
Dissertation
Network Architectures
and Services
NET 2011-05-1

An Execution Trace Verification Method
On Linearizability

Kristijan Dragicevic

Network Architectures and Services
Department of Computer Science
Technische Universität München

TECHNISCHE UNIVERSITÄT MÜNCHEN

Institut für Informatik

Lehrstuhl für Netzarchitekturen und Netzdienste

An Execution Trace Verification Method on

Linearizability

Kristijan Dragičević

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Georg Carle

2. Univ.-Prof. Dr. Marcel Waldvogel

Universität Konstanz

Die Dissertation wurde am 24.01.2011 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 04.03.2011 angenommen.

Cataloging-in-Publication Data
Kristijan Dragicevic
An Execution Trace Verification Method on Linearizability
Dissertation, May 2011
Network Architectures and Services, Department of Computer Science
Technische Universität München

ISBN: 3-937201-20-3
ISSN: 1868-2634 (print)
ISSN: 1868-2642 (electronic)
Network Architectures und Services NET 2011-05-1
Series Editor: Georg Carle, Technische Universität München, Germany
© 2011, Technische Universität München, Germany

Kurzfassung:

Multicore Prozessoren sind inzwischen zur Standardarchitektur für reguläre

Prozessoren geworden. Folglich sind Programmierer immer mehr dazu ange-

halten, optimierte pa-rallele Software zu entwickeln. Die Verifikation von par-

allelem Code ist sehr komplex, was neue praktikable Verifikationsmethoden

notwendig macht. Es fehlt immer noch an Tools, welche komplexe parallele

Programme verifizieren können. Diese Dissertation stellt eine Methode vor,

welche Ausführungen von Programmen testet und zeigt, dass diese Methode

bereits wertvolle Resultate für den Anwendungsprogrammierer liefert. Die Ve-

rifikationsmethode wird verwendet um zu beweisen, dass ein Programm-Trace

linearisierbar ist. Darüberhinaus werden einige nützliche allgemeine Eigen-

schaften von diversen Algorithmen herausgegriffen, welche die praktische Re-

alisierung dieser Methode optimieren können. Ferner liefert diese Arbeit ein

Fallbeispiel anhand von Priority Queues um zu zeigen, wie diese Methode

angewendet werden kann. Das Fallbeispiel zeigt, dass praktikable Resultate

mithilfe dieser Methode erzeugt werden können.

Abstract:

As multicore processors have become the standard architecture for general-

purpose machines, programmers are required to write software optimized for

parallelism. Verifying parallel code is very complex, and new practical methods

for verification are therefore very important. Tools that provide verification for

complex parallel code are still missing. This dissertation introduces a method

for testing the execution of code and shows that this method already provides

valuable results for the application programmer. The verification method is

used to prove whether a program trace is linearizable. In addition, some use-

ful properties of algorithms are highlighted by which a practical use of the

method can be optimized. Furthermore, this work provides a case study on

priority queues of how this method can be applied. Our case study shows that

practicable results can be obtained with this method.

Acknowledgment

First of all I want to thank my Ph.D. supervisor Prof. Dr. Georg Carle for

his steady support and encouragement during all the time of this doctorate.

I also want to express my great gratitude to my supervisor at IBM Research,

Dr. Daniel Bauer, who helped me at any time and who was always available for

fruitful discussions. Many of the ideas in this thesis have been developed by the

inspirations that were provided by him. Further, I want to thank Prof. Dr. Mar-

cel Waldvogel for being the second supervisor and for his valuable comments

and suggestions. I thank my managers at IBM Research, Dr. Andreas Kind and

Dr. Paolo Scotton, for their efforts in all organizational aspects. I also thank

my team colleagues Dr. Luis Garcés-Erice and Dr. Sean Rooney, for valuable

discussions which have given me a wider horizon of the topic. Last, I want to

thank my colleagues Florian Auernhammer, Phillip Frey, Marc Ph. Stoecklin,

and Jon Rohrer for forming an enjoyable environment over the last three years.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 A Short History of Parallel Computing 2

1.3 The Challenge of Verification of Parallel Implementations 6

1.4 Claims . 8

1.5 Outline . 10

2 Concurrent Programming 11

2.1 Classification of Parallel Systems 11

2.2 Memory Model . 12

2.3 Mutual Exclusion Locks . 13

2.3.1 Coarse-Grained Locking 14

2.3.2 Fine-Grained Locking . 14

2.4 Semaphores . 15

2.5 Monitors . 16

2.6 Non-Blocking Synchronization 16

2.6.1 Non-Blocking Properties 17

2.6.2 Non-Blocking Primitives 18

2.6.3 The ABA-Problem . 20

2.7 Software Transactional Memory 21

2.8 Concurrent Priority Queue Examples 23

xii Contents

2.8.1 Lock-Based Priority queues 23

2.8.2 Hand-Crafted Lock-Free Priority Queue Example 25

2.8.3 Comparison of the Performance of Lock-Free and Lock-

Based Approaches . 25

2.8.4 Naive STM-Based Concurrent Binary Heap 27

2.8.5 Fine-Grained STM-Based Concurrent Heap 29

2.8.6 Comparison of the Performance of the Naive and Fine-

Grained STM-Based Binary Heap 32

2.9 Summary . 34

3 Correctness Reasoning 35

3.1 Correctness Fields . 35

3.2 Correctness Criteria . 36

3.2.1 Correctness Reasoning 37

3.2.2 Arbitrary Correctness 39

3.2.3 Weak Consistency . 40

3.2.4 Causal Consistency . 41

3.2.5 Sequential Consistency 42

3.2.6 Serializability . 44

3.2.7 Linearizability . 45

3.3 Related Work . 47

3.3.1 Formal Proof-Based Static Code Analysis 47

3.3.2 Model Checking . 49

3.3.3 Simulation and Testing Techniques 51

3.3.4 Chosen Verification Approach 52

3.4 Summary . 52

Contents xiii

4 Methodology 53

4.1 Outline of the Execution Trace Verification Method 54

4.2 Basic Program Specification . 57

4.2.1 Abstract Operation Specification 57

4.2.2 Difference Between Value and Object Consideration . . . 58

4.2.3 Example: Specifying an Insertion 58

4.2.4 Defining an Initial State 60

4.2.5 Example: Specifying a Removal of an Object 61

4.2.6 Example: Specifying a Modification 61

4.2.7 Abstract Program Specification 62

4.3 History . 62

4.4 Metastate . 64

4.4.1 Common State . 64

4.4.2 From States to Metastates and Back 65

4.4.3 Basic Structure . 66

4.5 Proving Linearizability . 67

4.5.1 Basic Idea . 68

4.5.2 Event Functions . 69

4.5.3 Extension of Event Functions 70

4.5.4 The History Verification Theorem 71

4.6 Metastate Representation . 74

4.6.1 Permutability of Operations 74

4.6.2 Equivalence Classes . 77

4.6.3 Implied Metastates . 78

4.7 Advanced Operation Specification 81

4.7.1 Plain Metastate Transition 81

4.7.2 Redundancy . 83

4.7.3 Specifying a Removal: Exploiting Redundancies 85

xiv Contents

4.7.4 Semi-Redundancy . 86

4.7.5 Exploiting Semi-Redundancies in a Specification 89

4.8 Additional Special Cases . 90

4.9 Summary . 91

5 Implementation 93

5.1 Framework . 93

5.1.1 Building a History . 94

5.1.2 Preprocessing the History 96

5.1.3 Verifier Harness . 97

5.1.4 Specifier Interface . 99

5.2 Operation Handlers . 100

5.2.1 End Event Handler . 100

5.2.2 Start Event Handler . 101

5.3 Optimization . 103

5.4 Applicability . 104

5.5 Summary . 105

6 Evaluation 107

6.1 Description of the Experiments 107

6.2 Brute-Force . 109

6.2.1 Preprocessing the History 109

6.2.2 Algorithm . 110

6.3 Performance Results . 115

6.3.1 Horizontal Analysis . 115

6.3.2 Vertical Analysis . 119

6.3.3 Diagonal Analysis . 121

6.3.4 Verification of Incorrect Histories 121

6.4 Other Issues . 121

Contents xv

6.4.1 Space Requirements . 123

6.4.2 Error Detection Effectiveness 123

6.4.3 History Shape . 126

6.5 Summary . 126

7 Summary & Outlook 129

7.1 Contributions . 129

7.2 Outlook . 133

References 135

Index 143

List of Figures

1.1 Evolution of the clock cycle performance for Intel processor ar-

chitectures of Table 1.1 . 4

1.2 Evolution of the transistor number per chip for Intel processor

architectures of Table 1.1 . 4

2.1 General idea of locking approaches 14

2.2 The schema of a deadlock . 15

2.3 Amdahl’s and Gustafson’s laws 19

2.4 Example for the ABA-problem 21

2.5 Illustration of a skip-list . 24

2.6 Comparison of the lock-free skip-list, Hunt heap and coarse-

locked binary heap . 26

2.7 Inserting an element into a binary heap 27

2.8 Deleting the element of highest priority from a binary heap . . . 28

2.9 Deleting the element of highest priority from the STM-based

binary heap . 31

2.10 Comparison of the different STM-based binary heaps and a lock-

based reference implementation 33

3.1 Examples for execution histories 38

3.2 Examples for causally consistent and causally inconsistent histories 42

3.3 A sequentially consistent history 43

xviii List of Figures

3.4 A sequentially consistent history with critical sections 44

3.5 Examples for linearizable histories with assigned linearization

points . 46

3.6 Schema of a program described as a directed graph 50

4.1 Flow chart of the verification method 55

4.2 General idea of the effect of event functions 68

5.1 Schema of the design/verification cycle for the use of the intro-

duced method . 95

5.2 Verifier harness schema . 98

5.3 Logical scheme of MetaStates in the implementation 99

6.1 History example for the brute-force illustration 111

6.2 Resulting graph from Table 6.2 111

6.3 Execution tree resulting by applying the brute-force approach

for Table 6.2 . 114

6.4 Horizontal chart for 2 threads of the STM implementation (ver-

ification time) . 116

6.5 Horizontal chart for 2 threads of the STM implementation (total

time) . 116

6.6 Horizontal chart for 2 threads of the locking implementation

(verification time) . 117

6.7 Schema of the structure of histories produces by the STM-based

implementation . 117

6.8 Schema of the structure of histories produces by the lock-based

implementation . 117

6.9 Vertical chart for 200k operations of the locking implementation

(verification time) . 120

6.10 Vertical chart for 300k operations of the STM implementation

(verification time) . 120

List of Figures xix

6.11 Diagonal chart for the locking implementation (verification time) 122

6.12 Diagonal chart for the STM implementation (preprocessing time)122

6.13 Probability for finding errors with different assumptions 125

List of Tables

1.1 Issue dates of Intel processors 3

1.2 Number of possible instruction sequences per constellation . . . 7

2.1 Flynn’s taxonomy . 12

4.1 Types and their initial values 60

4.2 A history of two insert operations 65

4.3 State changes during the execution of the operations in Table 4.2 65

4.4 Metastate changes during the execution of the operations in

Table 4.2 . 67

4.5 Metastates from Table 4.2 for comparison 78

4.6 Reduced metastates from Table 4.5 due to permutability 78

4.7 Metastates from Table 4.6 for comparison 80

4.8 Further reduced metastates from Table 4.7 due to implied metas-

tates . 80

4.9 A history of two insert and two remove operations 82

4.10 State evolution derived from Table 4.9 82

4.11 Plain metastate evolution derived from Table 4.9 82

4.12 Metastates from Table 4.11 for comparison 87

4.13 Metastate evolution derived from Table 4.9 modulo redundancies 87

4.14 A history of an insert and a changeKey operation 87

4.15 Plain metastates derived from Table 4.14 88

xxii List of Tables

4.16 Metastates from Table 4.15 for comparison 90

4.17 Metastates derived from Table 4.14 without semi-redundancies . 90

5.1 The format of log entries in a history 96

5.2 A history of operations sorted according to event times 96

6.1 Test cases for the verified histories 108

6.2 The format of log entries in a history 111

6.3 Values of Pdetect for different a’s 125

1. Introduction

This dissertation addresses the problem of finding a practical solution for check-

ing today’s parallel implementations of complex data structures and systems

against the linearizability criterion. Linearizability is a significant property of

parallel output because it matches precisely the idea of how a transfer from

a sequential program to a parallel one should be done intuitively. Solving

this problem in a practical way increases the quality and efficiency of code

development.

The proposed solution provides a formalism of how parallel implementations

can be specified via invariants and checks the program against the invariants

afterwards. The verification is performed by a generic verifier that conducts

the verification process on actual executions of an input/output automaton.

This chapter describes the general background and motivation for this work.

After starting with the motivation, the challenge and significance of the field

of verification is explained. After that, the contribution of this thesis is stated

and the work that forms the base of it is described. Finally, the structure of

the entire document is outlined.

1.1 Motivation

Since the development of computer systems, the problem of programming er-

rors has always been present. There are different degrees of risk if a program

is malfunctioning. In many cases these so-called “bugs” are merely irritating,

but sometimes they can be dangerous depending on the application. Thus,

producing correct programs is of high importance.

2 1. Introduction

For decades, researchers have met the challenge of verification of sequential

programs. Home computers and business machines were running on single-

core processors. Thus, most applications were naturally sequential programs

because there was no gain in making programs executed with parallel threads.

Today, parallel systems are realized even in home computers and thus it is

urgent to have parallel code exploiting the potential of todays multi-core hard-

ware.

As a consequence, many of the sequential algorithms will have to be adapted to

the requirements of multi core architectures in order to scale well on such sys-

tems. Otherwise, software will not take any advantage of the newly engineered

parallel processors. The design of parallel software is especially challenging for

concurrently accessed and modified data structures because mechanisms that

avoid inconsistencies are required. These mechanisms go along with additional

overhead and complexity. Consequently, it is also urgent to have verification

tools for concurrent programs.

No matter which approach is chosen for tackling the issue of implementing a

parallel program, there still remains the question whether the implementation

or algorithm is actually correct. Not only designing, but also writing correct

and efficient parallel code is hard in most cases. Even if the design of a parallel

algorithm is sound on paper, it is not assured whether the implemented code

itself is correct due to the complexity of such algorithms. Hence, it is very

important to have a tool or method that is capable of delivering a perception

for its correctness. This dissertation proposes a technique, that is already

applicable and therefore is of practical use to today’s programmers.

1.2 A Short History of Parallel Computing

Until about the year 2000, the operating clock frequency of CPUs increased

comparably to Moore’s law for transistors. Generally speaking, Moore’s law

states that the number of transistors on an integrated circuit doubles every

two years. This law is not really a law but rather a rule of thumb that is

used in business practice and is also applied to other performance units like

clock frequency from time to time. Figure 1.1 shows the evolution of clock

1.2. A Short History of Parallel Computing 3

Table 1.1: Issue dates of Intel processors

Intel arch. 4004 8008 8080 8086 80286 80386 80486 Pentium
Release 1971 1972 1974 1978 1982 1985 1989 1993

Intel arch. Pent. II Pent. III Pent. IV Itanium 2 Core 2 Core i7
Release 1997 1999 2000 2002 2006 2008

frequencies over the past decades for the Intel processors in Table 1.1 and

compares it to a line that depicts a double up for every 30 months.

