
MGRP - passive aggressive measurements

Ferdinand Mayet
Supervisors: Dipl.-Ing. Dirk Haage, Dipl.-Inf. Johann Schlamp

Advanced Seminar - Innovative Internettechnologien und Mobilkommunikation WS2010/2011
Chair for Network Architectures and Services

Department of Informatics, Technische Universität München
Email: mayet@in.tum.de

ABSTRACT
This work presents the Measurement Manager Protocol (MG
RP), an in-kernel service supporting flexible, efficient and
accurate measurements. MGRP schedules probe transmis-
sions on behalf of active measurement tools and reduces
the monitoring overhead by reusing application traffic. A
small benchmark experiment demonstrates the potential of
this passive aggressive measurement before an evaluation
is carried out. In this context, another sophisticated ap-
proach, namely TCP Sidecar, is presented and compared
with MGRP and other traditional methods. At the end,
some analysis about the usage and application of both con-
cepts are discussed.

Keywords
active, passive, aggressive, network, traffic, measurements,
MGRP, TCP Sidecar

1. INTRODUCTION
The Internet evolved in the last thirty years from text based
utilities to a platform used for multimedia streaming, online
conferencing and other services of the World Wide Web.
The majority of the users grasp the Internet as a medium
which provides the connectivity between their applications
and distributed information and data. The end-users do not
need to know any background of how the Internet works,
such as the processes that are triggered after the user clicks
on a hyperlink or how packages are routed on their way
through the network [1].

However, network researchers aim to understand the net-
works infrastructure and the protocols used to communicate
with other instances of the network. A major methodology
researchers use to collect and analyse information about net-
works are end-to-end measurements. Due to measurements,
interesting network properties could be estimated which help
to improve applications and protocols in order to gain a good
user experience. A good user experience could for example
be reached by selecting the nearest and fastest server to
download from. A different application might need a low
round-trip-time (RTT) and a high path capacity. Therefore
network applications need to discover the current network
conditions and adapt accordingly. Since there is no possi-
bility to gather information about the state of the network
by asking other network devices, traffic analysis has to be
carried out between the endpoints.

The research area of network traffic measurements also aims

at evaluating a given network in order to be able to under-
stand its topology and to identify the available bandwidth
between different hosts. This topic is steadily gaining popu-
larity since video streaming becomes more and more impor-
tant to individuals (e.g. watching videos on YouTube) as
well as to companies using the Internet as a online meeting
platform. Detailed information about the network would en-
able applications or even protocols to change their behaviour
and adapt to the networks state. For example, if a video is
hosted on multiple servers the application could choose the
best connection between client and server. This might be the
nearest server but it could also be the case that this specific
one is too busy to satisfy the users requirements. In order to
achieve a higher user experience the application should be
able to discover such shortages and choose an appropriate
way to solve them. Furthermore, measurement techniques
are used to reveal security issues like firewall misconfigura-
tions or to locate problems occurring during communication.

In the following, a short introduction to the topic of network
measurements will be outlined and a variety of traditional
measurement approaches will be discussed. Thereafter, two
sophisticated techniques will be presented and analysed. At
the same time, their specific advantages and drawbacks will
be elaborated. Finally, some related work are presented.

2. BACKGROUND
Network measurements are applied whenever information
about a network and its current state is necessary. There-
fore, four main reasons for network measurements will be
presented and their benefits will be explained:

Network Troubleshooting The purpose concerning traf-
fic measurements in the area of network troubleshoot-
ing is to discover defective hardware and misconfigu-
rations of endpoints and intermediate devices. For ex-
ample, the Internet Control Message Protocol (ICMP)
can be used to send messages to a desired endpoint. If
these messages do not arrive at the endpoint an error
message is triggered which indicates that something
is wrong in the network. More precise evaluations in
combination with other protocols can then be used to
identify defects or misconfigurations in the network [1].

Protocol Debugging Protocol Debugging is necessary if
new protocols are developed. Thereby, measurement
techniques ensure the standard compliance of a proto-
col by for example analysing the traffic. Furthermore,

doi: 10.2313/NET-2011-05-2_07Seminar FI & IITM WS2010/2011,
Network Architectures and Services, May 2011

47

it is possible to prove the backward compatibility of a
newer protocol version to its predecessor. In order to
prove backward compatibility a variety of approaches
are available such as establishing a communication be-
tween two endpoints with different protocol versions
and examining the transferred messages [1].

Workload Characterisation Another area where network
measurements are applied is the field of workload char-
acterisation. This domain analyses the exchanged traf-
fic between endpoints and creates a ranking of the pro-
tocols which transfer data. On the basis of this ranking
applications can be optimised for the most frequently
exchanged data. This is very important to multipur-
pose applications which use several protocols to com-
municate with other hosts. Workload characterisation
also focuses on the protocol layer and supports the im-
provement of newer protocol versions with regards to
the monitored workload [1].

Performance Evaluation Another important usage of mea-
surements is performance evaluation. Network traf-
fic measurements are utilized to determine the perfor-
mance of the network. A detailed analysis may help
to identify performance bottlenecks. Once these prob-
lems are identified the results might be used to further
improve protocols or the network infrastucture itself.
Performance evaluation is often used in combination
with the workload characterisation process described
earlier [1].

These four reasons are just a few examples of motivations
for monitoring network traffic. Detailed information about
protocols and processes of a network are very important to
achieve a higher usability and to enhance the users expe-
rience. Hence, network measurements must be performed.
However, the crucial part is to pay attention to the real-
ization of such measurements because they should be trans-
parent to the user and should not change the network. In
the following, a short introduction to traditional methods
for monitoring the network is given.

