Dependency analysis via hetwork measurements

Philip Lorenz
Betreuer: Dipl.-Inform. Lothar Braun
Hauptseminar: Innovative Internet-Technologien und Mobilkommunikation WS2010/2011
Lehrstuhl Netzarchitekturen und Netzdienste, Lehrstuhl Betriebssysteme und Systemarchitektur
Fakultét fur Informatik, Technische Universitédt Minchen

Email: lorenzph@in.tum.de

ABSTRACT

Large scale computer networks consist of a vast number
of interoperating services. Often, the interchange between
those services is not documented leading to a variety of is-
sues. Network dependency analysis aims to automate ser-
vice dependency discovery. In this work several different
approaches to network dependency analysis, ranging from
active to passive approaches, will be introduced and evalu-
ated.

Keywords
Network Dependency Analysis, Sherlock, Orion, Active De-
pendency Discovery, Traffic Dispersion Graphs

1. INTRODUCTION

Modern enterprise IT infrastructures consist of thousands
of participants using a large amount of different applica-
tions. A survey performed by the Wall Street Journal in
2008 ([11]) reports that in large companies such as HP more
than 6000 different applications are in use. A lot of the
applications require access to one or more network services
making availability of these services crucial. Often, these
services are even dependent between themselves further in-
creasing complexity. For example, a seemingly simple task
such as opening a web site has at least two dependencies -
the DNS server for name resolution and the web server itself
which returns the page. In some networks a proxy server
may also be required introducing an additional dependency.

Dependency documentation of network services is often not
readily available - e.g. if the product was developed within
the company without documentation guidelines. Even if the
documentation is available, extracting dependency informa-
tion for the multitude of services can be very time consum-
ing and error prone. Especially, as the network evolves over
time, documentation may become outdated.

Historically systems ([3, 9]) which automatically detect net-
work topology and services were developed. However, these
systems did not extract relations between the different com-
ponents of a network. They rather relied on expert and
business knowledge to formulate application dependencies.
Other approaches rely on instrumenting the software stack
in order to extract dependencies. Pinpoint ([5]) integrates
into the J2EE stack, a platform for developing Java-based
enterprise server applications, enabling tracing of individual
requests. X-Trace ([7]) is a tracing framework supporting a
number of different OSI layers (typically the network, trans-

Seminar Fl & ITM WS2010/2011,
Network Architectures and Services, May 2011

55

port and application layer). Both approaches are of limited
scope as they require detailed implementation knowledge of
the software stack and therefore may be troublesome to de-
ploy.

Bahl et. al ([1]) identify several areas which would benefit
from the availability of network dependency information:

Fault localisation: Consider a service that is not function-
ing properly. Dependency information can be used to
determine the root cause of the problem as all com-
ponents which may be responsible for the failure are
known. Applied to the web browsing example intro-
duced above, the proxy server may be load balanced -
e.g. several physical servers are responsible for fetching
the website. If one of those servers fails dependency
information may be used to track down the actual ma-
chine.

Reconfiguration planning: Companies usually run a lot
of servers which sometimes have been in use over the
course of several years. Sometimes the tasks of a spe-
cific server are not known by the administrators. Imag-
ine that a server which use was not documented, run-
ning a backup database, is removed during IT reor-
ganisation. In the best case backups are available but
those may be several hours old. And even if those are
not too old there is a downtime which might restrict
employees from performing their work. In this case de-
pendency information aids system planners in making
choices when reorganising the IT infrastructure.

Help desk optimisation: In case a component fails many
different applications may be affected. For example,
the failure of an Active Directory server may affect a
vast amount of the users in an organisation. As depen-
dency graphs allow the extraction of all affected com-
ponents help desk employees can troubleshoot prob-
lems more quickly and efficiently as a specific problem
description can be mapped to the actual root cause.
This not only avoids unnecessary problem mitigation
strategies (e.g. please reboot your computer) but also
allows ticket prioritisation if a single failure created a
lot of support requests.