The clock frequency was the main performance criterion for CPUs. However,

physical limits, like thermal issues and architectural concerns, have caused a

shift in processor design. Nevertheless, the number of transistors per chip still

increases according to Moore’s law with a double up for every two years as

illustrated in Figure 1.2. Chip designers take advantage of this development

by increasing the number of processing cores on a single chip. Furthermore,

support for hardware threads allows for additional parallelism and decreases

the cost of context switches of software threads. This trend means that writ-

ing efficient parallel programs will be the main ambition for advanced future

software technologies, and not tuning single-thread performance as it has been

until now.

However, parallel programming already exists since the 1950’s but the execu-

tion of parallel code was realized by distributed systems or symmetric mul-

tiprocessors. These systems mainly dealt with data parallelism which means

that data is divided up into chunks that are treated by different processors

executing the same code. These parallel applications were specialized, scien-

tific programs that did not use shared memory but rather message passing

approaches.

Todays’s parallel systems deal not only with simple data parallelism but also

task parallelism. Task parallelism means that a certain task is divided up into

sub-activities which are executed by different threads or processors. Therefore,

many possibilities for thread synchronization have been invented. One way of

concurrency handling is to use message passing as previously mentioned. The

prevalent way is to use locking for synchronization between threads. Coarse-

4 1. Introduction

Figure 1.1: Evolution of the clock cycle performance for Intel processor archi-
tectures of Table 1.1

Figure 1.2: Evolution of the transistor number per chip for Intel processor
architectures of Table 1.1

1.2. A Short History of Parallel Computing 5

grained locking denotes the protection of the data structure as a whole by one

single lock. Whereas, fine-grained locking is a method where only parts of the

data structure are protected by a set of locks. Locks serialize accesses to data

structures, allowing at most one single thread to read or manipulate the pro-

tected part. All other threads are blocked if they try to access the locked data

structure. It is a well-known fact that solutions using coarse-grained locking

lack scalability for increasing numbers of threads as they prevent parallel exe-

cution. On the other hand, approaches with fine-grained locking often prove to

be complex and error-prone in both design and implementation. Moreover, the

scalability of this method is still limited due to the sequential nature of locks

in general and their acquisition and release costs. Readers and Writers locks

are an improvement concerning the flexibility of locks such that there might be

more reading threads. Nevertheless, in principle they still have similar lacks as

classical locks.

One attempt for overcoming the disadvantages of lock-based methods is to

use lock-free approaches which typically implement concurrency control using

atomic read-modify-write instructions such as compare-and-swap (CAS), test-

and-set, or fetch-and-add (FAA) that are provided by modern processors. CAS

compares the contents of a memory location to a given value and, if successful,

modifies the content. Test-and-set returns the current value of a memory

location and updates it by the new value. FAA increases the content of some

memory location by one. All three operations are executed atomically by the

processor. It should be mentioned that some atomic lock-free operations can

be used for forming lock-like constructs.

Another attempt for avoiding locks is to use the new programming paradigm

transactional memory (TM, [HeMo93]) or software transactional memory (STM,

[ShTo95]) as a technique for synchronization. This innovative paradigm gives

the programmer a more abstract view of the program and its resources. STM

and TM take over concurrency handling so that the programmer does not have

to deal with the synchronization details. They use an optimistic approach in

which the updates are done before the validation of results is conducted. If

the results are invalid due to a conflict with a concurrent thread, they are

discarded. Otherwise, the results are committed and thus, made visible to all

6 1. Introduction

other threads. Unfortunately, TM and STM have still a long path to go be-

fore becoming feasible for programmers to use. Firstly, there are performance

problems due to the overhead generated by the generic concurrency handling.

Secondly, it is not as simple to use as desired for programmers.

1.3 The Challenge of Verification of Parallel

Implementations

Verification of code is a broad area. There are many different aspects to verify

and there are different phases during development for design analysis. The

earliest phase possible for code analysis is before the first line of code has been

actually written. A formal analysis of the design on paper can be accomplished

for verifying that the principle of the implementation idea is correct. The

next phase is during compile time. A compiler that issues warnings is already

a supporter for the programmer concerning correctness. However, there are

much more complex verifiers. Static source code analysis is one possibility

that has been realized by a lot of proprietary and research tools [FLLN+02,

Cous07, Vola06, ABDD+07]. The latest point in time when verification may

take place is post-mortem. In this case, the code is simulated or executed

and the produced output is analyzed. This is an approach which is commonly

chosen for hardware development as in [GoYS04].

Now, the big challenge when verifying parallel programs is that it is not simply

possible to check whether the execution of a certain line of code leads or would

lead from one state to a specific other state. There is a context to be considered

in the sense that there are interferences from other threads of execution. It

is not easy to determine at which specific state a system is at a precise point

in time. Often it is not even possible to determine a definite state. This

leads to a huge state space for parallel programs which makes verification

very complex. The following simple example shall exemplify the complexity of

concurrent programs compared to a sequential program with increasing number

of instructions.

A program is essentially a sequence of instructions. Let us consider an in-

struction sequence I = (i1, i2, ..., in) without branches. From an abstract point

1.3. The Challenge of Verification of Parallel Implementations 7

Table 1.2: Number of possible instruction sequences per constellation

2 instructions 3 instructions 4 instructions

1 thread 1 1 1
2 threads 6 90 2520
3 threads 20 1680 369600
4 threads 70 34650 ≈ 6.3 · 107

of view the processor will first execute i1 then i2 and at last in. Although,

a single processor might reorder instructions for performance reasons it still

ensures that the outcome of the program is the same as if the instructions had

been executed in the precise sequential order. Consequently, there is only one

sequence to be verified for correctness namely I.

Now, if we have two concurrent threads T1 and T2 executing the same sequence

each there are already
(
2·n
n

)
possibilities of different sequences due to overlaps.

This results in a factorial growth of possibilities with increasing number of

threads which is an extremely disadvantageous effect. In the case n = 2 there

are already 6 possible sequences. These are

1. T1(i1), T1(i2), T2(i1), T2(i2)

2. T1(i1), T2(i1), T1(i1), T2(i2)

3. T1(i1), T2(i1), T2(i2), T1(i2)

4. T2(i1), T1(i1), T2(i2), T1(i2)

5. T2(i1), T1(i1), T1(i2), T2(i2)

6. T2(i1), T2(i2), T1(i1), T1(i2)

where Ti(x) means thread Ti executes instruction x. The general formula for

k threads and n instructions where k, n > 1 is

k∏
i=2

(
i · n
n

)
(1.1)

8 1. Introduction

Table 1.2 lists the number of possible instruction sequences for a given number

of threads and a number of atomic instructions executed by all threads. For 4

threads executing 4 atomic instructions each there are about 63 million different

sequences possible that have to be covered in a complete analysis of the parallel

program. These numbers evidence that analyzing concurrent programs is a

hard challenge.

There are different correctness criteria like sequential consistency [Lamp79] or

linearizability [HeWi90]. Depending on the correctness criterion performing a

verification can vary in complexity. This document is addressing the lineariz-

ability correctness criterion which takes timing issues into consideration. It is

well-known that this criterion cannot be proved trivially.

1.4 Claims

At the moment the only practical solution for verification of parallel programs is

to do a testing or simulation approach. This thesis demonstrates a method and

a tool for a systematic execution analysis of test runs of a parallel program for a

non-trivial example. This work covers verification of high-level data structures

like priority queues, lists and sets.

Currently, the problem of verification is that the more precise a verification is,

the less it is practical. Verification approaches range from very complex but

not generally applicable ones over very abstract and thus not precise ones to

concrete and generally applicable but not waterproof ones.

The introduced method performs a verification of concrete parallel code by

managing a set of sets of operations. This set describes all possible states of

a program at a certain point of execution time. In this thesis the focus is

on the verification of data structure implementations. A data structure is a

particular arrangement of data for efficient manipulation and accessibility. The

contributions of the dissertation are stated in the following.

1. New state representation

The brute-force verifier for parallel programs of today usually operate on ob-

jects. This lowers the flexibility of these kind of applications because there

1.4. Claims 9

exist numerous data structures that are based on primitive values instead of

objects. Therefore, another view on the state of a system is introduced by the

metastate construct which also allows for operating on primitive values.

2. Metastate compression

In state exploration algorithms, one of the biggest problems is the state space

explosion for parallel programs. Therefore, the newly introduced metastate

construct is elaborated for potential compression of its representation such

that there is a huge gain for the verification performance in using it.

3. New verification methodology

The core work is a formal description of the applied verification methodology.

It proves the validity of the method. It is the first non-brute-force method that

can be used for linearizability checks which does not need any backtracking

within the verification procedure whereas brute-force approaches go back and

forth in the execution stream.

4. Generic verifier framework

The implementation of a generic verifier framework provides interfaces that

allow a wide range of use cases to be implemented and execute a verification

against it. It also gives a generic base implementation that can be used by

verifiers using this method. This generic verifier framework is the first step

towards a realization of the introduced methodology.

5. Foundation for systematic state pruning

There is given concrete implementations for two different use cases that have

already been verified before which are the list and the set. However, the verifi-

cation tools implemented here are more generic than the known ones because

it can operate merely on keys of elements whereas other approaches needed

keys and unique values of elements in collections. Furthermore, this method

does not require any backtracking which increases the chance for finding coding

errors.

10 1. Introduction

6. High-performance verification of the priority queue use case

Implementations for the priority queue use case have never been verified before.

The implemented tool is the first verifier applied for priority queues and shows

a high performance compared to a brute-force approach.

7. Fine-grained STM-based priority queue

A case study of a sophisticated software transactional memory-based data

structure is given. This case study shows an example for a priority queue

which made verification necessary for the development of a parallel implemen-

tation especially in the case of STM.

1.5 Outline

Chapter 2 describes the basic approaches for today’s parallel programs and

motivates the thesis work. There are many implemented algorithms for which

a verification is necessary. Here some of them are illustrated and it is shown

how and why testing and simulation is useful.

Chapter 3 introduces related work and places this work in the area of correct-

ness reasoning. It also explains why the approach of the thesis work has been

chosen.

Chapter 4 elucidates the formalism that forms the core of the thesis work.

Furthermore, a proof that shows that the method provides the expected results

is provided.

The implementation issues are depicted in chapter 5. Not only the usage of

the tool is described, but also optimizations that have been implemented for

an efficient processing of the verification.

Chapter 6 contains a set of case studies in which this method has been applied.

It also includes statistics about performance and optimization effects.

Finally, chapter 7 concludes and summarizes the dissertation and gives an

outlook of what could be done as future research.

2. Concurrent Programming

The term concurrent programming denotes the idea of having multiple threads

of execution that perform tasks in parallel. Usually a program is executed by

a single thread of execution. If a task can be executed by multiple threads

in parallel this can be realized by a parallel program. The term concurrent

programming refers to the implementation of parallel code.

This chapter provides background information about concurrent programming

and its issues. First, it starts with describing the different classes of parallel

systems. Then, it introduces the memory model. After that, it explains differ-

ent mechanisms as locks, semaphores, monitors, non-blocking and STM-based

synchronization with examples of their realization. During the development

phase of these examples the verification method introduced in this dissertation

has been used for assisting the implementation of them.

2.1 Classification of Parallel Systems

Flynn [Flyn72] introduced a simple classification of parallel systems summa-

rized in Table 2.1. He distinguishes among systems that use single or multiple

instruction sets, and single or multiple data sets.

SISD The single-instruction-single-data class denotes the class of sequential

programs. For one instruction set applied on a single data set there is no

more than a single processing unit necessary.

SIMD Single-instruction-multiple-data summarizes those programs that con-

sist of threads performing the same instructions on different data sets

12 2. Concurrent Programming

Table 2.1: Flynn’s taxonomy

Single Instruction Multiple Instructions

Single Data SISD MISD
Multiple Data SIMD MIMD

each. Array processing is a typical example where SIMD systems are

used. Problems which can be solved by data parallel architectures are

often called embarrassingly parallel .

MISD Multiple-instruction-single-data includes parallel programs where its

threads perform different instructions on the same data. It is a rather

uncommon class in practice.

MIMD In a Multiple-instruction-multiple-data system threads perform dif-

ferent instructions on different data sets. Distributed systems are typical

MIMD systems which operate on distributed but also on shared mem-

ory. Computer systems with a multi-core processor can also run MIMD

programs which they do on shared memory.

A technical report of a group around David Patterson at the University of

California, Berkeley [ABCG+06] summarizes the main problems of significance

to be tackled by concurrent programs. Some of them are simple to solve because

it is easy to split them up into distinct non-overlapping partial problems that

can be solved by SIMD systems. Other problems need many accesses on shared

memory and thus the different tasks perform a lot of overlapping and interfering

operations. In this case, it must be assured, that all accesses have been made

based on a consistent view of the memory among all threads. Since there

are numerous substantially different software and hardware architectures, they

have to specify a memory model for an understanding of what a consistent

view of memory is.

2.2 Memory Model
A memory model defines the assumptions that a compiler is allowed to make

when compiling code for systems using segmented memory. Memory segmen-

tation is usually implemented for memory protection in such a way that there

2.3. Mutual Exclusion Locks 13

is program, data and stack segment so that for example only instructions are

read from a program segment but no data.

Memory models are necessary for performing compiler optimizations in parallel

programs especially when shared variables are involved. A compiler optimiza-

tion influences the order of read and write operations of shared and unshared

variables which can lead to race conditions. A race condition is a situation

where the result of an instruction sequence depends on the timing of its instruc-

tions. Therefore, a compiler may not optimize concurrent programs without a

memory model.

In Java for example, the memory model defines memory barriers that are

realized by well-defined synchronization operations or the behavior of a volatile

variable [GoJS96]. The idea of race conditions is entirely defined over the order

of operations with respect to these memory barriers. Reordering instructions

in a code block without synchronization barriers is assumed to be safe by the

compiler.

In the following sections a selection of concurrent programming paradigms for

synchronization and concurrency control are described. These paradigms are

synchronization with locks, semaphores, monitors, lock-free synchronization,

and transactional memory.

The inducement for this dissertation has been the work for a survey of concur-

rent priority queues [DrBa08]. As an exemplification of the different synchro-

nization mechanisms some of the investigated queues will be used to produce

verification cases for this dissertation.

A priority queue is a data structure that defines at least two operations which

are insert and remove. An insert operation inserts an element into the queue

with a certain priority. A remove operation fetches the element of highest

priority in the queue and deletes it.

2.3 Mutual Exclusion Locks

The classic approach for concurrency control is using mutual-exclusion locks

or mutex for short to turn non-concurrent algorithms into concurrent ones

(Figure 2.3). There are two classes of lock-based synchronization.

