2006.

[78] Tölli and P. A.Hakalin, “Adaptive load balancing between multiple cell layers,”
in Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall. 2002
IEEE 56th, vol. 3, pp. 1691–1695 vol.3, 2002.

[79] IEEE 802.21, “Media Independent Handover Services.”
http://www.ieee802.org/21/, 2007.

[80] Google Inc., “Protocol buffers.” http://code.google.com/apis/protocolbuffers/.

[81] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko, “RFC 3588 -
Diameter Base Protocol,” 2003.

[82] B. Claise, “RFC 5101 - Specification of the IP Flow Information Export (IPFIX)
Protocol for the Exchange of IP Traffic Flow Information.”

[83] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
in IEEE Transactions on Information Theory, vol. 23, pp. 337–343, IEEE Com-
puter Society, 1977.

[84] D. Zerkle and K. Levitt, “Netkuang: a multi-host configuration vulnerability
checker,” in SSYM’96: Proceedings of the 6th conference on USENIX Security
Symposium, Focusing on Applications of Cryptography, (Berkeley, CA, USA),
pp. 20–20, USENIX Association, 1996.

List of Figures

3.1 DoS attack against Microsoft in 2001. 24

4.1 A sequential version of the battle of the sexes. 30

5.1 The basic attack scenario. 38

6.1 Message Queue: Processing of Messages within one Round. 44

6.2 Example message handler method. 45

6.3 Header of the base class resource_request method. 46

6.4 Nodes in Flones 2. 49

7.1 The payoff function for rgc = 1. 55

7.2 The number of attacked services for n = 100, rgc = 1, R = 100. 55

7.3 Comparison of a testbed Experiment with the theoretical considera-
tions. The axis labels have been chosen to make the curve compa-
rable to Figure 7.1. A value of zero on the vertical axis means that
the server serves the Good Client optimally, while increasing values
show the Good Client’s loss due to the server also having to serve the
attacker. 57

7.4 Optimal attacker and defender strategies with equal servers for at-
tackers with 200, 400, 600 and 800 resource units. 59

7.5 Optimal attacker and defender strategies, Server 1 is twice as strong
as Server 2 and Server 3. The attacker’s strength is increased from
top to bottom. 61

7.6 DoS optimization as a multidimensional problem: The attacker’s total
payoff is the sum of the attacks on individual services. The lower part
of the graph shows the area, where no service is overloaded, therefore
the payoff is zero. The optimizer works on such graphs with usually
more dimensions and a constraint on the attacker’s resources. 62

7.7 MS-DoS scenario. 63

7.8 Attacker strategy in the MS-DoS scenario. 63

7.9 Attack success in the MS-DoS scenario. 63

7.10 Random scenario. 64

viii List of Figures

7.11 Attacker strategy in the random scenario. 65
7.12 Attack success in the random scenario. 65
7.13 Optimal attack against the random scenario for an attacker with 1500

resource units per round. Only e2 is attacked. 65
7.14 Optimal attack against the random scenario for an attacker with 1550

resource units per round. The attacker adds e0 to the set of attacked
hosts. 66

7.15 Best defense result 1 for the MS-DoS scenario. 69
7.16 Best defense result 2 for the MS-DoS scenario. 69
7.17 Best manual defense for the MS-DoS scenario. 69
7.18 The cascading scenario. 70
7.19 Best defense result for the cascading scenario. 70
7.20 Manual better defense for the cascading scenario. 72

8.1 Migration of a small virtual machine. 77
8.2 Migration of a large virtual machine. 78
8.3 Load-balancing during a DoS attack. Initially both web servers run

on the same physical machine. When the attack is detected, guest 2
is moved to an unloaded server. 79

8.4 Attack Dynamics. The vertical axis shows the attacker’s payoff, i.e.
lost packets of a good client. The horizontal axis is time. 80