3. METHODOLOGY
Software network measurement tools can be classified in two
major monitoring concepts, passive and active. These two
concepts can again be subdivided in offline and online mea-
surements. In this case online describes a technique where
packets are analysed on the fly whereas offline denotes a
mechanism that first captures information and evaluates the
data afterwards. A common representative of offline mon-
itoring are log files or dump files, for example created by
tcpdump1.

3.1 Passive Measurements
Passive measurement describes a mechanism which collects
the observed traffic of the network. The term “passive”
states that no additional workload is introduced into the
network and only available traffic is captured and analysed.
In order to obtain information about a given link, such as
time dependent references, the observation of the traffic has

1tcpdump: a Linux tool which dumps traffic on a network
http://www.tcpdump.org/

to be applied at different network locations (see Figure 1)
[2].

network traffic

prober prober

packet copy

estimator
exchange exchange

Figure 1: Concept of passive measurements

Claise ([3]) categorises passive measurements into two groups:

Full collection This process captures every single packet
which passes the metering point. The main advantage
of a full collection is accuracy as the collected data is
exactly equal to the passed traffic. However, a draw-
back is the large number of packets that have to be
stored and analysed, which may require very fast me-
tering hard- and software.

Partial collection Most of the time it is not possible to
perform a full collection due to high speed interface
technologies which send a huge amount of data in a
very short time period. Therefore a partial collection
process which filters or samples the collected data is
necessary. For example, filtering mechanisms may se-
lect a specific flow of data (e.g. TCP traffic) to re-
duce the workload of the monitoring unit. In contrast,
sampling uses statistical methods (e.g selecting 1 of N
packets) in order to reduce the load of the measure-
ment systems.

Passive measurements are applied if the exact network state
is important and interference with live traffic is not wanted.
However, the disadvantage of monitoring is that desired traf-
fic types may not be present in the traffic passing the ob-
servation point. This purpose could be solved using active
measurement techniques.

3.2 Active Measurements
In contrast to passive measurement, active measurements re-
quire explicit requests that generate synthetic traffic with a
desired type and workload [2]. Active measurements involve
two systems into the process, a sender and a receiver. The
sender creates the desired traffic and sends it to the receiver
which collects all packets at their arrival and evaluates each
(see Figure 2).

doi: 10.2313/NET-2011-05-2_07Seminar FI & IITM WS2010/2011,
Network Architectures and Services, May 2011

48

http://www.tcpdump.org/

network traffic

sender receiver

generated packet

Figure 2: Concept of active measurements

Performance evaluations, network troubleshooting and pro-
tocol debugging is mostly done using active measurements
since it is possible to generate an extremly high workload,
malformed packets and special traffic. This might be neces-
sary if special information about the network must be col-
lected. Compared to passive techniques active probing has
the advantages of maximum traffic control, independency
of the current traffic and the ability to detect the maximum
available bandwidth. Furthermore, active measurements are
easier to implement than passive ones. Nevertheless, syn-
thetic traffic may cause collsions in the network und thus
change the network’s behaviour. Hence, active measure-
ments are commonly an estimation of the real network state
and throughput [3].

To conclude, both techniques have multiple advantages but
also several disadvantages. Obviously, new mechanisms are
necessary to minimise the newly introduced traffic on the one
hand and to keep the control of the transferred traffic as high
as possible on the other hand. In the following sections two
more sophisticated measurements techniques are presented
which try to counter the observed problems and combine all
advantages.

4. MGRP - PASSIVE AGGRESSIVE MEA-
SUREMENTS

This section introduces the Measurement Manager Protocol
(MGRP) which addresses the shortcomings of traditional
approaches by using a hybrid concept. MGRP is an in-
kernel service that enables probes to reuse application traf-
fic transparently and systematically. As described in section
3 passive probing is efficient but unable to detect improve-
ments of network conditions and active probing affects the
current traffic on the link. MGRP permits the user to write
measurement algorithms as if they are active but be imple-
mented as if they are passive. Hence MGRP can be more
aggressive without harming the performance of an applica-
tion [4].

MGRP piggybacks application data into probes in order to
minimise newly introduced traffic. Piggybacking is a pro-
cess that is aware of probes which mostly consist of empty
padding. Empty padding is necessary because probes have
to reflect the behaviour of real application traffic that carries
useful payload. The piggybacking mechanism replaces the
empty padding of a single probe with payload that should
be transmitted to the receiver and thus prevents the prober
from sending unnecessary packets.

4.1 MGRP architecture
MRGP is a kernel-level service which extends the transport
layer of the ISO/OSI model. This protocol is basically ac-
cessed using two application programming interfaces (APIs),
the probe and payload API. The payload API extracts use-
ful data from other transport protocols like TCP or UDP
and hands it to the MGRP service. In collaboration with
the probe API MGRP generates a hybrid of a probe and
application data. Instead of sending single probes directly
to the receiver, the sender uses the probe API to specify an
entire train. A train is defined by the size of each probe,
the number of probes, the amount of padding and the gap
between probes [5].

MGRPTCP, UDP

MGRP Payload API
Transport Protocols
contribute packets

Transport Layer

Application Layer

Network Layer IP

probespayload

MGRP Probe API
Tools

send probes

apps probers

riders
transport
packets

vessels
probes

Figure 1.1: Measurement tools specify the characteristics of probe trains to be sent, including whether
some portion of a probe packet contains empty padding. This portion may be filled by useful payload,
drawn from existing TCP or UDP streams having the same destination as the probes, to lower the probing
overhead.