Anomaly detection: Dependency graphs show the rela-
tions between network components at a given point of
time. A rapid change of dependencies may be a sign of
an anomaly in the system. If such a change is detected

doi: 10.2313/NET-2011-05-2_08

human supervisors may be alerted to further inspect
the found issue.

This paper presents various systems which are used to ex-
tract dependency information from a network. In section 2
terminology used throughout the paper will be introduced
and explained. Section 3 presents Active Dependency Dis-
covery, an approach which actively influences the network
in order to derive dependencies. In section 4 several non-
invasive systems are introduced.

2. BACKGROUND

Network dependency analysis attempts to recognise depen-
dencies between members of a network. For example, a sys-
tem administrator might be interested whether Host A de-
pends on Host B or vice versa. This is a high level viewpoint
as the interchange between services is not of interest. In this
work a host based dependency between Host B on Host A
will be expressed as (A) — (B). Note that this relation is
not symmetric ((4) = (B) # (B) — (A)) - e.g. if a call to
host A depends on B it does not necessarily follow that a
call to host B depends on A.

In other cases one may be interested in the actual depen-
dencies between different services. A service can be de-
scribed by its IP address and the port it provides its ser-
vices on. Formally, this can be expressed as the three-tuple
(IPaddress, port, protocol). For example, the web server at
www.in.tum.de can be expressed as (131.159.0.35, 80, T'C'P).
A dependency between two services can then be described
using a similar notation as above, by replacing the host with
the service part. It is important to realise that a dependency
between service A and B does not necessarily mean that ev-
ery access to service A also triggers an invocation of service
B.

Dependencies can be split into two groups - remote-remote
(RR) dependencies and local-remote (LR) dependencies. A
remote-remote dependency describes that in order to access
service B service A has to be invoked first. A typical ex-
ample for a RR dependency is browsing the web. Before
the web browser contacts the web server, the domain name
of the website has to be resolved . In order to do so, the
DNS service is queried and as soon as the name has been
resolved the web server can be contacted on its IP address.
This example also illustrates that a dependency is not al-
ways visible. Due to caching at the operating system level
DNS lookups do not happen every time the web server is
contacted.

On the other hand, LR dependencies are triggered by an
incoming service call resulting in an outgoing service call. A
web server accessing a database to provide the information
for a web page is an example for this type of dependency.

Another important issue, when dealing with services, is the
distinction between persistent and dynamic services. A per-
sistent service is a long-lived service often using a well-defined
port for its purpose. Examples include web or mail servers.
In contrast dynamic services are usually short-lived and not
meant to serve more than a couple of other clients. Peer
to peer applications such as Skype typically fall into this
category.

Seminar Fl & ITM WS2010/2011, 56
Network Architectures and Services, May 2011

The results of a network analysis can be evaluated using
three metrics:

True positives The dependencies found which are ground-
truth dependencies - e.g. dependencies which have
been verified to be real dependencies.

False positives Classified dependencies of the system which
are not actual dependencies of the network. For exam-
ple, regular background traffic may be misclassified by
the system as a dependency.

False negatives Actual dependencies which were not de-
tected by the network analysis system. There are sev-
eral reasons which lead to false negatives such as a
sampling rate which is too high or a lack of traffic
which triggers the dependency.

In the case of a perfect analysis engine the true positives
will exactly match the actual dependencies of the host or
service. However, it is unlikely for a system to correctly de-
tect all and only the correct dependencies, hence the other
two metrics play an important role as well. A large number
of false positives may be cumbersome if manual inspection
of the results has to be performed. In contrast, even a small
number of false negatives may have an impact on the opera-
tion of the system if the missing dependencies are not found
by manual inspection.

3. ACTIVE SYSTEMS

Dependency analysis systems can be categorised into two
groups: active and passive systems. Active systems attempt
to determine dependencies by modifying the observed sys-
tem. Modification includes changing parameters of compo-
nents as well as injecting network traffic generated by the
dependency analysis into the system. This means that the
analysis process may influence the system behaviour or, in
the worst case, disturb the operation of the system.