8.5 Simulation scenario. 84
8.6 Heuristic attacker vs. bin-packing defender: Simulation of different

attacker search intervals. 84
8.7 Simulation of simple attacker strategies with different attacker strengths. 85
8.8 Influence of the random attacker ’s threshold versus a static defender. 85
8.9 Influence of the random attacker ’s threshold versus a bin-packing de-

fender. 85
8.10 Simulation of improved attacker strategies with different attacker

strengths. 86
8.11 Final evaluation including the anticipating defender. 87

9.1 Message Flow with DoS defense. 92
9.2 Message sequence chart. 93
9.3 Message sequence chart of a replay attack. 94
9.4 Pipelining the attack by obtaining ticket messages in the background. 95
9.5 Effectiveness of the defense. 98
9.6 Simulation of different attackers and proxies. Simulation parameters:

Good Client capacity 5, server capacity 10, single proxy capacity 10,
number of proxies 16, attacker capacity 25, 20000 simulation rounds. 102

List of Figures ix

9.7 Simulation of different attackers and proxies. Simulation parameters:
Good Client capacity 5, server capacity 10, single proxy capacity 10,
number of proxies 16, number of redirects 12, 20000 simulation rounds.103

9.8 Simulation of different attackers and proxies. Simulation parameters:
Good Client capacity 5, server capacity 10, single proxy capacity 10,
attacker capacity 25, number of redirects 12, 20000 simulation rounds. 104

9.9 Comparison of the proxy system’s expected performance with real-
world experiments. 108

10.1 Simulation with 10,000 infected users. The magnification shows the
marked area near the center of the map. 119

10.2 Simulation with 30,000 infected users, showing users in ad-hoc net-
works (with 30m range) as blue dots. The magnification shows the
marked area near the center of the map. 120

10.3 Simulation results of the mobile worm simulation. Parameters if not
mentioned otherwise: 80,000 infected users, 30 m of ad-hoc network
range, autonomous attack threshold 5 devices. 120

10.4 Simulation of centrally coordinated worm. 121

12.1 Basic concept of an Event Service. 132

12.2 GMI signalling overview. 134

12.3 Mapping of the GMI to the SAE network architecture. 135

12.4 Concept of a data-specific MMCE that hides UE-mobility from the
clients. 138

12.5 A GMI CREATE message. 140

12.6 Screenshot of the Simulator that generates input data for the GMI.
Here three different access technologies (UMTS, WLAN, LTE) and
50 mobile users are shown. The number printed on the users are the
currently active sessions. 141

12.7 Example from our evaluation data set. The filled curve is the origi-
nal load value that appears in a simulated cell (view of the meter).
The black curve is the output of a GMI-measurement job using four
triggers (view of the GMI’s client). Pairs of dashed horizontal lines
indicate the upper- and lower thresholds for the triggers. 142

12.8 Evaluation results: Measurement accuracy versus the number of sent
messages. 143

13.1 Experiment setup including N-RM. 146

13.2 The map for the simulations, with nine cells of three different radio
access technologies. 147

13.3 Number of transmitted values. 152

13.4 Failed sessions. 152

x List of Figures

13.5 Average load. 153

13.6 Load in RAN A. 153

13.7 Load in RAN B. 153

13.8 Load in RAN C. 153

13.9 Number of Handovers. 154

13.10Data volume when transporting measurement data using different
protocols. 154

A.1 A circular dependency. 170

A.2 A finite state machine with two states. 171

A.3 Two transitions expect the same message. 173

List of Tables

1.1 Overview of the thesis chapters. 5

6.1 Message Aggregate . 43

7.1 Best optimization results of MS-DoS scenario. 68

7.2 Best optimization results of the cascading scenario. 71

13.1 Different radio access networks. 147

13.2 Threshold values for N-RM. 151

13.3 Data volume vs. success . 154

xii List of Tables

ISBN 3-937201-21-1

ISSN 1868-2634 (print)
ISSN 1868-2642 (electronic)