Measurement Manager grew out of our work on merging network measurement with

transport protocols [18] and we have presented parts of our system in work that is un-

der submission [19]. The original idea was inspired by the Congestion Manager [20], an

end-to-end system that coordinates congestion information between Internet hosts.

Figure 1.1 shows the overview of the Measurement Manager architecture. The

main novelty of the Measurement Manager is that it enables network probes to reuse

application traffic transparently and in a systematic way. We achieve this through the

Measurement Manager Protocol(MGRP), an in-kernel service that combines probes and

data packets. In MGRP, active measurement algorithms specify the probes they wish to

send using theProbe API. With this API they specify the per-probe header, the payload

size, and the time to wait between probe transmissions. The kernel then sends the probes

according to the specification. However, rather than filling probe payloads with empty

padding, as is normally done with active tools, the kernel attempts to fill these payloads

with data from application packets having the same destination as the probes. The ability

of MGRP topiggyback any data packeton any probeturns out to be pivotal in making

7

Figure 3: MGRP architecture [4]

Once defined a train MGRP starts piggybacking applica-
tion traffic and sends these merged packets to the receiver.
By filling most of the empty padding with payload MRGP
nearly behaves like a passive algorithm since it omits the
overhead generated by active measurements. Figure 4 in-
dicates the transition from active mechanisms with probes
and empty padding (white/black checkerboard) to a MRGP
like traffic with no padding. Figure 4 also shows the newly
introduced MGRP header (illustrated as small light gray
box).

Figure 4: Transition from active measurement traf-
fic (left) to MGRP traffic (right)

At the receiver side the payload is separated from the mea-
surement data. The payload output is handed over to the
standard transport layer and the measurement data is trans-
ferred to the monitoring system. The receiver side adds a
second timestamp to the MGRP header and delivers the
packet to the prober. The MGRP header mainly consists of
two timestamp header fields, one timestamp is entered by
the sender when the packet is sent. The other one is entered
by the receiver and contains the reception time [4].

4.2 Probe Transaction by Example
The example described in this section is illustrated in Fig-
ure 5 and will be walked through from step 1© to 8©. Con-
sider the following case: The sender is streaming multimedia
data to a destination D and at the same time MGRP is used

doi: 10.2313/NET-2011-05-2_07Seminar FI & IITM WS2010/2011,
Network Architectures and Services, May 2011

49

MGRP

IP

MGRP

IP

TCP

2

Contribute
TCP

packets
Fragment

and piggyback
TCP payload on probes

3

(i)
Packet train with

2 empty probes and
one partially reused

6

Demultiplex
payload from probes

7

Reassemble
packets

and pass to TCP

4Send
MGRP packets

5 Receive
MGRP packets

TCP

apps probers appsprobers

1
Send probes

using the
Probe API

8
Reconstitute
probes and

deliver to prober

SENDER RECEIVER
Network

(ii)
Packet train that is
fully piggybacked

MGRP
IP

Probe
FRAG

MGRP
IP

Probe
FRAG
TCP

(iii)
The final fragment of
the last piggybacked

TCP packet

2a2b

MGRP
IP

Probe
MGRP

IP

Probe
MGRP

IP

Probe

4b
TCP

MGRP
IP

MGRP
IP

Probe
FRAG
TCP
3a 1

FRAG

3b

Figure 2: A step-by-step example to demonstrate MGRP operation. Measurement tools generate probes,
which MGRP combines with TCP (or UDP) packets sent by applications. Depending on the timing, MGRP
packets can contain (i) probes that are partially reused by full payload packets, (ii) probes that are fully
reused by payload fragments, (iii) final payload fragments when MGRP has no more probes to send. The
combined packets are demultiplexed at the receiver.

sender, along with any extra padding that was specified.
Both the sender timestamp (implemented by MGRP) and
the receiver timestamp (extracted from the kernel using the
same mechanism as SO_TIMESTAMP) are provided as ancillary
data. The tool uses this information to compute its results.

Though simple, this API is sufficiently flexible to imple-
ment the key building blocks—including single-packet probes,
back-to-back packet pairs, and packet trains with arbitrary
inter-packet spacing—of many existing measurement algo-
rithms [5, 6, 12, 15]. We have adapted three measurement
tools to use the Probe API: pathload [14] and pathchirp [23],
which measure available bandwidth, and badabing [28], a
tool that measures path loss. In all three cases, changes to
the tools were minimal.

2.2 Basic Operation
MGRP’s implementation of probe transactions is visual-

ized in Figure 2. Once a probe transaction is fully submitted
1©, MGRP attempts to fill the empty padding in each probe
with rider packets drawn from application traffic bound for
the same destination 2©. For example, in our scenario from
the Introduction, an application may be streaming media
data to some destination D while an active measurement
tool (such as our MGRP-adapted pathload) is used to probe
the available bandwidth along the same path. Once any rid-
ers are piggybacked 3©, MGRP stores the kernel timestamp
in the MGRP header and hands the packet to the IP layer
for transmission 4©.

In our implementation, we modified the TCP stack to pass
its outbound traffic to MGRP for potential piggybacking.
Applications can use setsockopt to set which packets may
be piggybacked. MGRP buffers potential riders for a fixed
duration to increase the chances for successful piggybacking.
If no riders are available, a probe is simply sent with empty
padding (as in the first two probes of (i)). Any buffered
application frames not piggybacked are sent normally.

Given a probe packet and a rider to piggyback, MGRP
tries to fit the rider inside the probe’s padding as follows.