14 2. Concurrent Programming

(a) Coarse-grained locking (b) Fine-grained locking

Figure 2.1: General idea of locking approaches

2.3.1 Coarse-Grained Locking

Coarse-grained locking means that a single global lock is used that regulates

access to a data structure as illustrated in Figure 2.1(a). By doing this, it

is ensured that only one thread at a time is allowed to manipulate the data

structure. This method is the least complex solution when trying to implement

concurrent programs. However, real parallelism is avoided because the accesses

are sequentialized. Consequently, the full potential of multi core architectures

is not exploited.

2.3.2 Fine-Grained Locking

Another opportunity is to use fine-grained locking which is schematized in

Figure 2.1(b). In this approach, not the entire data structure is protected by a

lock, but different critical parts of it. Thus, for performing a complex operation

there is a sophisticated pattern necessary that gives a rule in which order the

locks have to be acquired. Due to the complexity of the application of fine-

grained locking there are a number of known problems with this approach. For

example, convoying is the undesired effect that occurs when a set of threads of

execution try to acquire repeatedly for the same lock. The consequence is that

performance is lowered because all threads execute similar code fragments and

thus hinder each other frequently from progressing.

2.4. Semaphores 15

Figure 2.2: The schema of a deadlock

Another well-known problem is the occurrence of deadlocks [Zö83]. Threads

are in a deadlock when they are waiting for each other to release a resource

but never do. In a thread/resource graph, a deadlock can be identified by a

cycle of access arrows as in Figure 2.2. In the Figure each thread illustrated

as a circle is waiting for a resource represented by a square which is hold by

another thread. Hence nobody is making any progress and the program is

stuck. Deadlocks are very difficult to debug because it is often hard to identify

the constellation that results in a deadlock.

There are different degrees of granularity for fine-grained locking approaches.

The transition from coarse-grained locking to fine-grained locking is smooth.

2.4 Semaphores

A semaphore is a counter for a set of available resources unlike a mutex which

is essentially a flag of a single resource. Dijkstra developed semaphores as a

solution to preventing race conditions [Dijknd, Dijk68]. Nevertheless, they do

not prevent resource deadlocks.

The value of a semaphore is the number of free resource units. If there is only

one resource being managed, the semaphore reduces to a binary semaphore

with values 0 or 1 which could be also realized by a mutex.

16 2. Concurrent Programming

There are two operations for semaphores. During the so-called P operation

the process busy-waits or sleeps until a resource is available. If a resource

is available it is assigned to the process. The V operation makes a resource

available after the process has finished using it. Both operations must be

atomic.

From a logical point of view, the binary semaphore is the same as a mutex, in

principle. However, there maybe platform dependent differences in their real-

ization. As mutexes, semaphores do not avoid deadlocks because of following

possible situation:

there are n resources of A and m resources of B. n and m different threads

holding one resource of A and B each, respectively. Now, if the n threads are

waiting for a resource of B to be released whereas the m threads are waiting

for a resource A to be released, there is a deadlock situation.

2.5 Monitors

As mutexes and semaphores, monitors realize synchronization among threads

by mutual exclusion. Monitors were invented by Hoare and Hansen [Hoar74,

Hans75]. The concept also provides the possibility of threads temporarily

giving up exclusive access and waiting for some condition. If the condition

is met, the thread regains access and resumes its task. Furthermore, monitors

have a mechanism for signaling other threads that a condition has been met.

Monitors are a higher level concept so that programmers do not need to handle

synchronization primitives explicitly. They are often used in object-oriented

programming language like Java.

2.6 Non-Blocking Synchronization

Another class of algorithms is known as non-blocking algorithms. As the name

indicates, they refrain from using locks or other blocking instructions and in-

stead are based on atomic lock-free instructions as the basic means of concur-

rency control. There have been a number of basic strategies applied for non-

blocking algorithms like recursive helping or versioning which will be explained

later in section 2.8. Despite the fact that there exist simple implementation

2.6. Non-Blocking Synchronization 17

examples for linked-lists or FIFO-queues, a common problem when avoiding

locks is the high complexity of these kind of implementations.

2.6.1 Non-Blocking Properties

The main advantage of non-blocking algorithms in comparison to blocking

algorithms is that they have non-blocking properties which guarantee a certain

degree of liveness of the implementation in the sense that a stalled process will

not make other processes stall. There are three properties of importance when

reasoning about non-blocking implementations.

Wait-freeness guarantees that every concurrent operation completes within

bounded time. Wait-freeness is of theoretical importance, but most algo-

rithms of practical relevance are not wait-free owing to complexity and

efficiency problems.

Lock-freeness states that the system as a whole will always make progress

while it is possible that an individual operation is blocked by other con-

current operations. For most practical systems, lock-freeness is a suffi-

cient condition. It ensures overall progress.

Obstruction-freeness is the weakest property [Herl03]. It states that an

operation completes in bounded time if it is executed in isolation, for

example as when no concurrent operations are executed. Obstruction-

free algorithms do not guarantee progress, and livelocks are possible.

The term livelock is usually only used in the context of optimistic algorithms,

especially software transactional memory. Optimistic algorithms perform ac-

tions with the option that all effects might be discarded afterwards. Having this

in mind, a livelock is a situation when a group of threads repeatedly acquire

resources from each other and thus provoke abortions of the other threads.

The aborted thread will discard its actions and again reacquire the resource

from the competing thread. If the action takes a relatively long time, none of

the threads is able to complete its actions and consequently they are aborting

each other forever.

18 2. Concurrent Programming

This is not a desired behavior. However, when the synchronization mechanism

is combined with a contention manager that resolves livelocks by for example

exponential backoff, obstruction-free algorithms provide a simpler alternative

to lock-free or wait-free algorithms as has been shown in [FLMS05, Herl03].

2.6.2 Non-Blocking Primitives

Herlihy showed that atomic primitives, for example compare-and-swap (CAS)

or fetch-and-add (FAA), differ in their expressiveness [Herl88]. Some primitives

cannot implement a wait-free version of other primitives. This fact implies a

classification of atomic primitives.

The class with the most expressive atomic primitives are called universal. A

primitive is universal if it can be used to solve the general consensus problem

for n processes [FiLP85]. The consensus problem considers an asynchronous

system of potentially unreliable processes. The problem is to agree on a binary

value for the reliable processes.

One universal primitive is the CAS instruction. It was originally implemented

in IBM’s System/370 and is now supported by many modern multi-core pro-

cessors in hardware. Other processors implement for the same functionality

the load-linked/store-conditional (LL/SC) instruction pair. It can be used to

realize a CAS implementation [Alph96].

The reason why non-blocking instructions have been invented is that they do

not increase the size of sequential parts in a parallel programs when used as

blocking constructs like locks, semaphores and monitors naturally do. In the

best case, the increase of the performance Πn(P) of a program P would be

linear to the increase of the number n of processing cores

Πn(P) = Π1(P) · n (2.1)

However, in practice if shared memory is involved there is hardly any algo-

rithm that achieves this performance. The possible performance increase of

an algorithm on a parallel processor is described by Amdahl’s law [Amda67].

It states that the non-parallelizable part of the program limits the maximum

performance available from parallelization. Most problems typically consist of

2.6. Non-Blocking Synchronization 19

(a) Amdahl’s time efficiency for increasing
numbers of threads and constant workload

(b) Gustafson’s workload performance for
increasing numbers of threads and constant
time

Figure 2.3: Amdahl’s and Gustafson’s laws

parallelizable parts and sequential parts. If s is the ratio of all sequential parts

and p the ratio of all parallelizable parts of a program P then

Πn(P) = Π1(P) · 1

s+ p
n

, (2.2)

where of course p + s = 1. Note, that if s = 0 in equation 2.2 it reduces to

equation 2.1. Consequently, if 90% of a program is parallelizable, the maximum

performance increase is 10× according to Amdahl. Thus, it is desirable to have

as few sequential parts as possible and therefore use non-blocking approaches

because they avoid sequential parts in a program. However, it has to be noted

that Amdahl’s law considers problems of a fixed size. Figure 2.3(a) illustrates

the performance gain in time according to Amdahl.

Gustafson approached the issue from a different angle [Gust88]. He regarded

problems of fixed time with variable workload sizes which results in

Πn(P) = Π1(P) · (p · n+ s) (2.3)

Here, the performance gain is expressed by the additional workload that can be

processed in the same time for increasing numbers of processors. An example

where Gustafson’s law can be applied is a raytracer in 3D image modeling.

Each additional processor can be used to refine the picture of the model by

increasing the number of pixels or the recursion depth for more precise re-

20 2. Concurrent Programming

sults. Figure 2.3(b) shows the performance increase in workloads according to

Gustafson. Nevertheless, it is worthwhile to keep the sequential parts as low

as possible in both cases.

2.6.3 The ABA-Problem

The so-called ABA-problem [Mich04] is one of the practical problems for non-

blocking implementations. The ABA-problem refers to the issue that a thread

T1 reads the value A from a certain address and the value is changed twice

by another thread T2 before T1 reads the value again. The intricate point is

that T2 changes the value first to B and then back to A. If T1 reads the value

after the two modifications of T2 without having read the values between the

write actions, then T1 is not aware of the fact that the value at the address has

already been modified. This sequence of value changes is troublesome when

using CAS, because this instruction cannot solve the ABA-problem but has to

be taken care of by the program designer.

The following example algorithm with a pointer illustrates the problem. In

the algorithm a thread reads a pointer and obtains the value from the pointed

memory address. Then, the thread performs computations and creates a new

value at another memory location based on the value read before. In the last

step, the pointer is changed with a CAS instruction from the old memory

address to the newly initialized memory location. If a conflict with another

operation executed by another thread occurs, the CAS instruction fails because

the pointer has changed in the meanwhile. The program notifies the failure of

the CAS instruction and hence, can react properly on it.

Now assume, a thread T1 reads the pointer in Figure 2.4(a) that points to a

memory address A storing value x. After reading the value, T1 performs com-

putations based on the assumption that the pointer refers to value x. Another

thread T2 also starts the operation and reads x. Now, T2 finishes its com-

putations and hence, erases value x and creates a new value y at address B.

Then, it changes the pointer to the new address B as shown in Figure 2.4(b).

However, before T1 even completes its own first operation, T2 starts a new op-

eration. This time it deletes value y and creates a new value z but accidentally

at the memory address A again. If T2 finishes the changing of the pointer as in

2.7. Software Transactional Memory 21

(a) Pointer points to address A with
value x

(b) Pointer points to address B with
value y; value at address A has been
deleted

(c) Pointer points to address A with
value z; value at address B has been
deleted

Figure 2.4: Example for the ABA-problem

Figure 2.4(c), before T1 can execute the last CAS instruction, T1 will change

the pointer again without value z ever being read!

The ABA-problem for pointers can be solved by careful garbage collection so

that a memory address is never reinitialized if there is still a thread using the

value at the location. Anyhow, the ABA-problem can occur in other settings

and must always be considered during the design of non-blocking implementa-

tions.

2.7 Software Transactional Memory

STM is a relatively new programming paradigm that has recently been an area

of intense research. The goal of STM is to provide atomicity for critical sections,

22 2. Concurrent Programming

with the possibility of discarding and retrying computations. A transaction is

a code block containing a critical section that must be executed atomically

with respect to other transactions.

A globally accessible variable or object where updates may be discarded is

called a transactional memory object or TM object for short. The accesses

to such an object are handled and coordinated by the underlying STM imple-

mentation. A transaction might be aborted during its execution or at the end,

after a final check, if a conflict occurred. If no conflict occurred, the changes

are committed and thus atomically made visible. Let us have a look at the

following code example.

1 x := 0 ;

2 y := 0 ;

3

4 atomic { | atomic {
5 i f (x == 0) | i f (y == 0)

6 y++; | x++;

7 } | }

In this example, there are two variables, x and y that are initialized to 0. Here,

x and y are TM objects. Now, if there exist critical code fragments, synchro-

nization is done by wrapping the fragments into atomic blocks as denoted in

the example. Hence, all the synchronization management is performed by the

underlying STM. If there was no atomic block wrapping of the two critical code

fragments, due to bad timing it might happen that a thread first executes the

check in line 5 on the left-hand side. Then another thread might execute the

check in line 5 and the incrementation of x in line 6, both on the right-hand

side. The first thread would not notice that the value of x has changed in

the meantime and still execute the incrementation of y. This would lead to

the undesired situation that both, x and y have been incremented, despite the

obvious intent of avoiding exactly this.

With the aid of STM, the second thread commits its result. The first thread

still increments y but now during validation of the operation (or rather trans-

2.8. Concurrent Priority Queue Examples 23

action as called in an STM context) the conflict with the operation of the

second thread is detected and the result is not committed. Instead the thread

will retry the entire atomic block and realize that in line 5, x is no longer 0

but 1.

One of the big challenges for STM is to realize a correct validation and commit

phase. There are many suggestions on how to realize STM to solve this and

other problems. On the one hand STM implementations can be lock-based

[Enna06, DiSS06, GSVW+09, SATHM+06]. On the other hand they can also

be non-blocking [Fras03, HaFr03, HLMI03, TMGH+09, ViIS05].

There are many identified issues with STM for example concerning isolation of

transactions and ordering of operations [SMATB+07]. Furthermore, in many

cases the use of STM simplifies the implementation but does not lead to better

performance than locking approaches. In this section, an example for a naive

STM-based priority queue implementation will be given and is compared to

a sophisticated fine-grained implementation. This example shows what kind

of modifications are sometimes necessary for obtaining a feasible performance.

Since the fine-grained implementation is one of the contributions of this dis-

sertation, it is explained in detail.

2.8 Concurrent Priority Queue Examples

The verifier implemented in this dissertation used several use cases of concur-

rent priority queues for verification. In the following a number of implementa-

tions of concurrent priority queues are described that use one of the previously

introduced programming paradigms each for showing how the use of the dif-

ferent synchronization mechanism can look like.

2.8.1 Lock-Based Priority queues

The coarse-lock approach for a priority queue uses a single global lock that

protects accesses to a binary heap. The global lock forces insert and remove

operations to be executed strictly sequentially. This is a very simple implemen-

tation because it has only to be ensured that the sequential implementation

of the binary heap is correct. Nevertheless it is a simple case study for the

verifier implemented in this dissertation.

24 2. Concurrent Programming

Figure 2.5: Illustration of a skip-list

Hunt et al. [HMPS96] present a refinement of the coarse-locked approach. It

uses mutual exclusion locks to protect the heap size variable as well as each

node in the binary heap. Consequently, Hunt’s fine-grained locking approach

increases parallelism. The heap size lock is only held at the beginning of an

operation. As soon as the heap size variable is updated and the necessary

initial locks for the operation are acquired, the heap size lock is released. The

insert and remove operations are similar to their sequential counterparts. Each

node that has to be modified is locked before executing the modification of its

content. Remove operations are considered to be of higher priority than insert

operations. The node’s locks acquired by a remove operation are not released

until the operation is completed.

In contrary, the insert operation releases its lock after every swapping of el-

ements, even if the swapping has not succeeded. Nodes are also tagged to

indicate whether a node is empty, valid, or in a transient state due to an

ongoing insert or remove operation. Using these tags, global consistency is

maintained while insert and remove operations can be executed in parallel.