3.1 Active Dependency Discovery

Brown et. al ([4]) introduce a system called Active De-
pendency Discovery (ADD) which determines dependencies
by actively perturbing services in the network. This ap-
proach focuses on fine grained dependency analysis hence
some information about the observed system should already
be available. The dependency analysis process is split into
four major steps:

1. Node/Component identification: In this step hosts
or components that are relevant to the analysed sys-
tem are identified. The list of potential components
may come from various data sources such as inventory
management software or from coarser grained depen-
dency models.

2. System instrumentation: Probes and other compo-
nents are installed to measure the effect of the pertur-
bation within the network. Potential metrics include
availability or performance data (e.g. response time).

3. System perturbation: In order to measure the ef-
fects of the perturbation, a specific workload should

doi: 10.2313/NET-2011-05-2_08

18000

16000

14000

12000

10000

8000

6000

Response time (ms)

4000

25% 50% 75%
ITEM Perturbation level, time

(a)

Figure 1: Perturbation intensity vs

be chosen and then be continuously applied to the sys-
tem. In case of an Internet portal, one possible work-
load could be a list of frequently visited subpages. As
soon as the workload is applied, components should
be perturbed at varying intensity. For example, one
could simulate network loss ranging from 0%, mean-
ing no packet loss, to 100%, resulting in complete loss
of connectivity. During this step the instrumentation
systems set up in step 2 are used to log the system
response to the perturbation. It is also possible to
perturb multiple components at the same time which
enables the discovery of complex dependencies such as
load balancers or replicated components.

In their work, Brown et. al use a e-commerce system
to perform fine-grained dependency analysis. This sys-
tem had a database backend which the authors per-
turbed by locking individual tables making data re-
trieval impossible until the lock expired. The authors
then recorded the effect on the response time while re-
questing different parts of the site (e.g. viewing a list
of products). Figure 1 shows the effect on the website
response time after applying the perturbation at vary-
ing intensities to two tables of this e-commerce sys-
tem (ITEM containing the items available for sale and
CC_XACTS which contains credit card transactions).

. Dependency extraction: After the perturbation step
is completed, models of the logged data can be created.
In this step, the various metrics recorded through in-
strumentation are related to the perturbation settings
at the given point in time. The goal is to identify
dependencies by determining the statistical significant
correlations. This does not only allow the extraction of
dependencies but also the strength of the dependency
for the given workload. When looking at the example
in Figure 1, it can be clearly seen that a longer locking
time on table ITEM leads to a higher response time
of the web server. This indicates that a dependency
between the sample workload and the given database
table exists. On the other hand, no unusual increase in
response times for the CC_XACTS table can be seen.
This suggests that the workload is independent of the
given table. While in their work, perturbation is not
performed on the network layer, other perturbation
methods such as simulating packet loss, can be used
to find the dependency on the database server. In or-
der to lower the cost of dependency extraction, the raw

Seminar Fl & ITM WS2010/2011,
Network Architectures and Services, May 2011

57

Response time (ms)

18000
16000
14000
12000
10000

8000

6000

4000 {

S
2000 458

0% 25% 50% 75% 99%
CC_XACTS Perturbation level, time

(b)

response time of an intranet portal ([4])

results can be aggregated.

Active approaches such as ADD have several disadvantages
when applying them to real world networks. Due to their
invasive nature the performance of the network may be neg-
atively affected, simply due to adding additional load to
the network. In the case of ADD, perturbation is bound
to negatively affect the network services if it is applied to
the production environment. Hence, ADD is best used in
development environments which simulate the actual net-
work. However, this may cause additional problems if the
development environment does not exactly behave like the
production environment. Another problem of ADD is its
dependency on domain knowledge. In the best case only the
workload has to be created but generating an exhaustive
workload may prove to be difficult, potentially leading to
false positives. Additionally, ADD requires the installation
of probes throughout the network hence a priori knowledge
about the network topology is required. The acquisition of
network topology is not within the scope of ADD but will
likely require manual intervention which filters candidate in-
strumentation targets.