If the rider is smaller than the padding, piggybacking is
straightforward (probe labeled 1 in (i)). If the rider is larger
than the padding, MGRP fragments the rider into two chunks,
piggybacking a padding-sized chunk in the probe and re-
queuing the remainder for further piggybacking. We use a
simple, custom fragmentation/reassembly protocol similar
to IP fragmentation to manage fragmented chunks.2 In the
figure we can see that probe packets in (ii) carry a single,
fragmented TCP segment, whose chunks are labeled 2a and
2b. If MGRP cannot piggyback an entire rider before the
buffer timeout, MGRP simply sends the chunk in its own
MGRP packet, shown as (iii) in the figure. For simplicity
we currently piggyback at most one rider per probe.

As probe packets are received at the destination 5©, MGRP
extracts any piggybacked riders from the probes 6©. It then
queues fragments for reassembly and immediately delivers
complete TCP segments to the application 7©. After ex-
tracting any piggybacked data, MGRP zeroes the padding
and queues probes for delivery to the measurement socket
8©. When the measurement tool retrieves the probe, it can
retrieve the sender’s and receiver’s timestamps as ancillary
data.

From this description we can see three main benefits to our
kernel-based implementation. First, since all transmissions
go through the kernel, MGRP can piggyback data from any
number of applications on top of a probe train so long as it
shares the train’s destination. Second, applications require
essentially no modification to donate their packets, while
measurement tools require only modest changes. Finally,
since we avoid crossing the user-kernel boundary for every
probe, the inter-probe gaps can be generated with microsec-
ond precision and low overhead using the high resolution

2Another approach we tried was to generate and add a new
TCP header to each TCP chunk, which turned each chunk
into a valid TCP segment. However, this approach turned
a stream of MSS-sized segments into a stream of very small
TCP segments (tinygrams) that interacted poorly with the
ACK clocking and congestion window scaling mechanisms.

Figure 5: Demonstration of MGRP operation [5].

to measure the network condition between the sender and
D.

At step 1© the prober calls the sendmsg function to send the
first probe. The first sendmsg call also defines several op-
tions and the ancillary data. For example, the gap between
probes and the barrier flag is set. The barrier flag is used
to indicate that a whole train of probes should be created.
As long as the barrier flag is set to 1 all probes are buffered
until the flag is unset. Afterwards the probes are sent as a
train. Packets generated by the streaming application with
same destination D as the probes are collected by the pay-
load API 2©. At step 3© the TCP packets are fragmented
and piggybacked into the probe. In some cases fragmen-
tation might be necessary as the payload could exceed the
MGRP payload size. Due to additional header information
of MGRP the payload size is smaller then the one of e.g
TCP. Afterwards MGRP sets the kernel timestamp in the
MGRP header field and hands it to the IP layer for transmis-
sion 4©. During transmission three different kinds of packets
may occur: As illustrated in (i) of Figure 5 MGRP provides
the possibility to completely disable piggybacking or only
partially. In the partially disabled case, MGRP sends out
probes with empty padding if no suitable rider was found.
If it is completely disabled MGRP behaves like a traditional
active measurement tool. The ideal case of piggybacking is
shown in (ii) where all probes are reused to transport appli-
cation data. The label 2a and 2b indicate that the original
TCP packets had to be fragmented to fit into the probes
data field. If MGRP was unable to piggyback the payload
before the buffer timeout exceeds additional MGRP packets
containing the remaining chunks are sent (iii). The buffer
timeout determines the available time for buffering applica-
tion data until it must be transmitted by MGRP. As the
packets arrive at destination D 5© the payload is demulti-
plexed 6© from the measurement data. Next, the original
TCP packets are reassembled and delivered to the applica-
tion 7©. At the same time, MGRP reconstructs the probing

packets by zeroing the padding and setting the reception
time 8©. Finally, MGRP buffers the probes for delivery to
the prober [5].

4.3 Experiments with MGRP
This section elaborates on an experimental setup in order to
demonstrate the behaviour and performance of MGRP. The
network topology is given in Figure 6.

In the experiment a constant 4 Mbps stream is transmitted
from m3 to m5 representing a multimedia stream hosted
on m3 and requested by m5. The data rate of 4 Mbps
was chosen because it is commonly used for high definition
multimedia streams [4].

m3 x1 x2 m5

c1 c2
UDP or TCP
cross traffic

Figure 6: Experimental setup (based on [5])

While streaming from m3 to m5 MGRP is used to determine
the actual bandwidth between those two nodes. In order
to obtain more realistic results, the link x1x2 is throttled
to a maximum data rate of 10 Mbps as there are only 4
participants in the network.

As shown in Figure 7 the multimedia stream in disturbed by
UDP cross traffic which is transmitted from c1 to c2. The
cross traffic is stepwise increased until it reaches the max-
imum spare throughput of 6 Mbps and is decreased after-
wards. Each interval lasts 45 seconds and transmits constant

doi: 10.2313/NET-2011-05-2_07Seminar FI & IITM WS2010/2011,
Network Architectures and Services, May 2011

50

rates of 1, 3, 5, 6, 4 and 2 Mbps. The most interesting inter-
val is between 135 and 180 seconds because at this point in
time no additional traffic like measurement probes are able
to pass from on side to the other without harming one of
the two streams on link x1x2 [4].