Finally, the algorithm reduces contention during insert operations by spread-

ing out the insertion points of consecutive removes across disjoint sub-trees so

that conflicts between two insert operations occur as late as possible. Hunt

et al. call this the “bit-reversal” technique, which is basically the same idea as

the LR-algorithm [Ayan90].

2.8. Concurrent Priority Queue Examples 25

2.8.2 Hand-Crafted Lock-Free Priority Queue Example

Sundell and Tsigas present in [SuTs05] a fast lock-free priority queue that is

based on a sorted skip-list [Pugh90]. A skip-list is an extension of a linked-list

with additional references that act as short cuts as shown in Figure 2.5. These

short cuts allow for efficient searches comparable to binary trees. Short cuts

are randomized and follow a geometric distribution, based on the “level” of a

node. A node on level n contains n short cuts, a node on level 0 has no short

cuts and references its direct successor only.

One of the main problems with non-blocking list algorithms is that multiple

references have to be changed in a consistent way for each operation. The lock-

free skip-list achieves this by marking not only nodes but also the references

that point to nodes that are worked on. References are always changed starting

at level 0 up to level n in order to assure consistent changes. If a reference is

marked by a concurrent insertion, a helper function is invoked that completes

the operation that has been started by the other task. This helping strategy is

essential to achieve the lock-free property as it allows a task to continue even

though another task has unfinished work.

Sundell’s algorithm is lock-free and linearizable. The version of the algorithm

described in [SuTs05] is not quite as general as other implementations because

it only allows a single element per priority. However, there exists an acceler-

ated, commercial version of this algorithm by them that has been modified to

deal with this issue. For the verification tests, the version published in [SuTs05]

is used.

2.8.3 Comparison of the Performance of Lock-Free and

Lock-Based Approaches

Priority queues are often used at the core of schedulers. The performance of the

queue is a critical factor because bad or erratic performance affects scheduling.

Scalability in the number of threads is another property that is crucial for

concurrent algorithms. The three algorithms have been implemented in Java,

and the performance tests are executed on a Java 6.0 runtime environment on

a Linux SMP system.

26 2. Concurrent Programming

Figure 2.6: Comparison of the lock-free skip-list, Hunt heap and coarse-locked
binary heap

Figure 2.6 presents example results showing of the three example priority

queues described before. The scalability of the lock-free priority queue is ob-

viously higher than the scalability of the lock-based pendants. The priority

queues were initialized with 10,000 elements before the test started.

Each thread chooses randomly whether it inserts or removes an item. So

at some random point in time, there may be any number of insertions and

deletions executed concurrently which is only limited by the number of threads

initialized. In the case of an insertion, an item with random priority is put into

the queue. For a more realistic behavior, after each operation, there is spent a

time of 1 µs in local work.

These results motivate the use of lock-free instead of lock-based approaches for

multicore systems. For a detailed analysis of the three queues presented here

and additional queue examples refer to [DrBa08].

2.8. Concurrent Priority Queue Examples 27

Figure 2.7: Inserting an element into a binary heap

2.8.4 Naive STM-Based Concurrent Binary Heap

STM can be applied in different ways for implementing a binary heap. One

possibility is the naive STM-based heap, where both operations, insert and

remove, are performed exactly in the same manner as for the classic sequen-

tial binary heap. The only difference is that each operation is a transaction,

whereas in the sequential version only one operation on the heap may be per-

formed at a time. The heap is represented by an array of TM objects. The

array has a pre-determined capacity.

An insert operation inserts an element as a leaf node at the first free position

in the heap as illustrated in Figure 2.7. For determining this position, a size

variable is used, which is also a TM-object. Then the element is bubbled

up meaning that it switches positions with parents of lower priority until it

encounters a parent node of higher priority then itself. Finally, the heap size

variable is updated, which finishes the insertion. All these steps have to appear

atomic with respect to other operations, otherwise inconsistencies may appear.

The same applies for the remove operation. The steps illustrated in Figure 2.8

have to appear atomic and are therefore executed in a single transaction. First,

the peak element, which is by definition the element of highest priority, is

removed by replacing it by the last element in the heap (see Figure 2.8(a)).

Second, the replacing element is bubbled down by switching positions with

the child with higher priority (Figure 2.8(b)). The switching of positions ends

when either both children are of lower priority or the bottom has been reached.

28 2. Concurrent Programming

(a) Replacing the peak by last element

(b) Consolidating the heap

Figure 2.8: Deleting the element of highest priority from a binary heap

2.8. Concurrent Priority Queue Examples 29

2.8.5 Fine-Grained STM-Based Concurrent Heap

A clear drawback of this implementation is that every operation will conflict

with another operation if they occur concurrently. Each operation accesses

the heap size variable, and thus these operations obstruct each other. This

means that effectively only one operation at a time takes effect. Therefore a

more sophisticated solution has been developed that avoids those disadvantages

[DrBa09].

The first new concept that is introduced to overcome the issues of the naive

implementation is the dissociation of the heap from a fixed size value. Only

a range is provided for having a rough idea of where the end of the heap is.

This is done by introducing two variables “DENSE” and “LAST” which give an

indication up to which place in the array representing the heap, there are no

“FREE” items, and where the last element in the heap is located, respectively.

Those two variables form basically the administrative data. They have not to

be precise. However, they have to be made ABA robust.

The next feature is the reindexing borrowed from Hunt et al. [HMPS96] and

Ayani [Ayan90]. Lastly, multiple transactions are used to realize an opera-

tion. The important point here is that by executing the transactions, the

logical heap invariant is never broken before or after a transaction. Further-

more a tag is introduced for each position in the heap that can have the values

“FREE”, “DIRTY”, “HOLE” or “OCCUPIED”. A position tagged as “FREE”

means that it contains no element. An insert operation sets a “FREE” position

to be “DIRTY”, for indicating that an insertion is already running. A posi-

tion will contain an “OCCUPIED” node if it contains an element of the heap.

A delete operation replaces the “OCCUPIED” node of highest priority by a

“HOLE”. With the aid of these tags, a division of the operations into multiple

transactions can be realized.

For example the insert operation is divided into multiple transactions instead

of a single one. Four steps are executed in four transactions:

1. Find a position that is tagged “FREE” from where we can start inserting

our element (one transaction)

30 2. Concurrent Programming

2. Update administrative data

3. Perform “bubble-up” of the element (one transaction)

4. Update administrative data (two transactions)

The second step can be done by a mere CAS instruction on the “LAST” vari-

able. The third step is a common insertion step for binary heaps. The pseudo

code for the first and last step is shown bellow.

The remove operation is also divided into multiple steps. Beside the fact that

all concurrent remove operations access the heap size variable in the naive

version, the main problem is that the target element for a removal is always the

peak element. To overcome this problem, the node value“HOLE” is introduced

and the remove algorithm is changed. Instead of replacing the peak element

by the last element in the heap as done in the naive version, it is replace by a

“HOLE”. This “HOLE” is handled only by the removing operation and ignored

by all other operations. Now many concurrent remove operations can make

progress because if the first element in the heap is already a “HOLE”, simply

the next logical peak element is searched recursively. Furthermore, by this new

tag value, there is an implicit solution for the difficult case when insertions and

removals occur concurrently. The entire operation is divided into four steps

(compare Figure 2.9):

1. Find the peak element and replace it by a “HOLE”

2. Bubble down the “HOLE” (multiple transactions)

3. Replace the “HOLE” by one of the last elements in the heap and bubble

it up

4. Update administrative data (two transactions)

The fine-grained STM-based heap only uses STM constructs that are provided

by Fraser’s implementation for reading and writing transactional objects. But

there still remains the question of how some aspects of the heap might be

2.8. Concurrent Priority Queue Examples 31

(a) The peak element is replaced by a “HOLE” that is bubbled down to the
bottom

(b) The last element replaces the “HOLE” and is bubbled up if necessary
(not the case here)

Figure 2.9: Deleting the element of highest priority from the STM-based binary
heap

32 2. Concurrent Programming

improved. An entire transaction for an update of “DENSE” and “LAST” seems

extreme for such a small task. Furthermore, checking the nodes during the

update of the administrative data is a read-only transaction which does not

even need to be fully precise. Therefore, two other aspects of the heap are

optimized.

So far, the variables “DENSE” and “LAST” are updated within transactions in

the fine-grained implementation. We improve this by using 16 bits for version-

ing and 16 bits for the value which can be together updated with a compare-

and-swap (CAS) instruction. Using CAS instead of transactions in extenso

saves much of the overhead associated with accesses to TM objects.

There is also a “fast access” function on TM objects introduced. The idea is

that if a node is “FREE”, only insert operations will access this node. An

insert operation will therefore tag the node as “DIRTY”, which can be done by

CAS. By reading TM objects outside transactions, the administrative overhead

associated with a real transaction is avoided. Furthermore, it is not significant

which “FREE” slot is used. The “fast access” function is also used during the

check of “DENSE” and “LAST”.

The described implementation of an STM-based heap is one of the first complex

and optimized implementations using STM. However, there is no currently

available automated verifier that could prove that the output produced by this

algorithm is certainly valid according to the definition of a priority queue and

the linearizability criterion. For achieving a verification of the implementation,

the verifier described in the next chapters is able to provide an answer by

analyzing the output of the program.

2.8.6 Comparison of the Performance of the Naive and

Fine-Grained STM-Based Binary Heap

All algorithms tested are implemented in C using the STM library by Fraser

[Fras03]. For the lock-based implementation pthread mutexes are used. The

tests were conducted the same way as in section 2.6.

In Figure 2.10 the graphs for the results of a test scenario with an initially

empty queue and little local work is shown. For a single thread, the locking

2.8. Concurrent Priority Queue Examples 33

(a) Absolute throughput performance

(b) Graph normalized with respect to the performance of one thread

Figure 2.10: Comparison of the different STM-based binary heaps and a lock-
based reference implementation

34 2. Concurrent Programming

implementation exhibits, as expected, a much better performance than all

STM-based heaps. Because of its simple principle, the naive STM-based heap

achieves a superior performance compared with the other STM-based heaps

for one thread as shown in Figure 2.10(a). As soon as there is more than one

thread, the performance for the locking implementation breaks down, whereas

the two fine-grained STM-based implementations show a remarkable degree of

scalability if compared to the other two implementations.

The naive STM-based heap scales poorly as presented in Figure 2.10(b). The

two fine-grained implementations exhibit comparable scalability, but the op-

timized implementation has a noticeable advantage. For more than three

threads, the fine-grained STM-based heaps catch up with the locking-based

one.

Furthermore, the locking-based heap shows an interesting behavior for more

than five threads with increasing throughput. This can be explained by the

CPU-hopping effect, which is caused by the process scheduler in the Linux

kernel because it attempts to perform load-balancing between CPU cores.

2.9 Summary
This chapter has given an overview of the area of concurrent programming and

has shown that verification is an aspect that is very important and challenging

for parallel programs. It has explained the lock-based approaches as the com-

monly used solution. Then, it faded into non-blocking approaches which use

non-blocking instruction primitives like CAS. After that, it introduced STM

as an abstract alternative to achieve correctly synchronized programs.

The main problems for each method has been explained. On the one hand,

lock-based implementations often run into problems like deadlocks or perfor-

mance issues due to sequentialization. On the other hand, non-blocking code

is very difficult and complex in development. STM-based implementations

currently need non-trivial optimizations to become competitive.

The final statement of this chapter is, no matter which alternative has been

chosen, there is always a need for verification. Only when the parallel code

is verified, there is a certainty that the code is valid and correct. The next

chapter provides basic knowledge about verification.

3. Correctness Reasoning

When reasoning about correctness, there are a lot of different aspects that can

be considered. This chapter gives an overview of these aspects and how the

work for this thesis is placed in the area of program verification.

First, there is an outline in which respect a program can be verified. Then, the

different correctness criteria in the field of verification of parallel programs are

introduced. Finally, related work of the different methods for verifying parallel

programs on linearizability [HeWi90] is described.

3.1 Correctness Fields

Automated verification of sequential programs has been explored for decades.

There are numerous methods for verifying different aspects of code, such as

memory safety, detection of memory leaks, and proving compliance with the

program invariants [AHMQ+98, BBCL+06, BHJM07, ChSh04, XiCE03]. With-

out exception, each method lacks in certain factors. None of them can verify

every aspect with absolute reliability. Often there are tolerances for false neg-

atives or false positives.

Verifying correctness of parallel programs is even more difficult because there

are concurrent operations that overlap and thus, the potential sequences of

instructions that are executed is hard to cover. If we consider parallel programs

where different threads communicate over shared memory, we may have many

points where threads might interfere with each other. It is very hard to cover

all possible interferences of different threads of execution. Another problem is

that even if the design of a program is correct, the implementation might still

have subtle errors. This is often the case because of the complexity of programs

36 3. Correctness Reasoning

of this kind. In this dissertation, mainly data structure implementations shall

be verified by the method introduced.

Verification addresses three different aspects. The first aspect is proving that

the design of the algorithm is correct. This happens before the program is

implemented. The second aspect is determining whether a program is at all

executable. This involves issues such as detecting possible deadlocks or live-

locks [EnAs03], memory leaks and the like. The third aspect is whether an

execution fulfills the specification of the program. Here, the challenge is to

discover whether an implementation really implements the specified algorithm

correctly. This thesis focuses on this third aspect.

3.2 Correctness Criteria
A programmer who implements a program has a certain image in mind of

what the program shall perform. This image has to be formally expressed by

a specification for allowing formal treatment. Finally, the program has to be

checked whether it produces output according to its specification with respect

to consistency.

In the sequential case, this is non-ambiguous because we assume that the pro-

gram has a definite state at each point in time of the execution. However, if

the program is executed in parallel it is not clear how overlapping operations

should be treated and considered. When two operations, A and B, overlap,

both is possible, that operation A takes effect before operation B or the op-

posite. Nevertheless, there might be desired constrictions or properties on the

order of overlapping operations. Therefore, a correctness criterion has to be

chosen before a program can be verified. In the following, it is described which

constrictions and properties those might be and why they are useful when

reasoning about correctness.

First, the general term consistency is introduced. Second, there is an expla-

nation of how self-defined correctness with quality criteria may look like and

an outline of how weak consistency criteria look like. After that, casual con-

sistency is described. Then, the more strict criteria sequential consistency and

serializability are explained. Finally, the practically most strict criterion for

concurrent programs called linearizability is introduced.

3.2. Correctness Criteria 37

3.2.1 Correctness Reasoning

A consistency model is necessary when there is a set of threads of execution

that share the same data. Traditionally, this is regarded in the context of read

and write operations. A read operation is expected to read the last written

value at a memory address.

Furthermore, there are different granularity levels, where consistency can be

considered. While reading and writing are very basic operations, it is some-

times more interesting to consider a sequence of read and write operations.

Therefore, operations are grouped into critical sections that shall appear to

have been executed atomically. Depending on the implementation principle

used, the execution of critical sections may overlap. Still, it is important that

read and write operations are executed in a consistent way, but grouping those

operations adds more complex semantics to the program. However, additional

information is needed because it has to be known when a critical section has

actually been entered and left.