4. PASSIVE SYSTEMS

In contrast to active systems, passive dependency analysis
does not interfere with normal system behaviour. In order
to derive dependencies only information produced by the
network itself is used - e.g. no traffic is generated in order
to determine the dependencies within a network.

4.1 Sherlock

Bahl et. al ([2]) introduce a system which aims to aid IT
administrators in troubleshooting problems. In order to
achieve this goal, a dependency analysis component was de-
veloped which passively monitors the network and attempts
to automatically create a graph describing the network com-
ponents and the services provided within the network.

4.1.1 Architecture

Sherlock consists of a centralised Inference engine and sev-
eral distributed Sherlock agents. The agents sniff network
packet data and compute the dependencies for their attached
network segments and the corresponding response time dis-
tributions. This data is then relayed to the inference engine
which uses the information to perform fault localisation. An
agent may be installed as a system service on single hosts

doi: 10.2313/NET-2011-05-2_08

Web Server
(installed
Sherlock agent)

Inference engine

Client 2

Client 1

Figure 2: Sample of a Sherlock deployment

but can also be used to process data received from a moni-
toring port at a router or other network hardware. Figure 2
illustrates a sample deployment of Sherlock within a net-
work. It includes an agent connected to a router and one
agent directly installed on a web server. Data is collected at
an independent host.

4.1.2 Dependency extraction

Sherlock analyses the packets captured, trying to find cor-
relations between single packets directed towards a service.
Rather than interrelating all packages, which would result in
a severe performance loss, a time-window based approach is
used: Let to be the time at which an outgoing service request
to service B is observed. Sherlock will choose all other out-
going service requests within the time window At before to
as dependency candidates. The remote-remote dependency
probability that a host accessing service B is dependent on
service A can then be expressed as the conditional depen-
dency Pr[A|B] - e.g. the number of times within the trace
that A was accessed within the time window before seeing an
invocation of B divided by the total number of invocations
of B. Figure 3 illustrates such a packet time line. In this
case Output 1 is the packet which is analysed. Let the time
window At be set to 5 seconds. Both, Output 2 and Output
3, have sent packets indicating potential dependencies.

In order to deal with chance co-occurrence, which may be
falsely assumed if another service is called often during the
trace, Sherlock applies a simple heuristic to filter the results.
Let I be the average invocation time interval of the noisy
service. Only if the conditional probability is a lot larger
than %, the dependency is assumed to be valid. Applying
this technique to the example introduced above will exclude
Output 3 as a dependency (the average interval I for this
output is 2) as the resulting chance co-occurrence factor is
larger than 1.

The dependency extraction process can solely be controlled
by the selection of the time window length At. Choosing this
value too high may introduce false positives as services called
with a relatively high frequency will be falsely classified as
dependencies. On the other hand, picking a value which
is too low may result in false negatives. According to the
authors, a time window of 10ms has proven to be a good

Seminar Fl & ITM WS2010/2011,
Network Architectures and Services, May 2011

58

i
_ At
> - ~
o
)
S
| —
i 2 3 4 5 6 7
(qV]
+
3
o
IS
3
o
t
i 2 3 4 5 6 7
o I
:,"\\
o
)
S
(N I I t
i 2 3 4 5 6 7

Figure 3: Exemplary packet flow

choice detecting the majority of the service dependencies.

Data generated by the agents is then transmitted to the
central inference engine which further aggregates the data
eliminating potential false positives. For example, a client
which always relies on a proxy server to perform its network-
ing tasks may introduce false positives. Additionally, this
aggregation enables the discovery of seldom accessed service
dependencies as the combination of multiple data sources
may provide enough data points to mark the dependency as
statistically significant.

4.2 Orion

Orion by Chen et. al ([6]) is a dependency analysis en-
gine sharing many basic concepts with the Sherlock system.
However, several changes were made to improve the quality
of the dependency detection.