0 45 90 135 180 225 270
0
2
4
6
8
10

sec

M
bp

s

Figure 7: Cross traffic from c1 to c2 (based on [5])

Figure 8 presents the results of the experiment described
before. Two cases are considered in the plots:

1. active probing with piggybacking disabled (upper plot)

2. reuse of application payload as a rider using MGRP
(lower plot)

Case 1: After about 70 seconds the two streams and the
additionally introduced payload of the packets start to
interfere as there is not enough bandwidth available to
satisfy all network participants. Unfortunately, UDP
has no congestion control and keeps sending as much
cross traffic as possible. However, the data flow be-
tween m3 and m5 uses TCP and recognises that the
link is overwhelmed which forces TCP to enter the
congestion avoidance phase. The algorithm of this
phase decreases the maximum segment size (MSS)
(e.g. MSS = MSS

2
) and therefore limits the trans-

mission rate to 3 Mbps respectively to 2 Mbps later on
[6]. If both hosts would have used UDP as transport
protocol a dramatic packet loss would have occurred.
Figure 8 also indicates that the monitoring traffic con-
sumes approximately 2 Mbps. To conclude, the user
viewing the multimedia data on location m5 will ex-
perience stuttering or in the case that the hosting ap-
plication is aware of the congestion the stream quality
will be downgraded.

Case 2: In this case MGRP utilises the application traf-
fic as riders and nearly all probes carry application
data. Only approximately 0.2 Mbps are used to send
probes without piggybacked payload. Hence, the TCP
connection experiences only little congestion and the
stream nearly stays at 4 Mbps. To sum up, MGRP
reduces the measurement overhead to a minimum and
lowers interference with other network communications
while monitoring constantly. The viewer of the video
stream might only suffer small or even no changes.

pk1 pk2 pk3
probe size (bytes) 300 500 300

probes/train 10 20 10
probe gap (usec) 200 1000 0
train gap (msec) 20 20 10

inst. throughput (Mbps) 12.0 4.0 line rate
avg. throughput (Mbps) 1.1 2.0 2.3

Table 1: Parameters for packet train experiments

atively short (10-20 packets). Each train type demonstrates
different likely probing scenarios: pk1 has a relatively high
burst rate (12.0 Mbps) but low average rate (1.1 Mbps),
and its ten-packet bursts approximate the sub-trains over
which pathload calculates changes in one-way delay; pk2
has longer 20-packet trains at lower rates (4.0 Mbps), but
a higher overall rate (2.0 Mbps) demonstrating that more
aggressive probing is feasible with MGRP; pk3 is similar to
capacity estimators such as pathrate, and transmits 10 pack-
ets back-to-back with an average probing rate of 2.3 Mbps.

Cross traffic.We generate two types of cross traffic be-
tween c1 and c2, shown in Figure 5: STEP and WEB.5

STEP cross traffic is stepwise UDP. We use tcpreplay [32]
to replay a snapshot of a 150 Mbps trans-Pacific Internet
link [31] at fixed-rate intervals lasting 45 seconds each (1, 3,
5, 6, 4, 2 Mbps). Using this UDP-based cross traffic, we can
consider the effects of piggybacking on source traffic without
having to factor in the cross traffic’s response to induced
congestion. Replaying a trace permits us to test against
actual Internet packet size distributions and interleavings,
but without cross-traffic congestion avoidance, and at rates
that are stationary over a reasonable period of time [35].

WEB cross traffic is generated using the NTools [33] suite
to generate up to ten concurrent TCP connections, which
models web traffic using Poisson-distributed interarrival rates
over 5-second intervals. Like the source, each TCP flow
performs normal CUBIC congestion control. The flow size
varies between 64 KB and 5 MB, and is weighted toward
flows in the 64-200 KB range. The initial seed to the gen-
erator is fixed to provide consistent (though not identical)
behavior between runs.

4.2 Results
The results of our experiments demonstrate that using

MGRP leads to better application throughput, is fair to
cross traffic, and reduces the time to complete pathload
measurements. MGRP also makes it possible to measure
at more aggressive rates without adversely affecting applica-
tion traffic. On the other hand, highly-variable cross traffic
(i.e., for the WEB experiment) in combination with bursty
probe trains may increase source packet losses (as discussed
in Section 2.3) unless we add more intelligence to MGRP to
perform selective piggybacking as we discuss in Section 4.2.2.

4.2.1 STEP Experiment
The STEP experiment demonstrates all the potential ben-

efits of MGRP. First, MGRP is able to piggyback signifi-
cant amounts of application data, nearly eliminating probing
overhead in almost all cases. As an example, Figure 6, plots
a single run using pk2 traffic—notice that the bottom plot

5Additional results with other cross traffic patterns are avail-
able in [18].

Figure 5: Cross traffic for Microbenchmarks

Figure 6: STEP: Timeseries plot with pk2 probes

Figure 7: STEP: Timeseries plot with pFAST probes

has almost no black band, as piggybacking absorbs the over-
head of probe traffic into the data traffic—and in Figure 7,
showing the minor probing overhead when using MGRP
with pFAST. Figure 8 shows the average per-second through-
put of each kind of traffic for all runs. Probe-only traffic
appears as a black bar, and riders (“source/probe (pbk)”)
contribute to the source throughput. The overhead of pig-
gybacked probe headers is included with “probe (nopbk),”
and is minuscule for most experiments with MGRP enabled.

Second, MGRP “smooths out” source traffic because it
competes less with probe traffic. This effect can be seen
in the time series plots mentioned above, and also in Fig-
ure 9, which shows the CDF of the source traffic throughput
measured in one-second intervals, for different kinds of mea-
surement traffic. Ideally, the CDF of our 4 Mbps source traf-
fic would be a vertical line at 4 Mbps, indicating that the
application was able to sustain its desired rate during the
entire experiment. Any fluctuation below that rate (to the

Figure 8: Results of the experiment [5]

4.4 Evaluation
This section provides a overview on MGRP and discusses
problems that may occur using MGRP for measurement pur-
poses. As described earlier, MGRP facilitates the reuse of
existing traffic. Hence, the networks condition is just slightly
modified and the amount of newly introduced collisions is
minimal. Furthermore, MGRP is traffic independent since
it switches to an active measurement like mode if no riders
are available. Due to the fact that the number of probes
can be specified, MGRP is able to determine the maximal
available bandwidth.