Throughout this document the execution of a program is modeled as in the

following. The term history refers to a sequence of events that denote that a

certain critical section has been entered or left. Since critical sections usually

implement complex operations, the term operation is used instead of critical

section. Instead of saying that a critical section has been entered by a thread of

execution, it is also possible to state that the thread has started an operation.

Instead of saying that a critical section has been left by a thread of execution, it

is also possible to state that the thread has ended an operation. Consequently,

the event of starting an operation is called a start event, and the event of ending

an operation is called an end event. Note, that Herlihy [HeWi90] denoted the

start event as an invocation event and the end event as a response event.

Nevertheless, it is the same principle but throughout this document the more

intuitive terms start and end event will be used.

Figure 3.1 presents two histories for both granularity levels. In Figure 3.1(a) a

history of finest granularity is illustrated. There are only read and write oper-

ations included. Write(a, x) means value a has been written to address x while

Read(a, x) means value a has been read from address x. Obviously, only the

38 3. Correctness Reasoning

(a) Process granularity

(b) Operation granularity

Figure 3.1: Examples for execution histories

order of operations is taken into account, here. Whereas in Figure 3.1(b) infor-

mation has been given when which critical section or operation has started or

ended in relation to other operations. This leads to the necessity of considering

overlapping entities.

Correctness reasoning is about whether a program produces always histories

that meet a certain criterion or not. Since complex programs with non-trivial

operations shall be analyzed, the coarse-granular histories are used as the bases

for the verification process.

3.2. Correctness Criteria 39

3.2.2 Arbitrary Correctness

If a programmer perceives that the program or data structure he is implement-

ing is not used in a critical context, he might decide to apply a self-defined

arbitrary correctness criterion. This can be done for example by defining a

metric for the quality of the output. The concept of arbitrary correctness is

also called continuous consistency. The following formalism is a suggestion of

how quality reasoning for continuous consistency might be done.

If we consider a program P and its output OP , we define that the quality

function Q of some program output denotes a value that describes how “good”

the output is. The programmer has to decide which quality is accepted and

thus which values VQgood
(OP) = {Q(OP)|Q(OP) is “good”} are allowed for a

program to be considered as correct. This implies a characteristic function 1Q

of the quality as in the following:

1Q(Q(OP)) =

 1 , if Q(OP) ∈ VQgood
(OP)

0 , else
(3.1)

Obviously, this characteristic function is 1 if the quality of OP is “good”enough

and 0 otherwise. Now, the program output might consist of a set of output

units OP = {o1, o2, ...}. In this case, the quality would be defined as a function

f of the different qualities of all units. Therefore, another quality function Q′

is necessary for the output units

Q(OP) = f(Q′(o1), Q
′(o2), ...) (3.2)

Those output units might consist of more output units which again need a

description of quality until a component level can be found that is in this sense

atomic and not further decomposable.

A concrete example might be an arbitrary concurrent implementation of a

FIFO queue. FIFO is an acronym for “First-in, First-out”. A FIFO queue

in the sequential case is defined as a queue with two operations, insert and

remove. The first item added to the queue is the first item to be removed

40 3. Correctness Reasoning

from the queue. The programmer of the concurrent version of the FIFO queue

might define following criteria

1. An item is correctly removed if its order is among the lowest 10% of

inserted items

2. The implementation is satisfactory if correct items have been removed

95% of the time

In this example, the program output is a sequence of items returned by remove

operations. Those items are the output units. The entire reasoning could be

also taken into an even higher level, if we had a program implementing a system

of x FIFO queues. Then it could be defined that the system works correctly if

at least 90% of the FIFO queues work correctly.

If we go away from general data structures to specific applied areas, there might

be a criterion used that is applied on numerical values or the staleness of data.

Consistency for numerical values [YuVa02] defines the tolerated discrepancy

of a value read to the actual value at a certain point in time. For example it

could be defined that the temperature read for some place may not differ by

more than 1◦K. The tolerance could be also defined relatively. Consistency for

staleness would mean, that the data read may not be older than for example

2 minutes. This is useful if for example there is a program that shows which

TV show is running at the moment at a certain channel.

For both, the numerical consistency and staleness consistency, the quality rea-

soning introduced before provides a formal description of the desired criterion.

3.2.3 Weak Consistency

The quality reasoning introduced in the section before is very specific for each

application. It is rather a paradigm than a real principle.

Consistency criteria that are considering the order of operations base on ab-

stract formalisms and thus are more general than the validation of quality.

There exist a lot of weak consistency criteria that cannot be covered in detail

in this document. Further, weak consistency criteria are not of relevance in the

3.2. Correctness Criteria 41

scope of this work, since they address larger scale systems like distributed clien-

t/server systems. The assumption is that that the probability for simultaneous

updates is low and if inconsistent updates occur they can be easily resolved.

Consequently, many inconsistencies can be hidden for the client. The idea

of resolving inconsistencies for the client is denoted as eventual consistency.

For further reading about eventual consistency refer to Tanenbaum/van Steen

[TaSt07].

3.2.4 Causal Consistency

Causal consistency [HuAh90] is a criterion that is better considered at a process

level than in an operation level because it takes into account whether different

operations influence each other from a global point of view. The basic idea is

that if an event e1 causes another event e2 then everybody has to see the effect

of e1 first, and afterwards the effect of e2.

Figure 3.2 shows two histories. Figure 3.2(a) illustrates a history that is not

causally consistent because obviously process P3 reads the value a at address

x before it writes value b to address x. Consequently, writing b potentially

depends on the reading of a and thus a must be read before reading a value of

b at x. However, process P1 reads b at x before it reads a. Hence, the history

cannot be causally consistent.

The history represented in Figure 3.2(b) is causally consistent. Even though

the processes P1 and P3 read the values a and b at address x in different

order, the writes of a to x and b to x from the processes P3 and P4 are done

independently. Thus, there is no potential for causal relation so both orders

are considered consistent and for that reason correct.

For accomplishing a verification on causal consistency, a dependency graph of

operations is necessary so that it can be tracked which operations cause others.

Since mainly data structures shall be verified by the method introduced in this

document there is a potential dependency among all operations occurring in

a history. So, for our purposes causal consistency is not adequate and the

additional effort for building a dependency graph is redundant.

42 3. Correctness Reasoning

(a) This history is not causally consistent

(b) This history is causally consistent

Figure 3.2: Examples for causally consistent and causally inconsistent histories

3.2.5 Sequential Consistency

Sequential Consistency [Lamp79] is a criterion that argues that any order of

concurrent operations is valid as long as all threads of executions see the same

order. Obviously, the set of histories that are sequentially consistent are a

subset of the set of histories that are casually consistent because if a history

is sequentially consistent it means that all threads of execution see the same

order of operations. In particular, this is true if there are dependencies among

operations as explained in the previous chapter.

However, there exist causally consistent histories that are not sequentially con-

sistent. Figure 3.2(b) presents such an example. It is causally consistent but

it is not sequentially consistent because the processes P1 and P2 do not have

3.2. Correctness Criteria 43

Figure 3.3: A sequentially consistent history

the same view of the order of updates. While for P1 Write(b, x) appears to be

the first executed operation, P2 sees the update Write(a, x) first.

Figure 3.3 demonstrates a sequentially consistent history. Apparently, time is

no critical factor for this correctness criterion. It is clear that the operation

Write(a, x) took place before the operation Write(b, x) with respect to the

time line. However, both processes P1 and P2 see the updates consistently

the same way in opposite order. For many applications this is an adequate

behavior and thus it is often used as a correctness criterion. Still, there are

applications where such a behavior is not desired.

Let us consider a program with critical sections where higher level semantics are

of significance. A priority queue as introduced in section 2.7 implements two

complex operations insert and remove. Both operations consist of sequences

of atomic read and write operations. The semantics of the priority queue in

the sequential case is that a remove operations removes an element of highest

priority from the queue q. Insert(1, q) means the thread has inserted an element

with value 1 into the queue q while Remove(1, q) means that an element with

value 1 has been removed from q. For simplicity, we identify the value of an

element with its priority where higher values imply higher priorities.

Figure 3.4 shows a history with complex operations realized as critical sections

with obvious start and end points. It is evident that both insert operations

are finished before any of the remove operations have started. Furthermore,

it is also evident that the thread P2 ends its operation before P1 starts its

44 3. Correctness Reasoning

Figure 3.4: A sequentially consistent history with critical sections

operation. Hence, from an intuitive view P2 should remove an element of

higher priority than P1 but it does not. Still, this history is sequentially con-

sistent as we learned before. Now, if there is a time critical application that

urgently needs to realize a strict priority schedule, this behavior is not accept-

able. Moreover, this behavior is not intuitive with the sequential behavior of

a program in mind.

3.2.6 Serializability

If critical sections and their start and end events are considered instead of

atomic reads and writes the term serializability [BeHG86] can also be used.

Beyond that, serializability allows multiple objects to be manipulated within

a critical section. Usually, when respecting the semantics of objects the term

serializability is rather used than sequential consistency.

The validation of a history with complex operations is typically done by or-

dering the start and end events with respect to the following two properties

1. All start and end events can be reordered to obtain a sequential history

as long as the relative order among events of the same thread remain the

same

2. The obtained sequential history is correct according to the sequential

invariant of the object or objects

In this context, a sequential history is a history in which each end event of an

operation follows the corresponding start event of the operation. It is called

3.2. Correctness Criteria 45

sequential history because the operations could have been executed in the same

manner by a single thread or process.

3.2.7 Linearizability

Linearizability has been defined by Herlihy and Wing [HeWi90] and is a stricter

criterion than serializability or sequential consistency. It extends the two prop-

erties of a serializable history so that the following properties have to be ful-

filled:

1. All start and end events can be reordered to obtain a sequential history

as long as the relative order among events of the same thread remain the

same

2. The obtained sequential history is correct according to the sequential

invariant of the object or objects

3. If an end event of one operation occurred before a start event of another

operation in the original history, then this order has to be retained in the

sequential ordering

Getting back to the pictures of histories we had before, the idea of lineariz-

ability is that each operation is taking effect at some time between its start

and its ending. Since a critical section is assumed to take effect in an atomic

manner, an operation realized as a critical section has to take effect at some

specific point in time. This point in time is called the linearization point. So,

obtaining a sequential history of events with respecting the three properties de-

fined before is eventually the same as assuming that all operations have taken

effect at their assigned linearization point. Of course, the sequential history

obtained from the assignment of linearization points may not break the object’s

invariant.

In the example of Figure 3.4 it is impossible to assign linearization points so

that the priority queue invariant is kept valid. Irrespective of where we assign

the linearization points within the intervals of the operations executed by P1

and P2, the operation Remove(1, q) will always take effect before Remove(2, q).

46 3. Correctness Reasoning

(a) P2 performs the last operation

(b) P2 performs the first operation

Figure 3.5: Examples for linearizable histories with assigned linearization
points

Since both insert operations have their linearization point before the lineariza-

tion point of Remove(1, q) the invariant for a priority queue is broken, because

2 is the value of highest priority.

The examples in Figure 3.5 are both linearizable. Note that both histories in

Figure 3.5(a) and Figure 3.5(b) contain the same operations with the same

timestamps for each operation. The only difference is that the remove opera-

tion of process P2 removes the value 4 in Figure 3.5(a) whereas in Figure 3.5(b)

it removes the value 2. Still each history is linearizable because in both cases

the linearization points indicated as orange dots in the figures lead to correct

sequential histories.

Linearizability matches most exactly the intuition of what is considered as a

transfer from a sequential program to a parallel one. This is the reason why

the verification method presented in this document deals with the verifica-

3.3. Related Work 47

tion of execution histories against linearizability. Another practical reason for

examining linearizability is that most implementations that are sequentially

consistent are also linearizable. It is hard to imagine why an implementation

should behave sequentially consistent but not linearizable and there are hardly

any examples for this behavior.

There is yet another correctness criterion which is called strict consistency

which is even stricter than linearizability. It says that a read operation has to

return the result of the latest write operation on an object or address. This

is only possible with a global clock. Since this is practically not possible to

implement, the strict consistency criterion is of no practical relevance.

3.3 Related Work
Verification in general can be done with three basic approaches. First, there is

proof-based verification as the most difficult but the most complete one. Then,

there is model checking as a more simplified but therefore computationally

efficient approach. Lastly, there is verification by simulation and testing as

the simplest approach and thus is easiest to be realized. In the following all

approaches are described closely.

3.3.1 Formal Proof-Based Static Code Analysis

Proof-based verification is done by performing logical reasoning about the pos-

sible behavior of a program. Often logical reasoning of programs bases on

Hoare’s logic [Hoar83] or on some logic based on Hoare’s logic. The main

element of Hoare’s logic is the Hoare triple {P}S{Q} where P denotes the

pre-condition, Q the post-condition, and S a program segment. The idea is to

prove that if a program satisfies the condition P at some point in time, it will

satisfy Q after the execution of S. Now, for obtaining a proof of a program

segment there must be composing rules so that the program can be verified as

a whole. The easiest rule as an example is the rule of composition

{P}S{Q} ∧ {Q}T{R} =⇒ {P}S;T{R} (3.3)

The rule applies for a program segment consisting of a segment T following

a segment S. It says that the post-condition R of the entire segment for a

48 3. Correctness Reasoning

pre-condition P is the same as the post-condition of T with the pre-condition

Q that is the same as the post-condition of S executed for pre-condition P .

Hoare used another notation for the same expression

{P}S{Q}, {Q}T{R}
{P}S;T{R}

(3.4)

Now, the Hoare calculus is only applicable for sequential programs. Therefore,

extensions are necessary to make it usable for parallel programs. One of the

first extensions is the one of Owicki-Gries [OwGr76]. For each thread a se-

quential proof is executed. The parallel Owicki-Gries rule requires that each

thread does not conflict with the proofs of the other threads.

{P1}S1{Q1}, {P2}S2{Q2}
{P1 ∧ P2}S1 ‖ S2{Q1 ∧Q2}

(3.5)

This means that all intermediate conditions of S1 and S2 must be preserved by

all atomic commands in the sequences S2 and S1, respectively which is a very

strong restriction.

Thus, rely/guarantee reasoning [Jone83] is an extension to Owicki-Gries that

does not have the same restriction. The specification of rely/guarantee consists

of the four components (P,R,G,Q)

P is the pre-condition that describes the assumption of the initial state

before a code segment S starts

R is the rely condition that models all interferences of atomic actions from

other threads that can be tolerated

G is the guarantee condition that models the impact on other threads by

the code segment S

Q is the post-condition that describes the final state for the initial state P

after executing the code segment S

If a code segment S satisfies a specification of the four tuple this is denoted as

S satRG(P,R,G,Q) (3.6)

3.3. Related Work 49

There also exist proof rules for rely/guarantee reasoning as in the RG-Weaken

rule example

S satRG(P,R,G,Q), P ′ ⇒ P,R′ ⇒ R,G⇒ G′, Q⇒ Q′

S satRG(P ′, R′, G′, Q′)
(3.7)

This rule says that a specification is weakened by weakening its obligations

which are the post-condition and the guarantee condition, and strictening its

assumptions which are the pre-condition and the rely condition. There are lot

more of rely/guarantee rules that apply for parallel programs.