To identify a single service invocation, Sherlock groups all
contiguous packets with the same source and destination
address and port without considering other transport layer
attributes. In contrast, Orion aggregates individual pack-
ets depending on the protocol headers into flows. In the
case of UDP, a stateless protocol, a timeout mechanism is
used to determine the flow boundaries. For TCP packets,
header flags are used. Example flags include the SYN, FIN,
RST but in case of long-living connections the KEEPALIVE
messages can be used as well. The reason for including
KEEPALIVE messages is simple: If they were not used, the
length of flows may include too many packets negatively in-
fluencing the dependency extraction performance. The util-
isation of flows offers several advantages over a raw packet
based approach: (i) the computational overhead is kept low
as the number of samples decreases (consider 1 flow vs at
least 3 packets for a TCP handshake) (ii) avoid redundancy
and therefore skewed results which may occur if multiple
packets are transmitted for a single service invocation.

Orion supports both remote-remote and local-remote depen-
dency detection. For each potential dependency, a delay dis-
tribution is built. Hence, a system offering n local services
and accessing m remote services will have n x m LR delay

doi: 10.2313/NET-2011-05-2_08

distributions and m x m RR delay distributions. Similar
to Sherlock, Orion uses a time window in order to further
reduce processing overhead. However, in the case of Orion
the time window is significantly larger (3 seconds) but flows
are grouped into smaller intervals, named bins.

55 % 10 Dependent Distribution — Before Independent Distribution - Before

k= 4500
2 5 A 1
T AN l
2 - 4000 k t 1, H H\‘
s e I ISR IA IR
& CALHAR R A
7 3500
0 100 200 300 0 100 200 300
x10* Dependent Distribution - After Independent Distribution - After
= 25 4000
<
Rl
[
< 20 38001 N\ A g AL paann
£ \\ v LAANIATAART)
15 — 3600
0 100 200 300 0 100 200 300

Bin (width=10ms) Bin (width=10ms)

Figure 4: Delay histograms before and after the application
of a low pass [6]

Similarly to Sherlock, Orion has to deal with chance co-
occurrence which may introduce false positives in the de-
pendency extraction results. As these independent packets
do not follow a specific pattern they introduce random spikes
in the delay distribution histogram (Figure 4). Orion treats
the delay histogram as a signal and uses a common signal
processing technique to eliminate the random noise. First
the signal is transformed into the frequency domain (e.g. by
using the Fast Fourier Transform). Afterwards, a low pass
filter is applied, removing the high frequencies from the sig-
nal. This results in a smoothened signal as shown in the
graphs at the bottom of Figure 4. Orion decides the valid-
ity of a dependency based on a specific bin-height threshold
(indicated as a horizontal line in the graphs) - e.g. if there
is at least one bin with a height above that threshold the
dependency is regarded as valid. The impact of filtering can
be seen on the right hand side graph where it is applied to
a true negative. While without filtering, several peaks were
above the threshold, these are eliminated after the applica-
tion of the low pass, preventing false positives.

Similarly to Sherlock, Orion performs aggregation of the
client data sets. However, not only service invocations are
aggregated but also services themselves. In corporate net-
works, frequently used services such as DNS servers and
proxy servers are load balanced in order to improve per-
formance. Orion allows those clusters to be represented
as a single server through manual input. Aggregation of
these clusters may be semi-automated if a logical pattern
is available to group the hosts providing these services. An
example of such a pattern are reverse DNS names such as
dns—x.network.com, where x is a number for a specific host
part of the cluster.

Due to their operating system independent design Orion and
Sherlock offer great flexibility. There are several deployment
possibilities which ease the integration within the network.
Additionally, this approach enables the detection of exotic
dependencies as the amount of logging data generally ex-
ceeds those of other solutions. However, this comes at the
cost of accuracy. The time-window based approach leads to

Seminar Fl & ITM WS2010/2011,
Network Architectures and Services, May 2011

59

a trade-off between false and true positives. In addition, as
any statistical approach, these systems are highly dependent
on the amount of sampling data. This means that the more
samples are available the better the detection will become.
Another limitation of the approach stems from the layer 4
and below restriction. Both systems do not attempt to parse
application payload and will therefore always be restricted
in the dependencies they can find.