But there are several reasons why MGRP is not used every
and all the time: First of all, MGRP inserts delay into the
network as application traffic is buffered and multiplexed
at the senders side and demultiplexed at the receivers side.
Secondly, MGRP changes the behaviour of all TCP connec-
tions on the link as collisions may appear more likely. Since
TCP implements a congestion avoidance algorithm multiple
TCP connections influence each other and try to share the
maximum available bandwidth equally. In a scenario where
MGRP is used to measure the network additional overhead
is added to a single connection which leads to a worsen-
ing of all other connection sharing the same link. Even if
these modifications are small an excessive usage of MGRP
on multiple connections might yield a large overhead which
restricts the performance of the network in contrast to pas-
sive measurements. Furthermore, sophisticated delay calcu-
lation have to be done by the prober since there are sev-
eral timeouts and buffering/fragmentation delays have to
be considered. Additionally, measurement packets are not
able to traverse firewalls and NATs (network address trans-
lations) which also prevents MGRP from being used univer-
sally. This problem occurs as firewalls and NATs do not un-
derstand the MGRP header format. However, the most im-
portant drawback relates to the implementation of MGRP.
As described in section 4 MGRP is an in-kernel service. This
indicates that the network stack has to be modified in order
to add MGRP to the transport layer. Currently no operat-
ing systems integrates MGRP by default. Hence, the moni-
toring systems stack has to be changed which might not be
feasible in many cases. The fact of the matter is that this
prevents MGRP from being used by peers globally. Stream-
ing or peer-to-peer applications like Skype can not use it as

doi: 10.2313/NET-2011-05-2_07Seminar FI & IITM WS2010/2011,
Network Architectures and Services, May 2011

51

well, since there is no guarantee of having MGRP available
on all participatory systems.

The following section will present another measurement tech-
nique. This approach is based on the traditional active mea-
surement process and extends it in several ways.

5. TCP SIDECAR
TCP Sidecar is a monitoring platform for injecting pack-
ets into a network and follows the principle that the net-
work provides enough bandwidth to handle additional traf-
fic caused by probes. The main goal of TCP Sidecar is to
circumvent intrusion detection systems (IDSs) and firewalls
since synthetic traffic is most often considered being extraor-
dinary and potentially malicious. Hence, most firewalls will
block measurement traffic and IDSs will trigger alerts and
abuse reports. Therefore, carefully designed measurement
probes and responses have to be generated. Thereby, TCP
Sidecar does not restrict the source and destination nor the
time of measurement since the platform does not want to
force any extraordinary behaviour [7].

5.1 Architecture and Probe Transaction
The concept behind TCP Sidecar is to generate probes con-
sisting of replayed data segments. Therefore Sidecar uses
passive measurements to collect traffic that is passing by and
retransmits it to destination. Figure 9 outlines the standard
procedure of a Sidecar measurement. The prober (Sidecar)
can be positioned freely in the network. Often it is placed at
the senders side but it is possible to place it at every other
node in the network as long as both the forward and reverse
path are observed by Sidecar [8].

Sender Receiver

Data

ACK

DUP ACK

Delayed or Duplicate Data

Figure 2: Sender incorrectly assumes (shaded region) that
duplicate ACKs are from delayed, reordered, or dupli-
cated packets.

characteristics of the application being instrumented mat-
ter little.

2.1 Unobtrusive Probing
Sidecar probes are TCP packets that look like retrans-
mitted data. Upon receiving retransmitted data, TCP re-
ceivers send a duplicate ACK because the original ACK
could have been lost (Figure 3). TCP senders ignore
single duplicate ACKs because they could be caused by
delays (Figure 2) or reordering in the network. Sidecar
records application data passively so that segments can be
retransmitted accurately (Figure 4).1 Because packet loss
and duplication are expected in TCP, IDSs are unlikely to
generate alerts from Sidecar probes. Thus, Sidecar probes
solicit responses from end-hosts without affecting appli-
cations or alerting IDSs.

Because Sidecar probes seamlessly attach and follow
application streams, they can reach places unsolicited
probes cannot. For example, if a Sidecar-enabled tool in-
strumented web server traffic, Sidecar probes could fol-
low web connections from the server back to the corre-
sponding web clients, even if they were behind firewalls
or NATs.

The size of the probe can be varied by changing the
amount of traffic replayed, only limited by the connection
MTU and the amount of data recorded. Probes can be sent
even after the connection has closed by replaying the final
FIN-ACK packet, as long as the receiver is in the TIME-
WAIT state. The last is possible because the final ACK of
the three-way close might have been lost, so replaying the
FIN-ACK causes a retransmission of the final ACK.

Typically, a Sidecar-enabled tool would further mod-
ify probes. For example, one could implement a Sidecar
traceroute-like [8] topology discovery tool by setting the
IP TTL field of the Sidecar probe to 1, and then incre-
menting until an ACK was received from the end-host.
With Sidecar running on a web server, this tool would

1Paxson [12] notes that retransmitted data can change the data stream
sent if the original and retransmitted data are not consistent.

Sender Receiver

Data

ACK

ACK

ReXmit Data
Dropped

Figure 3: Receiver incorrectly assumes (shaded region)
that probes are valid retransmissions from sender due to
lost ACK.