Rely/guarantee models interference as a relation without taking the control

flow of the environment into account. Thus, it cannot prove directly properties

that have dependencies on the control flow. Nevertheless there are workarounds

for this but still there are programs for which a modular proof cannot be found.

Vafeiadis [Vafe07] in his PhD thesis combines elements of the rely/guarantee

reasoning and separation logic to obtain a more powerful tool for concurrent

verification called RGSep. He proposes modular techniques and makes two the-

oretical and two practical contributions to reasoning about fine-grained concur-

rency. RGSep permits ownership-based reasoning and ownership transfer be-

tween threads and maintains the expressiveness of binary relations to describe

inter-thread interference. Furthermore, it describes a method for proving lin-

earizability which introduces auxiliary single-assignment variables to identify

the linearization point.

3.3.2 Model Checking

The principle of model checking [JrGP99] is that a system is described in some

description language such that the model checker can check whether a certain

property can be reached by the described system from an initial state. The

property is described with some temporal logic formula whereas the system

description consists of a set of atomic propositions that are associated with

some state. The entire description may correspond to a finite state machine

which itself might be for example a directed graph as schematized in Figure 3.6.

In the case of software verification, a proof can fail because of the undecid-

ability of the halting problem and thus it is not generally applicable. Model

50 3. Correctness Reasoning

Figure 3.6: Schema of a program described as a directed graph

checkers cannot deal with the complexity of software. Therefore, techniques

from classical proof-based verification or static analysis are needed like abstract

interpretation of code, shape analysis or symbolic execution. Even with those

extensions, heuristic searches are necessary for a verification of the entire state

space.

Abstraction is the idea of representing a program by a simpler model. Hence,

abstraction decreases the state space to a manageable size and allows the model

checker to analyze a notation which it could not analyze before. It is also a

necessary step because model checkers typically work on finite state models,

whereas the state space of a program might be infinite. So the translation

of a program to a finite state model is a necessary step and should be done

automatically as well, although it might by done by hand which is neither

general, nor effective.

Beyond that there exist state-less model checkers like Verisoft [Gode97]. In this

approach there is no state storing and hence no state matching. The technology

that makes state-less model checking possible is the partial order reduction

which summarizes different transition sequences of the same transitions to one

transition sequence if the final state is the same. The term state-less does

not refer that there are no states considered in this approach but it refers

to the fact that not all intermediate states a system model might enter are

3.3. Related Work 51

considered. Consequently, the states in the model are not system states but

state sets which form a higher level of abstraction.

One approach that makes use of model checking for proving linearizability is to

check the property by refinement relations as proposed by Liu et al. [LCLS09].

In this approach a model of the specification is defined that is realized as a

finite state machine. Then the implementation is modeled by another finite

state machine and it is checked whether the transitions of the implementation

state machine forms a subset of the transitions of the specification state ma-

chine. By this refinement, relations from abstract specifications to concrete

implementations are realized. The method avoids the necessity of identifying

linearization points in implementations, but can also take advantage of lin-

earization points if they are given. The search space is reduced by the aid of

partial order reduction.

Vechev and Yahav [VeYa08] also use a model checker based on Liu Liu et al.’s to

check their derived linearizable concurrent objects produced by their Paraglider

tool. The tool systematically constructs algorithms for a concurrent data struc-

ture starting from its sequential implementation. The construction process

combines manual steps with automatic exploration of implementation details.

3.3.3 Simulation and Testing Techniques

The oldest and most straight forward technique to check an implementation

for correctness is to simulate or test it and check the output for correctness.

For large outputs and complex invariants this is by no means trivial in the

linearizability case. An automation is helpful here.

A method for testing has been first proposed by Wing and Gong [WiGo93].

There, they produce a history H from a concurrent program PC . They use a

sequential implementation PS as the sequential specification of PC . Then, they

gain sequential histories of H by preserving the real-time order relation that is

necessary for linearizable histories. Finally, PS is run with the input of the his-

tories gained and checked whether PS will produce the right sequential history.

If a correct sequential history is found, H is linearizable, otherwise it is not.

Fraser also used a brute-force testing approach to verify the implementation of

his STM [Fras03].

52 3. Correctness Reasoning

3.3.4 Chosen Verification Approach

The most complex data structures that have been verified by known methods

are FIFO-queues. The advantage of this approach is, that it really verifies the

implementation of a data structure and not an abstract specification. It is also

less complex to implement such a verifier. The disadvantage of this approach

is, that it does not deliver a definite statement about the linearizability of data

structures. If a history has been proven to be linearizable, there still might be

a possible history produced by the implementation which would be not. On

the other hand, if a history has been proven to be false, the implementation is

definitely incorrect and has to be checked for bugs.

Nevertheless, as mentioned before all verification methods lack some aspect.

Up to now, none of them can give a 100% reliable answer about linearizability.

Hence, it is a trade off between generality of the verification proof and realiz-

ability of the verifier implementation. Since the goal of this thesis is to prove

very complex data structures for today’s applications, this testing approach as

a verification methodology is chosen.

3.4 Summary

In this chapter an overview of the area of correctness reasoning on concurrent

programs has been given. It has been explained which correctness fields exist

in the sense of which aspects of a program can be checked and it has been

discussed why it can be useful to check the output of running programs for

correctness. Then, the different correctness criteria that are candidates for

checking the output of parallel programs were introduced. The decision for

this work is to investigate linearizability as a widely accepted correctness cri-

terion. Finally, different methods for verifying concurrent programs against

linearizability have been explained. The approach of simulation and testing of

programs as the verification technique is used in this work.

The next chapter explains the general technique of the method introduced in

this document. It provides the necessary formal treatment for the methodology.

4. Methodology

This chapter gives a formal description of the execution trace verification

method against linearizability. The goal is to have a general description of

how the execution of arbitrary programs can be tested against this property.

The claim is to prove the correctness of the output of a program but not of a

program or algorithm itself.

Mainly basic set theory is used for managing states, and logical expressions

for describing effects and invariants. The method assumes that the verified

implementation produces a complete trace of all relevant operations during an

execution. The target is to prove that a total order of the traced operations

exists which could have been the order of a sequential execution respecting the

program’s sequential invariants. Furthermore, the total order shall not violate

the partial order of start and end timestamps of the tracked operations in the

sense that an operation that has ended before another operation started has

to precede also this operation in the new order. As mentioned in the previous

chapter, these conditions define the linearizability property of a history.

It is important to understand that if two operations o1 and o2 are executed

in parallel, there is no definite answer whether actually o1 or o2 has taken

effect first. Since these are parallel operations, both assumptions are valid. If

for some reason the specification does not allow for example o1 to have taken

effect first, we may discard this assumption and simply assume that the other

order was executed in fact. However, if both orders are wrong according to the

specification, then we have an inconsistency in the history. Finding an answer

whether a correct order of all operations exist is the goal of this verification

method.

54 4. Methodology

This chapter starts with an outline of the entire methodology for having a

first impression and a preview of what will follow later. Then, it explains the

basic program specification that is necessary for a verification to be accom-

plishable. This specification gives a first indication for different possible views

to a program’s state. After that, the format of a history is described and the

term metastate is introduced. Then, a proof of the validity of the verifica-

tion method is given which is the core part of the thesis. After extending the

concept of metastates and their representation, it is shown how systems can

be specified in an advanced manner by exploiting the knowledge about metas-

tates. The proof and the extension of the metastate concept are the main

contributions of this thesis. At last, some final thoughts about special cases

during the verification procedure are mentioned.

4.1 Outline of the Execution Trace Verifica-

tion Method

This section describes the general verification procedure. Figure 4.1 gives an

overview of the verification steps. For now, the details of the method are

omitted and only the rough approach is explained. The details for every step

are explained later in this chapter.

First of all, a specification S of the sequential behavior of the program is

needed. Second, there is a parallel program P that produces a history H. The

history H is to be verified against the specification S against linearizability. If

the verification of H fails, it can be definitely stated that there is an error in

P . This forms the first step in Figure 4.1.

The history H consists of a set of logged operations (l1, l2, ..., ln) that have been

generated during a test or simulation run of P . Each logged operation in H

starts and ends at a certain point in time.

The assumption is that all operations take effect atomically, and that the time

of taking effect (also called the linearization point) is between an operation’s

start time and its end time. Another assumption is that the history is com-

plete, meaning that all operations that have started also have ended and that

4.1. Outline of the Execution Trace Verification Method 55

Figure 4.1: Flow chart of the verification method

56 4. Methodology

all operations of a test run or simulation run have been tracked. These assump-

tions state that the simulation run has been traced properly. Throughout the

document, the term simulation run will be omitted and merely the term test

run is used instead.

As it is not known when the effect of an operation really occurred, all possi-

ble orderings of overlapping operations have to be tried and checked on their

validity concerning the invariants of the implementation. Therefore, a set of

possible system states Σ is managed. A state contains the configuration of

all information in a program at a certain point in time. A sequence of events

(e1, e2, ..., e2n), where n = |H|, gained from the trace of operations H is gener-

ated which is the second step in Figure 4.1. These events are either the start or

the end event of an operation. Hence, for a single operation there exist exactly

two events in the sequence. The events are sorted in a sequence according to

their time of occurrence.

For each event ei, an event function fei is defined that modifies a state σ in

the state set Σ according to the specification S of its corresponding operation.

For example, one possible modification of a function fei might be that if it

becomes clear that a state σ can no longer be valid because of the event ei,

the event function of the corresponding operation removes that state from the

state set Σ. Collapsing states occurs during the handling of end events.

On the other hand, the expansion of state sets occurs during the handling

of start events. Since start events allow for more potential states, the event

function possibly increases the managed state set Σ. Starting an event adds

one more parallel operation to the currently considered execution. This may

cause the necessity of recursions because it increases the number of possible

orderings for the currently considered parallel operations. This recursion avoids

the later necessity for backtracking because all possible system states are kept

at a time.

After applying all event functions fe1 , ..., fe2n , there has to be at least one

state left in Σ, indicating that there is a valid total order for the operations

respecting the previously mentioned time constraints. If there is no state left,

4.2. Basic Program Specification 57

the conclusion is that no such total order exists and thus H is not linearizable

according to the specification S.

4.2 Basic Program Specification

In this thesis, a program is specified by defining the expected behavior of

the operations provided by its interface. Thus, for the verification process no

implementation details are of relevance. For example, an implementation of a

list might allow two accesses to the data structure, insert and remove. The

specification of the list says that only elements can be removed that have been

inserted before. This information is already enough to perform a verification

on the behavior of the implementation. It is not necessary to know whether

an implementation of a simply locked list or hand-crafted lock-free list or some

sorting for access optimization is used. Consequently, it is enough to specify

the operations that are provided by the interface of the data structure for a

complete description of the sequential invariants.

4.2.1 Abstract Operation Specification

In the following, the priority queue will be used as an example for a specifica-

tion. An operation specification OSpec consists of a 3-tuple

OSpec = (
−→
P ,C,E). (4.1)

where

−→
P the vector of parameters

C the precondition which is a logical expression that has to hold at the point

in time when the operation takes effect

E the effect is a state transition that describes the changes made by an oper-

ation on a state

The vector
−→
P = (p1, p2, ..., pn) is a vector of parameters which are 2-tuples

p = (T, V) (4.2)

58 4. Methodology

where

T the type of the parameter

V the variable of the parameter

Note that the return value of an operation is treated as a parameter since

it also consists of a type and an unknown value before runtime and thus is

expressed by a variable.

4.2.2 Difference Between Value and Object Considera-

tion

Note that in the operation specification examples that will be now introduced

all operation specifications give merely the values of priorities they insert, re-

move or change, but not objects. It is important to understand the difference

for the principle of the method. If, for example, the parameter vector of the re-

move specification contained the member (Integer i) instead of (int i), then it

would have been exactly known which object is removed. However, in general

this is not the case.

A data structure might very well contain only values instead of objects with

multiple occurrences of the value like for example a list that contains two

values of x which as primitive values cannot be differentiated. However, if for

example two concurrent threads are inserting the same value, it is important

for the verification process to distinguish the values when a third concurrent

operation removes such a value. Hence, for the verification process all inserted

values have to be wrapped into objects which is a meta-construct to make a

distinction of multiple occurrences of the same value.

This is also a reason, why it makes sense to work on an operation level which is

introduced later. Considering operations instead of values is an implicit object

meta-construct for values as will be shown.

4.2.3 Example: Specifying an Insertion

The insert operation for a list or a priority queue Q might be defined as in the

following

4.2. Basic Program Specification 59

insert(int i, Set Q) (4.3)

:= ((int i, Set Q), (parameters)

TRUE , (precondition)

Q→ Q ∪ {new Integer(i)}) (effect)

This equation shows a formal definition of an insert operation according to

the formalism introduced before. The operation is named insert and takes

two parameters, a value i of type int and a Set Q. Integer objects and int

values are distinguished because a priority queue may contain the same priority

multiple times but these priority values still have to be distinguished. Using

Java’s notion of objects is a well-known convention and useful for this purpose.

The precondition is always TRUE because there are no restrictions of when an

insert operation may take effect. The action or the effect of the operation is

that it creates an object - here for simplicity an Integer object - with priority i.

Further, the Set Q is transfered into a new state where Q contains the Integer

o, now.

It is convenient for the description to use the closed-world assumption [BrLi89].

Generally speaking, this assumption states that everything that is not known

to be true is assumed to be false. Consequently, if an operation performs any

action that is not defined in its specification, then this behavior is considered

to be wrong. The opposite of this assumption is the open-world assumption. It

makes sense to use the closed-world assumption because otherwise for the effect

there would be a description necessary that all elements that have been in Q

are still in Q after performing an insert operation. Such a detailed specification

makes the entire matter less understandable and hence less practicable which

is unnecessary for such an intuitive issue.

It is often the case that the implementation of a certain data structure is

verified instead of a system consisting of different data structures. Even if a

system of different data structures is considered, often, certain variables are

used repeatedly during the lifetime of the program. So, if a priority queue

60 4. Methodology

Table 4.1: Types and their initial values

Type Initial Value

int 0
Integer null
string ””
String null

boolean TRUE
Boolean null

Set ∅
Object null

implementation is specified and only one queue is used, then the queue itself

can be defined as a global variable. Hence, the variable Q can be denoted

as global and thus the specification of the insert operation becomes simpler

because Q is no longer a parameter

insert(int i) (4.4)

:= ((int i), (parameters)

TRUE , (precondition)

Q→ Q ∪ {new Integer(i)}) (effect)

4.2.4 Defining an Initial State

Now, since an operation has been specified, there has to be a specification of

the initial state of the system. In this example this is a state of Q before any

operation has been executed. Here, we say Q = ∅, initially. For any Set an

empty set as the initial state is natural.