4.3 Macroscope

Popa et. al introduce Macroscope ([10]) which levitates some
of the problems solely packet based dependency analysis sys-
tems have due to statistical uncertainties. Macroscope fol-
lows a similar architecture as Sherlock and Orion. Network
traces and application data is collected at multiple tracers
deployed on end-systems. The tracers relay the data to a
central collector which aggregates and preprocesses the data
and passes it on to the analyzer for dependency extractions.

Macroscope uses operating system knowledge about active
connections in order to identify RR dependencies of single
applications. Most operating systems allow querying ac-
tive connections using either system calls (e.g. on Windows
GetExtendedTCPTable or GetExtendedUDPTable) or through
the filesystem (e.g. on Linux in /proc/net). These lists con-
tain the source IP and port, as well as the target IP and port,
and the unique process identifier of the process owning the
connection. Rather than constantly polling for connection
information, Macroscope samples this data periodically in
order to minimise resource usage. However, choosing a sam-
pling interval which is too large may result in missed depen-
dencies, especially if the connection duration is always lower
than the interval.

Macroscope distinguishes between transient relations and
static dependencies. These dependencies are similar to the
concept of persistent and dynamic services introduced in sec-
tion 2 - e.g. a transient relation corresponds to a dynamic
service call while a static dependency involves a persistent
service call. In order to generate the dependency output
the system first classifies all applications into two groups (i)
applications with only static dependencies (ii) applications
with static dependencies as well as transient connections.
Mathematically, the classification into the two groups can be
expressed as follows: Let N* be the number of application
instances a within the trace, NJ the number of instances
of application a using service s, Vi@ = N¢ — N¢ (i.e. the
number of application instances which did not use service
s) and S* the number of services contacted by all applica-
tion instances of type a. The transient dependency metric
is then calculated as follows:

Va?
S

M® =
s Sa

(1

When M* is 0 all applications instances use all services (as
V& is 0). However, if an application only uses transient con-
nections the value of M* will be maximal at N* — 1 as for
each service V' will be N, —1 (i.e. each instance is the only
one using service s). This means that the closer the value
of M? is to 0, the more likely it is that the application only
has static dependencies. Using this metric, the authors clas-
sify all applications which have a value less than a certain

doi: 10.2313/NET-2011-05-2_08

percentage of the maximum value (e.g. M® < T x (N®—1))
into group (i). If an application belongs to this group all
of the services it invokes are regarded as dependencies. If
the metric is above the threshold an application falls into
group (ii) and requires further processing before the static
dependencies can be extracted: First of all, all invocations
targeting a port below 1024 are considered to be static de-
pendencies'. For all other static dependencies the following
two conditions must hold:

Ug N¢

ge 2 UNTm 2T (2)
where U are the number of users using application a, U is
the number of users that have connected to service s through
application a. Note that N* is the number of application
sessions (e.g. the number of unique (Process Identifier, Ap-
plication, Source IP) tuples) while U® is the number of active
application installations a (e.g. the number of unique (Ap-
plication, Source IP) tuples). Essentially, U is the relative
number of users using application a which access service s.
This metric prevents biased results if a single application
installation, making up a large part of the sample set, uses
service s frequently. On the other hand, I captures the rela-
tive amount of application sessions accessing service s. De-
pendencies are regarded as static if both values exceed 10%
(based on experimental results of the authors) - i.e. at least
10% of the application installations, as well as application
sessions, accessed service s.

BigFix Service (63442)

47.4%

EPMAP (135)

BESClient.exe
44.9%

Active Directory (1025)

LDAP AD (389)

|AD logon and directory replication (1026')|

Figure 5: Macroscope sample output (based on [10])

Next to dependency extraction, Macroscope also offers de-
pendency profiling mechanism. This enables detailed de-
pendency analysis, for example by inspecting the amount
of traffic generated by a dependency. Also, causal relations
between dependencies can be derived. Figure 5 shows a
graphical output by the Macroscope system for the BigFix
Enterprise Suite, an application for remote system adminis-
tration. The edges are labelled with the relative traffic usage
of each dependency. It can be clearly seen that the majority
of traffic is directed towards the BigFix service itself followed
by the Active Directory server.