Sender Sidecar Receiver

Data

ACK

DUP ACK

Dup Data

Figure 4: Reality: Sidecar probes are replayed data packet
that generate duplicate ACKs. Probes are transparent to
both sender and receiver applications.

obtain the path back to any client without out-of-stream
packets.2

TTL-limited Sidecar probes can also detect NATs. If a
probe is sent to IP addressA at TTL=t, but the response
is an ICMP time-exceeded message with source address
A, we can infer that there is a NAT at hopt. We can then
continue to increase the TTL to find the actual distance to
the end-host, effectively probing behind the NAT. Passen-
ger [17] is a Sidecar-enabled topology discovery tool that
combines TTL-limited traceroute data with data from the
IP record route option. We present two further examples
of Sidecar tools in the Section 4.

2.2 Sidecar API
The Sidecar API (Figure 1) provides connection tracking,
probe identification, round trip time estimation as well as
bandwidth and memory usage limits. The Sidecar tools
are event-driven applications that receive event notifica-
tions such as new connections, incoming and outgoing
probes. The Sidecar initialization function takes a libp-
cap [9] filter string, e.g., “host www.google.com and port
80”, as a parameter, and ignores events that do not match
the filter. To construct packets for retransmissions, Side-
car tracks state for each connection, including sequence

2Discovering the topology between server and web clients is pre-
cisely the measurement by Padmanabhanet al. [11].

2

Figure 9: TCP Sidecar procedure [7]

TCP Sidecar is also used to modify the captured data before
replaying it. This has to be tampered very accurately as
firewalls and IDSs should not notice any difference between
real and replayed packets.

For example, the time-to-live (TTL) option of the TCP
header can be adjusted freely because the receiver does not
necessarily need the information contained in the replayed
packets. Hence, these packets can be dropped before they
reach the receiver. This modification might be used inside
TCP Sidecar to detect NATs. The detection mechanism
simply uses ICMP and varies the TTL. If a TTL exceeded

message is returned by a network node and the source ad-
dress of this error message is the same as the original desti-
nation address of the packet, a NAT can be assumed [8].

Once a duplicate packet arrives at the receiver no warning
or even error message is generated since TCP considers the
reception of duplicate packets. Shortly after the reception
the receiver generates a duplicate acknowledgement (ACK)
and sends it to the source address. This packet is then again
captured by TCP Sidecar for measurement purposes [8].

5.2 Evaluation
TCP Sidecar is a platform for unobtrusive measurements
and enables measurements throughout firewalls, and NATs.
Furthermore, Sidecar is able to detect NATs and perform
several kinds of measurements without alerting IDSs. Espe-
cially large network service like PlanetLab [8], CoDeeN [9],
OpenDHT [10], Meridian [11], and CoralCDN [12] might
benefit from TCP Sidecar since most of these services al-
ready perform network measurements and might struggle
with altering IDSs.

However, Sidecar has several drawbacks: Firstly, the plat-
form depends on existing traffic which might be applicable
to large networks but may be a problem in smaller networks.
Since no measurement will be forced (only the amount of re-
played data can be set) the results in smaller network may
not be as accurate as with using other active measurement
tools. A second problem might be the placement of the mon-
itoring system as both communication channels must pass
the metering point. The most significant problem is the fact
that duplicate ACKs are generated. A duplicate ACK can
be regarded as network problems by the sender. Therefore
TCP adjusts the congestion window size which is a state
variable that limits the maximal amount of unacknowledged
TCP packets. For example, if the congestion window size is
2, TCP can only send two TCP packets with an outstand-
ing acknowledgment. Each duplicate ACK decrements the
congestion window by one. This might get even worse if a
third duplicate ACK reaches the sender because in this case
TCP enters the slow start phase and halfs the maximum seg-
ment size (MSS). Hence, the data rate is reduced and the
communication is violated by measurements. Nevertheless,
this problem might be solved by selectively grabing dupli-
cate ACKs and discarding them if they are not important
to the sender. Regarding to Figure 9 the Sidecar node must
be able to not only generate duplicate data but also to ana-
lyze duplicate ACKs on their way back to the sender. If the
the duplicate ACK is considered being non-essential to the
sender (e.g a duplicate ACK with the same sequence num-
ber has already been transferred to the sender) the packet
must be dropped by the Sidecar node. However, the classifi-
cation of these packets into categories like important to the
sender or not might quite challenging but would potentially
increase the performance of TCP Sidecar.

6. RELATED WORK
MGRP is similar to many approaches (Periscope [13], Scrip-
troute [14], pktd [15]) in that it serves the possibility to de-
fine measurement probes and schedules. MGRP differs from
these approaches as it is the first tool, which is fully inte-
grated on layer 4 in the IP protocol stack. Thereby, MGRP
reduces the measurement overhead by reusing probes as rid-

doi: 10.2313/NET-2011-05-2_07Seminar FI & IITM WS2010/2011,
Network Architectures and Services, May 2011

52

ers for application data. Furthermore, MGRP is a protocol
and not a standalone application. Thus, it can be integrated
into a big amount of existing applications and help to im-
prove their performance by reducing unnecessary overhead.

The following collection of related work should give a short
overview of similar project:

• Sidecar has the advantage that it support ICMP mes-
sages which enable NAT detection. But as a conse-
quence of the problems described in 5.2 the measure-
ment intervals have to be kept low which makes the
usage of Sidecar difficult.

• MAD [16] is a Multi-user Active Measurement service
that generates probes on behalf of probers and is also
implemented in the Linux kernel in order to gain a
higher accuracy. In contrast to MGRP MAD does
not use piggybacking but provides a interface for self-
measurements of the system which again enhances the
accuracy.