The convenience about assuming a Set to be initially empty is that the state

of Q can be entirely inferred from the operations performed on the data struc-

ture. If five insert operations have been executed, Q will contain exactly five

elements. A priority queue might still contain initial elements. If this is the

case before the actual test run starts, each produced history is added a prefix

of insertions. The timestamps of the insertions have to indicate that they have

4.2. Basic Program Specification 61

taken effect before the actual first operation of the test run has started. For

all variable types, the default initial values are listed in table 4.1.

4.2.5 Example: Specifying a Removal of an Object

The following specification example of the remove operation shows how a real

precondition is expressed. Again, Q is assumed to be global and thus is not

treated as a parameter. The remove operation of a priority queue removes the

element of highest priority in the queue. It takes no parameters but it returns

the priority of the object removed.

remove() (4.5)

:= ((int i), (parameters)

∀q ∈ Q : IntVal(q) ≤ i ∧ ∃o ∈ Q : IntVal(o) = i, (precondition)

Q→ Q \ {o}) (effect).

The precondition of the operation specification defines that the remove opera-

tion only may remove an object that exists in Q and is of highest priority. The

effect is that the removed element is no longer in Q.

4.2.6 Example: Specifying a Modification

Many operation do not perform a generation or removal of elements but a

modification of existing elements. The changeKey operation is such an example

that changes the priority of an existing element in the priority queue.

changeKey(int i1, int i2) (4.6)

:= ((int i1, int i2), (parameters)

∃q ∈ Q : IntVal(q) = i1, (precondition)

IntVal(q)→ i2) (effect).

62 4. Methodology

4.2.7 Abstract Program Specification

Specifying an initial state and all operations executed by the program is enough

information for the verification method to execute a proof on a given history.

So the program specification S of a program P is in general

S = (Π,Ω,Ξ) (4.7)

where

Π the set of global variables

Ω the set of operation specifications

Ξ the prefix for all generated histories

A complete specification of the priority queue example could have following

appearance

PrioQueueSpec (4.8)

= ({Set Q}, {insert(int i), remove(), changeKey(int i1, int i2)}, ∅)

with the three operations being specified as before and the history prefix being

empty and thus implicitly specifying that the Set Q does not contain any

elements initially.

4.3 History

As shown in Figure 4.1 the first step of the verification process is to produce a

log of executed operations denoted as history. A log entry l of an operation in

the history is a 4-tuple

l = (o, tstart, tend,
−→v). (4.9)

where

4.3. History 63

o the identifier of the operation which must have a specification in Ω

tstart the time when the operation started

tend the time when the operation ended

−→v the value vector of the operation that corresponds type-wise to the param-

eter vector
−→
P of the operation specification OSpec of o

The timestamps tstart and tend are unique within a history and consequently

defining a total order for all events. It is obvious that tstart < tend. The

method’s assumption is that operations take effect atomically at some point in

time between its two timestamps which is unknown. Now, the task is to assign

to each operation a time when it might have taken effect. This assignment

has to result in a total order on the operations that is valid for a sequential

execution of the program. If such a total order is found, the conclusion is

that the execution has been performed in a linearizable manner and thus has

produced correct output.

A history H is a set of log entries (l1, l2, ..., ln) that have been produced during

a test run. This history is a set of partially ordered elements with respect

to their time of occurrence since operations may occur strictly before, strictly

after, or overlap with other operations. This history implies a sequence of

totally ordered events (e1, e2, ..., e2n) where e is a pair

e = (t, l) (4.10)

where

t the time of the event

l the event’s log entry in the history

t is either the start or the end time of l. All log entries exist twice in the sorted

list of events. The first and second occurrence of an entry is at its start and

end time, respectively. Since events are unique in the sequence, we define the

set He = {ei}2ni=1 that contains all elements of the sequence.

64 4. Methodology

Without loss of generality, we can assume for two events

(ei = (ti, lx) ∈ He ∧ ej = (tj, ly) ∈ He) =⇒ i < j ⇔ ti < tj. (4.11)

With this assumption it also follows that e1 must always be a start event and

that a start event has a smaller index than an end event of the same log entry.

The event sequence corresponds to the history definition of Herlihy [HeWi90]

with one exception. Whereas in Herlihy’s definition of a history it is not known

what an operation is going to perform exactly at start time, here, we already

know which values are going to be manipulated in which way. If we have in

addition

∀i ∈ {j ∈ N|j mod 2 = 1 ∧ j ≤ |He|} : (4.12)

(ei = (ti, lx) ∧ ei+1 = (ti+1, ly))⇒ lx = ly

then H is a sequential history. Equation 4.12 states that in the sequence He

the successor of a start event is always the end event of the same log entry.

4.4 Metastate

Usually a verification is performed on the actual system’s state. However,

there are practical problems in the general case which are explained in the

following. For avoiding those practical problems the view on the state is raised

to a metastate level.

4.4.1 Common State

The common term state denotes the configuration of all information in a pro-

gram at a certain point in time. The information is stored as values in registers

or memory addresses. From an abstract point of view, all relevant information

can be stored in variables.

Table 4.2 shows a history of two insert operations. The changes of the system’s

state during the execution of the operations in Table 4.2 are shown in Table 4.3.

4.4. Metastate 65

Table 4.2: A history of two insert operations

Log ID Operation Start End Value

0 insert 0 2 1
1 insert 1 3 2

Table 4.3: State changes during the execution of the operations in Table 4.2

Time Possible queue states
-1 {[]}
0 {[] , [1]}
1 {[] , [1] , [2] , [1,2]}
2 {[1] , [1,2]}
3 {[1,2]}

At time -1 before the first operation started, the queue is empty. After the

start of the first operation at time 0, there are two possible states for the

queue. Either the queue might be empty or it might contain one element. An

operation that has started but not ended yet is called pending . At time 1

when the second operation starts, there are already four possible states. The

queue might be empty, contain either the first or the second element, or contain

both elements. When operations end, the number of possible states decreases

because the inserted elements are definitely in the queue now.

The problem with considering the possible actual states of the system is that

the number of possible states increases exponentially with the number of pend-

ing operations. With 3 pending operations, there are already 8 possible states.

With n pending operations, there are 2n possible states. This leads to the

typical state explosion problem. Therefore, this verification method does not

consider the actual possible states of a system but introduces a metastate con-

struct.

4.4.2 From States to Metastates and Back

Consider following three statements

• The queue Q contains the elements x, y and z.

66 4. Methodology

• There have been exactly three insert operations executed that inserted

the elements x, y, and z in Q, respectively.

• There have been exactly four insert operations executed that inserted

the elements w, x, y, and z in Q, respectively and a remove operation

that removed the element w.

From the second and third statement, the first statement can be inferred.

However, this is not true for the other direction. The first statement describes

the actual state of the queue Q whereas the other two statements describe

which operations have been executed on the queue. For every state, usually

there exists multiple possible operation sequences for reaching this state.

For the set of operations executed at a certain point in time the new term

metastate is introduced. The metastate denotes a higher level state from which

the actual state of the system can be inferred. Thus the lower level state

which is the common state could be denoted as the first-level state whereas

the metastate could be denoted as the second-level state of a system. For

disambiguation throughout this document the term metastate will always be

used instead of second-level state while the term first-level state will be used

when referring to common states.

There are two reasons why the metastate is an important construct for this

method. Firstly, it is an object meta-construct as already mentioned in sec-

tion 4.2. Furthermore, there are possibilities to compress sets of possible states

by considering equivalence classes which is of practical usability when tackling

the state explosion problem as will be shown later.

4.4.3 Basic Structure

A metastate M is a pair consisting of a sequence and a set

M = (OC , OP) (4.13)

where

OC the sequence of completed operations

4.5. Proving Linearizability 67

Table 4.4: Metastate changes during the execution of the operations in Ta-
ble 4.2

Time Metastates
-1 {((),∅)}
0 {((),{l0}) , ((l0),∅)}
1 {((),{l0,l1}) , ((l0),{l1}) , ((l1),{l0}) , ((l0,l1),∅) , ((l1,l0),∅)}
2 {((l0),{l1}) , ((l0,l1),∅) , ((l1,l0),∅)}
3 {((l0,l1), ∅) , ((l1,l0),∅)}

OP the set of pending operations

An operation that has started but not yet finished is an element of OP . This

operation is ready to take effect at any point in time if its precondition is true.

An operation that is definitely completed is an element of OC . This operation

has already taken place and changed the system’s state according to its effect.

The order in the sequence of the operations in the OC component defines the

order of the linearization points of the operations.

Going back to the history example all states in Table 4.3 can be inferred by

the corresponding metastates listed in Table 4.4. Each set of metastates forms

a metastate description of the currently possible first-level states. Note that in

the table the log ID’s of the operations are put into the components OC and

OP of the metastates as representatives of the operations. When considering

metastates all possible orderings of operations have to be taken into account.

Therefore, there are more metastates than actual first-level states. However,

the number of metastates can be drastically reduced by taking simple proper-

ties of operations into account as will be shown in section 4.6.

4.5 Proving Linearizability

The previous section introduced the metastate description of states that are

formed by a history. This section leads to the proof of whether a history is

linearizable or not and forms the core part and together with the next section

the main contributions of this thesis.

68 4. Methodology

Figure 4.2: General idea of the effect of event functions

4.5.1 Basic Idea

The term event has been introduced in section 4.3. As already mentioned, an

operation implies two events, one at its start and one at its end.

The basic idea is that when an operation starts, there are potentially more

alternative states for the system because the operation might take effect but

also might not take effect immediately. We cannot know because we only have

a history that tells us when an operation started and definitely ended but not

when it took effect. If two operations are overlapping, both orders are valid

assumptions if there is no violation of correctness. Our goal is to derive from

what we have whether the history is correct according to the linearizability

property by finding a valid sequence of operations.

When an operation ends, the information that this operation must have taken

effect is available. This means that only states in which this operation has

taken effect are still valid. If it has not for a certain state, the state is invalid

because this means that the operation has not taken effect during any time

since its start time.

Figure 4.2 illustrates the general idea of event function effects. First an oper-

ation starts which leads to an expansion of the states due to increasing alter-

natives. Then the operation ends and all states where this operation is still

assumed to be pending are discarded. Only the remaining states are considered

for future processing.

4.5. Proving Linearizability 69

4.5.2 Event Functions

Each operation specification has an effect component that describes the state

transition that the operation applies. The previous section has shown that the

state of a system can be represented by a description operating on metastates.

The entire verification procedure operates on events since it is unknown when

the actual linearization point of an operation is reached. Therefore, event

functions are defined that are applied on metastates. Those functions system-

atically cover all possible orders of linearization points and prove whether they

break the system’s invariant or not.

As introduced before, a metastate consists of two components. The first com-

ponent is the sequence of completed operations OC . The second component is

a set OP of pending operations that have started but not ended yet. An event

function

fe : ΓS −→ P(ΓS) (4.14)

for an event e is a function from the domain of all metastates ΓS reachable

in a specification S to the powerset of ΓS. Hence, an event function maps a

metastate to a set of metastates. An end event function fendX for an operation

X on a metastate (OC , OP) can be simply defined as

fendX((OC , OP)) =

 ∅ X ∈ OP

{(OC , OP)} X ∈ OC

(4.15)

meaning that a metastate is discarded if operation X could not take effect and

kept if it could.

Defining the start event is more complicated. First of all we need a help

function h : ΓS −→ P(ΓS)

h((OC , OP)) = {((OCo), OP \ {o})|o ∈ OP ∧ C(o)|OC
= true}, (4.16)

where

70 4. Methodology

C(.)|OC
is the condition in the first-level state inferred from the OC component

of the metastate.

From a given metastate M , h provides all metastates where exactly one of the

pending operations takes effect if applicable in M . The resulting metastates

respect the same operations but with one element shifted from OP to OC . Note

that this function provides the empty set if there is no shift applicable. With

this help function h, a recursive function Rec: P(ΓS) −→ P(ΓS) can be defined

Rec({M1,M2, ...,Mn}) =
n⋃
i=1

(Rec(h(Mi)) ∪ h(Mi)). (4.17)

This function defines a recursion that yields all possible correct metastates by

shifting applicable operations from the pending component to the completed

component for each metastate. Note that Rec is a finite recursion because

OP is a finite set. With the Rec function, we can now define the start event

function of an operation X:

fstartX((OC , OP)) =

{(OC , OP ∪ {X})}, C(X)|OC
= false

{(OC , OP ∪ {X}),

((OCX), OP)} else.

∪ Rec(((OCX), OP))

(4.18)

The function defines that a starting operation that is not yet applicable remains

pending. If it is applicable then it might remain pending or take effect. If it

takes effect, it must be checked whether other also pending operations might

take effect now since the metastate and consequently the system state have

changed.

4.5.3 Extension of Event Functions

Since the verification procedure operates on a metastate description rather

than on a single metastate, event functions can be extended to operate on a

4.5. Proving Linearizability 71

finite set of metastates {M1,M2, ...,Mn} instead of on a single one. This can

be done by simply overloading the notation of a given event f and defining

that

f({M1,M2, ...,Mn}) :=
n⋃
i=1

f(Mi) (4.19)

This is a trivial extension for an event function to a function P(ΓS) −→ P(ΓS).

4.5.4 The History Verification Theorem

The idea of the verification procedure is that a history of events can be tra-

versed linearly without backtracking such that at some point in time a decision

can be made whether this history is linearizable. The following theorem forms

the basis of the execution trace verification method introduced in this disser-

tation.

Theorem: Let S be a specification and He = {ei}ni=1 a complete history of

events of operations specified in S. For each ei let fei be the corresponding

event function and i be the position in the history defined by the event’s

time of occurrence. Then

(fe2n ◦ fe2n−1 ◦ ... ◦ fe1)({((), ∅)}) 6= ∅ ⇐⇒ He is linearizable (4.20)

Proof: First, the direction “⇐=” will be proven. So, assume He is lineariz-

able. Let iH be the index function for an event in the history H. Then,

according to the definition of linearizability a permutation of events p

exists, such that

1. Hp = (p(e1), ..., p(e2n)) is a sequential history

2. for an end event eend and a start event estart it holds iHe(eend) <

iHe(estart) =⇒ iHp(p(eend)) < iHp(p(estart))

3. for all operations o corresponding to the events in Hp, CHp(o) =

true, where CHp is the condition of an operation in Hp right before

the operation’s linearization point

72 4. Methodology

For simplicity, define eik := p(ei), where iHp(p(ei)) = k. Let (o1, ..., on)

be the non-ambiguous sequence of operations corresponding to Hp. Now,

it will be proven that the metastate ((o1, ..., on), ∅) is an element of (fe2n ◦
fe2n−1 ◦ ... ◦ fe1)({((), ∅)}).

The first element in Hp is per definition ei1 which is a start event ac-

cording to property 1 of permutation p. Due to property 2, there is

no end event ej, where j < i1. Consequently, if i1 > 1, all events

that precede ei1 in He are start events. If xj is the operation corre-

sponding to event ej then there must be a metastate ((), {xj|j < i1}) in

(fei1−1
◦ ... ◦ fe1)({((), ∅)}) according to the definition of the start event

function. Per definition o1 is the corresponding operation to ei1 . As this

metastate describes the initial state σinit and C(o1)|σinit = true due to

property 3, the function fei1 which is a start event function creates a

metastate ((o1), {xj|j < i1}). If ei2 is the next end event in He before

any other end event, obviously, its function does not erase all metastates

from the metastate description because of the definition of end event

functions and because o1 is in the OC component of at least one of the

metastates.