Due to the use of operating system knowledge, Macroscope
has a better dependency detection ratio than other solu-
tions such as Orion or Sherlock. Other than the identifi-
cation of transient relations, there are no further statistical
based steps in this approach. This leads to a low num-
ber of false positives as completely independent connections

!These are well known ports specified by TANA at http:
//www.iana.org/assignments/port-numbers

Seminar FI & IITM WS2010/2011, 60

Network Architectures and Services, May 2011

are not even considered to be a dependency. However, this
comes at the price of flexibility. Macroscope requires the in-
stallation at each endpoint in order to determine application
dependencies. While this may be feasible in some environ-
ments, such as in homogeneous setups, it may become more
difficult if a multitude of platforms has to be supported. Ad-
ditionally, the overhead of deploying Macroscope on every
system may be problematic. Another issue of the operat-
ing system based approach is, that some dependencies will
be simply missed as messages invoking them are not dis-
patched by the application itself. One popular example are
DNS name queries which are usually handled directly by the
operating system and therefore are not directly associated
to the querying application in the connection table.

4.4 Traffic Dispersion Graphs

Iliofotou et. al ([8]) introduce Traffic Dispersion Graphs
(TDG) in order to extract dependency information from a
network. While their work concentrates on identifying peer
to peer applications many of the heuristics are also applica-
ble to generic dependency analysis.

A TDG is a graph G = (V, E), where the vertices, V, repre-
sent the nodes within a network and the edges, E, connect
two nodes only if a flow between the two nodes exists. Edges
are directed so that the initiator of the connection is repre-
sented. In the case of TCP connection, SYN or SYN/ACK
packets are used to derive the direction while in the case of
UDP the first packet of the data sample is used.

The resulting graphs can be filtered using edge filters. For
example, the destination port of a connection could be used
to filter for a specific service such as HT'TP on port 80.
These filters are named TDG port filters. Other potential
filters include filtering by traffic rate or by traffic count.

Figure 6: Visualisation of a TDG with a DNS port filter [§]

Visualising TDGs is a very expressive way of showing depen-
dencies of a network. By using a graph layouting algorithm
which places connected nodes within the same area, single
dependencies can be spotted quickly. Distinguishing servers
from clients can be done by looking at the degree of a node
and the direction of the edges. For example, Figure 6 shows
a TDG with a DNS port filter set. The DNS servers can be
easily recognised due to the amount of incoming edges.

doi: 10.2313/NET-2011-05-2_08

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

Mathematically several graph related metrics can be used to
inspect TDGs. For example, a TDG can be analysed using
the average degree of nodes. The average degree is the num-
ber of incoming and outgoing edges of a node. Graphs with
a large number of high average degree nodes are typically
tightly connected. Another metric available is the In-and-
Out degree (InO). The InO is the percentage of nodes which
have a non-zero in-degree as well as a non-zero out-degree.
Typically, servers will have a low InO as they generally do
not use many outgoing connections.

TDGs show their strength when used for detection of sin-
gle services. Using Traffic Dispersion Graphs, network phe-
nomena can be either inspected visually or identified using
graph metrics. While the authors already introduce vari-
ous metrics which can be used to categorise filtered TDGs,
automatic dependency discovery based on these graphs still
has to be part of further research. However, TDGs can al-
ready be used to detect certain applications or for anomaly
detection within networks.

5. SUMMARY

This work introduces several different dependency analysis
systems ranging from active to passive approaches. In the
following section the different approaches will be compared,
highlighting their strength and weaknesses.

Active Dependency Discovery enables fine grained depen-
dency detection at the cost of generality. Because of the ac-
tive approach some knowledge about the service tested, such
as its external communication protocol, must be known. Ad-
ditionally, a typical workload has to be created before de-
pendency extraction can begin. Depending on the type of
service, this can be automated. In other cases, manual cre-
ation of the workload may be needed. However, the results
of the dependency extraction are more fine grained than
those of the other systems. For example, certain parts of
the workload can be related to specific dependencies.