• Scriptroute [14] is a public Internet measurement fa-
cility that conducts remote measurements for users.
Measurements are written in a special script language
and uploaded to a server. Afterwards, the server per-
forms the desired measurement in a secure way by pro-
viding several mechanisms to the user which ensure
that a measurement does not exceed a given band-
width or no bad packets are generated.

Obviously, there is a large amount of measurement tools
available online [17, 18]. Combining the features of these
tools with the Manager Protocol might lead to even more
sophisticated applications for network measurements.

7. CONCLUSION
This work presented traditional measurement techniques and
the Measurement Manager Protocol, a flexible and efficient
monitoring protocol. Based on an experiment MGRP’s per-
formance was demonstrated and proved the potential of this
approach. Furthermore, TCP Sidecar was introduced which
presented a security oriented way of measuring networks and
introduced new features like NAT detection.

Both, MGRP and TCP Sidecar provide a interface to collect
information about the network. Subsequently, this feedback
can be used to improve applications and protocols. Espe-
cially MGRP has great potential to be used by streaming ap-
plications to enhance the user experience without harming
the network. Furthermore, both mechanisms are able to de-
tect improving network conditions. This information is very
important to all kinds of applicatons since it enables them
to leave the congestion avoidance phase earlier. The infor-
mation could also be used to replace the slow start phase of
TCP after a congestion occured because the application is
aware of the maximal available bandwidth.

To conclude, measurements have the ability to solve a large
range of problems - e.g. performance issues. However, the
resulting measurement overhead has to be taken into con-
sideration to prevent network exhaustion and co-occuring

delays. Moreover, the whole measurement process must be
transparent to the user to keep Internet usage as simple as
possible.

8. REFERENCES
[1] C. Williamson, “Internet traffic measurement,” IEEE

Internet Computing, vol. 5, no. 6, pp. 70–74, 2001.

[2] D. Verma, Principles of Computer Systems and
Network Management. Springer-Verlag New York
Inc, 2009.

[3] B. Claise, “Network Management - Accounting and
Perfomance Strategies,” Cisco press, p. 672, 2007.

[4] P. Papageorgiou, “The Measurement Manager:
Modular and Efficient End-to-End Measurement
Services,” Doctor, no. 1, 2008. [Online]. Available:
http://drum.lib.umd.edu/handle/1903/8900

[5] P. Papageorge, J. McCann, and M. Hicks, “Passive
aggressive measurement with MGRP,” ACM
SIGCOMM Computer Communication Review,
vol. 39, no. 4, p. 279, Aug. 2009.

[6] W. Stevens, M. Allman, and S. Paxson, “RFC 2581:
TCP Congestion Control,” 1999.

[7] R. Sherwood and N. Spring, “Touring the internet in a
TCP sidecar,” Proceedings of the 6th ACM SIGCOMM
on Internet measurement - IMC ’06, p. 339, 2006.

[8] R. Sherwood, “A platform for unobtrusive
measurements on PlanetLab,” Proceedings of the 3rd
conference on, 2006.

[9] L. Wang, K. Park, R. Pang, V. Pai, and L. Peterson,
“Reliability and Security in the CoDeeN Content
Distribution Network,” in Proceedings of the USENIX
2004 Annual Technical Conference. USENIX
Association, 2004, p. pp 14.

[10] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz,
S. Ratnasamy, S. Shenker, I. Stoica, and H. Yu,
“OpenDHT: A public DHT service and its uses,”
Interface, vol. 35, no. 4, pp. 73–84, 2005.

[11] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: a
lightweight network location service without virtual
coordinates,” in Proceedings of the 2005 conference on
Applications technologies architectures and protocols
for computer communications, R. Guérin,
R. Govindan, and G. Minshall, Eds., vol. 35, no. 4.
ACM, 2005, pp. 85–96.

[12] M. J. Freedman, E. Freudenthal, and D. Mazières,
“Democratizing content publication with Coral,” in
NSDI. USENIX Association, 2004.

[13] K. Harfoush, A. Bestavros, and J. Byers, “An Active
Internet Probing and Measurement API,” 2002.

[14] N. Spring, D. Wetherall, and T. Anderson,
“Scriptroute: A Public Internet Measurement
Facility,” Proc USENIX Symp Internet Technologies
and Systems USITS Mar, 2002.

[15] J. Gonzalez, “pktd: A packet capture and injection
daemon,” Passive and Active Measurement Workshop,
2003.

[16] J. Sommers and P. Barford, “An active measurement
system for shared environments,” Proceedings of the
7th ACM SIGCOMM conference on Internet
measurement IMC 07, p. 303, 2007.

[17] Caida, “Performance Measurement Tools Taxonomy.”

doi: 10.2313/NET-2011-05-2_07Seminar FI & IITM WS2010/2011,
Network Architectures and Services, May 2011

53

http://drum.lib.umd.edu/handle/1903/8900

[Online]. Available: http:
//www.caida.org/tools/taxonomy/performance.xml

[18] L. Cottrell, “Network Monitoring Tools,” 2010.
[Online]. Available: http:
//www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html

doi: 10.2313/NET-2011-05-2_07Seminar FI & IITM WS2010/2011,
Network Architectures and Services, May 2011

54

http://www.caida.org/tools/taxonomy/performance.xml
http://www.caida.org/tools/taxonomy/performance.xml
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html

	Innenleben-copy 47
	Innenleben-copy 48
	Innenleben-copy 49
	Innenleben-copy 50
	Innenleben-copy 51
	Innenleben-copy 52
	Innenleben-copy 53
	Innenleben-copy 54