In contrast Orion and Sherlock do not need detailed knowl-
edge of the system itself. As they work on raw packets,
data can be collected anywhere in the network. This en-
ables large-scale deployment and dependency detection for
any application in the network without manual user inter-
vention. However, as with any statistical approach results do
not always match ground truth dependencies. While both
systems can be configured for specific workloads there is
a trade-off between the number of false positives and true
negatives potentially requiring analysis by human operators
after dependency extraction.

Macroscope tries to levitate this problem by utilising op-
erating system knowledge to extract dependencies. As a
result, both the number of false positives and especially the
number of true negatives are significantly lower compared to
Orion and Sherlock. However, due to the endpoint installa-
tion dependency, deployment within the network, especially
in heterogeneous networks, is more difficult.

Traffic Dispersion Graphs define a methodology for captur-
ing network communication in a graph data structure. This
data structure makes it possible to visualise relations be-
tween nodes in a network but also enables the application of

Seminar Fl & ITM WS2010/2011,
Network Architectures and Services, May 2011

61

graph metrics for computational feature extraction. TDGs
aim to detect the presence of specific applications rather
than automatically inferring all dependencies between ser-
vices. They provide a high level viewpoint of the network
communication structure enabling the detection of network
anomalies.

6. REFERENCES

[1] P. Bahl, P. Barham, R. Black, R. Ch, M. Goldszmidt,
R. Isaacs, S. K, L. Li, J. Maccormick, D. A. Maltz,

R. Mortier, M. Wawrzoniak, and M. Zhang.
Discovering dependencies for network management. In
In Proc. V HotNets Workshop, pages 97-102, 2006.

[2] P. Bahl, R. Chandra, A. Greenberg, S. Kandula,

D. Maltz, and M. Zhang. Towards highly reliable
enterprise network services via inference of multi-level
dependencies. In Proceedings of the 2007 conference
on Applications, technologies, architectures, and
protocols for computer communications. ACM, 2007.

[3] R. Black, A. Donnelly, and C. Fournet. Ethernet
Topology Discovery without Network Assistance. In
ICNP, pages 328-339, 2004.

[4] A. Brown, G. Kar, and A. Keller. An active approach
to characterizing dynamic dependencies for problem
determination in a distributed environment. In
Integrated Network Management Proceedings, 2001
IEEE/IFIP International Symposium on, pages
377-390. IEEE, 2002.

[5] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: Problem Determination in Large,
Dynamic Internet Services. Dependable Systems and
Networks, International Conference on, 0:595, 2002.

[6] X. Chen, M. Zhang, Z. Mao, and P. Bahl. Automating
network application dependency discovery:
Experiences, limitations, and new solutions. In
Proceedings of the 8th USENIX conference on
Operating systems design and implementation, pages
117-130. USENIX Association, 2008.

[7] R. Fonseca, G. Porter, R. Katz, S. Shenker, and
I. Stoica. X-trace: A pervasive network tracing
framework. In Networked Systems Design and
Implementation, number April, 2007.

[8] M. Iliofotou, P. Pappu, M. Faloutsos,

M. Mitzenmacher, S. Singh, and G. Varghese. Network
traffic analysis using traffic dispersion graphs (TDGs):
techniques and hardware implementation. 2007.

[9] B. Lowekamp, D. O’Hallaron, and T. Gross. Topology
discovery for large ethernet networks. In SIGCOMM,
SIGCOMM 01, New York, NY, USA, 2001. ACM.

[10] L. Popa, B. Chun, I. Stoica, J. Chandrashekar, and
N. Taft. Macroscope: end-point approach to
networked application dependency discovery. In
Proceedings of the 5th international conference on
Emerging networking experiments and technologies,
pages 229-240. ACM, 2009.

[11] J. Scheck. Taming Technology Sprawl, 2008.

doi: 10.2313/NET-2011-05-2_08

	Innenleben-copy 55
	Innenleben-copy 56
	Innenleben-copy 57
	Innenleben-copy 58
	Innenleben-copy 59
	Innenleben-copy 60
	Innenleben-copy 61