Now, assume that for some m there is a metastate ((o1, ..., om), X) for

some set of operations X in the metastate description (fei2m+1−1
◦ ... ◦

fe1)({((), ∅)}). Per definition ei2m+1 is the start event of the operation

om+1. Due to property 2, the only end event that may occur in He before

ei2m+1 are ei2 , ei4 , ..., ei2m . However, according to the assumption, they

have not erased the metastate ((o1, ..., om), X). Let σm be the state in-

ferred from this metastate, then according to property 3 C(om+1)|σm =

true. Consequently, there is a metastate ((o1, ..., om, om+1), X) in (fei2m+1
◦

... ◦ fe1)({((), ∅)}). If any of the end events of the operations o1, ..., om+1

takes effect after ei2m+1 before any other end event, they will not erase

this newly created metastate because their corresponding operation is in

the OC component.

=⇒ ((o1, ..., on), ∅) ∈ (fe2n ◦ fe2n−1 ◦ ... ◦ fe1)({((), ∅)})

=⇒ if He is linearizable ⇒ (fe2n ◦ fe2n−1 ◦ ... ◦ fe1)({((), ∅)}) 6= ∅

4.5. Proving Linearizability 73

Now, we prove the direction “=⇒”. The goal is to show that a permu-

tation p exists that fulfills the three linearizability properties. Assume

(fe2n ◦ fe2n−1 ◦ ... ◦ fe1)({((), ∅)}) 6= ∅.

First of all, note that per definition a start event function never creates

a metastate with a shorter OC component than the existent metastates

in the description before the application of the function. Second, note

that after the application of an end event function only metastates are

remaining in the metastate description that contain the corresponding

operation in the OC component. Consequently, an element in (fe2n ◦
fe2n−1 ◦ ... ◦ fe1)({((), ∅)}) must contain all operations that have started

and ended in He. Let (o1, ..., on) be a sequence of the OC component of

one of the elements. Then, a permutation p can be defined such that

iHp(p(ei)) = 2 ·k−1, if ei is a start event of ok, and iHp(p(ei)) = 2 ·k, if ei

is an end event of ok. Hence, the history Hp defined by p is a sequential

history fulfilling property 1.

Let eend be an end event of some operation o and estart the start event

of another operation q in He. Further, let iHe(eend) < iHe(estart). Then,

the event function feend is applied before the event function festart . Since

the end event function only keeps metastates in which the corresponding

operation is in the OC component already, and start event functions only

append operations to existing OC components, a metastate cannot have

an OC component, where q occurs before o⇒ iHp(p(eend)) < iHp(p(estart))

⇒ property 2 is fulfilled by p.

Due to the definition of a start event function, only operations are put

into the OC component of a metastate if their condition is true. Conse-

quently, for all operations in the sequence (o1, ..., on) the condition has

been true during their insertion into OC . ⇒ property 3 is fulfilled by p.

=⇒ (fe2n◦fe2n−1◦...◦fe1)({((), ∅)}) 6= ∅ ⇒ a permutation p exists fulfilling

all linearizability properties. �

This Theorem forms the basis of the verification methodology introduced in

this dissertation. With the event functions defined as introduced, an arbitrary

74 4. Methodology

history can be verified against some specification as described in the sections 4.2

and 4.7.

4.6 Metastate Representation

In section 4.4 metastates have been introduced. However, in this form, the

representation by metastates is even more space consuming than simply con-

sidering first-level states. This section shows how the space requirement can

be effectively reduced so that this method becomes practical.

4.6.1 Permutability of Operations

For the further use of the concept of metastates, following terms are introduced

Operation type Two operations o1 and o2 that are specified by the same

operation specification are called to be of the same type.

Configuration A configuration is a pair of a sequence of operations (o1, ..., on)

and a first-level state σ. A configuration can be interpreted as a state

from which the sequence of operations is executed. If n = 0, then the con-

figuration can be identified with the state σ. This is also called a trivial

configuration. If n = 1, then this is called a primitive configuration.

Effect The effect of an operation o according to its specification as introduced

before is a function of a first-level state to a new state denoted as

ε(o) : x→ y (4.21)

where

x is the first-level state before the effect is applied

y is the first-level state after the effect is applied

((o1, o2, ..., on), σ) denotes the configuration of a sequence of operations

on an initial first-level state σ. For this operation sequence the new state

4.6. Metastate Representation 75

can be inferred by applying all effects of the operations in the same order

for the initial state

((o1, o2, ..., on), σ) −→ ((), ε(on)(...(ε(o2)(ε(o1)(σ)))...)). (4.22)

If X = (o1, o2, ..., on) the short notation is

(X, σ) −→ ((), ε(X)(σ)). (4.23)

Precondition The precondition of an operation o according to its specifica-

tion as introduced before is denoted as C(o). Note that in this document

there is a semantic difference between C(o) = TRUE and C(o) = true.

In the first case, the specification of o defines that the precondition of the

operation is always TRUE. In the second case, the precondition is not

necessarily always TRUE by definition but the state of the system fulfills

the precondition so that it can be executed. Consequently, C(o) = TRUE

is a special case of C(o) = true.

For a state σ, the condition of an operation with all its variables substi-

tuted by their values in S is denoted as C(o)|σ

Validity A primitive configuration (o, σ) is called valid, if o may be executed

in σ. Consequently, we say

(o, σ) is valid ⇐⇒ C(o)|σ = true. (4.24)

This concept can be extended to arbitrary configurations

((o1, o2, ..., on), σ) is valid (4.25)

⇐⇒(o1, σ) is valid ∧ (o2, ε(o1)(σ)) is valid

∧ ... ∧ (on, ε(on−1)(...(ε(o2)(ε(o1)(σ)))...)) is valid

76 4. Methodology

By definition, operations o can only be added to an OC component of a

metastate that evolved from an initial state σ if ((OCo), σ) is valid.

Permutability An operation type is called permutable within a specification

S if for any two operations o1 and o2 of the same type but potentially

different parameter values, the following property holds

∀σ reachable in S : ((o1, o2), σ) is valid ⇔ ((o2, o1), σ) is valid (4.26)

∧ ε(o2)(ε(o1)(σ)) = ε(o1)(ε(o2)(σ))

In this case it can be said that o1 is permutable with o2 and vice versa.

The following Proposition can be deduced from the definitions introduced:

Proposition 1: Let σ be the initial state. A metastate M = (OC , OP) with

OC = (XY Z), where X and Z are arbitrary operation sequences and

Y = (o1, ..., on) a sequence of permutable operations of the same type,

represents the same state as any metastate M ′ = (O′C , OP) with O′C =

(XY ′Z), where Y ′ is a permutation of Y .

Proof: (XY, σ)→ (Y, ε(X)(σ))→ ((), ε(Y)(ε(X)(σ)))

= ((), ε(Y ′)(ε(X)(σ)))← (Y ′, ε(X)(σ))← (XY ′, σ)

=⇒ ε(XY Z)(σ) = ε(XY ′Z)(σ)�

Corollary 1: The insert operation specified in Equation 4.4 is permutable

within PrioQueueSpec in Equation 4.8.

Proof: Let insert(x) and insert(y) be operations inserting an element with

value x and y, respectively. The validity of ((insert(x), insert(y)), σ)

and ((insert(y), insert(x)), σ) for any σ is trivial since C(insert(int i)) =

TRUE. The second property for permutability follows from the commu-

tativity of the union operator for sets that defines the effect of insert

operations. �

4.6. Metastate Representation 77

Remark: Remove operations of distinct elements in a linked list can be speci-

fied in a way that they form another example for permutable operations.

4.6.2 Equivalence Classes

The permutability property of an operation allows reductions of a metastate

description. It permits the representation of multiple metastates by one metas-

tate as stated in Proposition 1.

A metastate can be considered as an embodiment of a sequential history that is

represented by the OC component. However, as seen before a set of metastates

can be redundant. There are for example two metastate representations for

one actual first-level state at time 4 in Table 4.4. Before continuing on the

example, further terms have to be introduced for completing the formalism.

Equivalence For a specification S, two metastates M1 and M2 are called

equivalent in S if the same set of first-level states are inferred from both

metastates. The notation is

M1 ∼S M2 (4.27)

For simplicity, the symbol S can be omitted if the usage is clear.

Equivalence class If XS is the set of all metastates over the specification S

and M ∈ XS then the set

[M]S = {N ∈ XS|N ∼S M} (4.28)

forms an equivalence class.

Cardinality The cardinality |M | of a metastate M = (OC , OP) is defined as

|M | = |OC |+ |OP | (4.29)

Minimal element An element of an equivalence class is called minimal if its

cardinality is minimal compared to all other elements in the class. A

class may contain multiple minimal elements.

78 4. Methodology

Table 4.5: Metastates from Table 4.2 for comparison

Time Metastates
-1 {((),∅)}
0 {((),{l0}) , ((l0),∅)}
1 {((),{l0,l1}) , ((l0),{l1}) , ((l1),{l0}) , ((l0,l1),∅) , ((l1,l0),∅)}
2 {((l0),{l1}) , ((l0,l1),∅) , ((l1,l0),∅)}
3 {((l0,l1), ∅) , ((l1,l0),∅)}

Table 4.6: Reduced metastates from Table 4.5 due to permutability

Time Metastates
-1 {((),∅)}
0 {((),{l0}) , ((l0),∅)}
1 {((),{l0,l1}) , ((l0),{l1}) , ((l1),{l0}) , ((l0,l1),∅)}
2 {((l0),{l1}) , ((l0, l1),∅)}
3 {((l0,l1),∅)}

There is no value in knowing whether the one or the other permutable op-

eration has taken effect before, because both possibilities lead to the same

first-level state. Since equivalent metastates do not provide any valuable infor-

mation for the verification process, from now on at most one representative of

an equivalence class will be considered per metastate description. This leads

to a reduced metastate description as in Table 4.6. Now, each metastate cor-

responds to exactly one state.

4.6.3 Implied Metastates

The fact that there are operations with their precondition always being TRUE

offers the possibility of describing multiple first-level states by a single metas-

tate. Therefore the following fact has to be considered.

Implication For two metastates M1 and M2, M2 is called implied by M1,

if M1 can never exist in a metastate description without M2 being an

element of the same metastate description. Hence, for any metastate

description D, we have

M1 ∈ D =⇒M2 ∈ D (4.30)

4.6. Metastate Representation 79

Following Lemmas and Proposition can be stated

Lemma 1: Let o be an operation with C(o) = TRUE and M1 = (X, Y ∪
{o}),M2 = ((X, o), Y) be metastates withX being an arbitrary operation

sequence and Y an arbitrary set of pending operations. Then M1 ⇒M2.

Proof: Whenever there is a metastate description containing M1, it must con-

tain M2 since o is ready to take effect at any time due to its precondition.

�

Lemma 2: Let Z be a set of permutable operations of the same type with

∀z ∈ Z : C(z) = TRUE, X being an arbitrary operation sequence, and

Y an arbitrary set of pending operations. Then

(X, Y ∪ Z)⇒ ((X, s(W)), Y ∪ (Z \W)),∀W ⊆ Z ∧ ∀s(W) (4.31)

where

s(W) is a sequences of elements of W

Proof: Follows recursively from the permutability of the operations in Z and

Lemma 1. �

Lemma 3: With the same setting as in Lemma 1, M2 ;M1.

Proof: Follows by the counterexample in Table 4.6.

Proposition 2: Let Z1, Z2, ..., Zn each be a set of permutable operations of

the same type within the set but of different type across the sets, ∀z ∈
Z =

⋃n
i=1 Zi : C(z) = TRUE, X being an arbitrary operation sequence,

and Y an arbitrary set of pending operations. Then

(X, Y ∪ Z)⇒ ((X, p(s1(W1)...sn(Wn))), Y ∪ (
n⋃
i=1

Zi \
n⋃
i=1

Wi)), (4.32)

∀Wi ⊆ Zi ∧ ∀p(.)

80 4. Methodology

Table 4.7: Metastates from Table 4.6 for comparison

Time Metastates
-1 {((),∅)}
0 {((),{l0}) , ((l0),∅)}
1 {((),{l0,l1}) , ((l0),{l1}) , ((l1),{l0}) , ((l0,l1),∅)}
2 {((l0),{l1}) , ((l0, l1),∅)}
3 {((l0,l1),∅)}

Table 4.8: Further reduced metastates from Table 4.7 due to implied metas-
tates

Time Metastates
-1 {((),∅)}
0 {((),{l0})}
1 {((),{l0,l1})}
2 {((l0),{l1})}
3 {((l0,l1),∅)}

where

si(Wi) is a sequences of elements of Wi

p(.) is a permutation of sequences

Proof: Follows recursively from Lemma 2. �

The consequence of Proposition 2 is that it is unnecessary to treat metastates

that are implied by other metastates explicitly because their existence is def-

inite. Hence, it is sufficient to consider only the implying metastates keeping

in mind that the other metastates are covered, too.

In the example this means that there is only one metastate left as shown in

Table 4.8. From each single metastate at each point in time all first-level states

from Table 4.3 can be inferred by taking equivalent and implied metastates into

consideration. The advantage from a computational point of view is that there

is much less concrete states to be stored for the verification process. However,

the restrictions for which operations this is correct must be kept in mind.

4.7. Advanced Operation Specification 81

A remove operation of a queue or a set operation of an int is not handled

that easily because the precondition is not trivial and the operation is not per-

mutable, respectively. Nevertheless, the insert operation is the basic operation

for most data structures in the sense that a first-level state can be entirely em-

ulated by a metastate containing only insert operations in its OC component.

Consequently, a lot of complexity is saved as will be shown later in the case

studies in chapter 6.

4.7 Advanced Operation Specification

As shown in the previous section, it is possible to consider the transitions of

the system’s states on an operation level instead of on the concrete first-level

state. Knowing this, it is possible to define an effect on the level of operations

and thus, changing the metastate directly instead of by changing the system’s

variables and hence, the first-level state.

4.7.1 Plain Metastate Transition

Even if permutability and implied metastates are taken into account, some-

times there are still more entities to be considered in a metastate than in a

first-level state. The following example shows this for a short priority queue

history which could be easily adapted for any collection-based data structure.

Table 4.9 shows a history of four operations of the PrioQueueSpec specification.

First, there are two overlapping insert operations. After that, two remove

operations are executed sequentially. This history leads to the first-level states

in Table 4.10 and the metastate descriptions in Table 4.11. The descriptions

of the times -1 to 3 are omitted since they are identical to the descriptions in

Table 4.3 and 4.8.

Since a remove operation does not have a trivial precondition, implied metas-

tates are not present. Further, remove operations are not permutable because

they always have to remove the element of highest priority at a time. Let us

consider each step in detail.

At time 3, there is only one metastate containing both insert operations in

the OC component. There are no inherent implied metastates and thus, there

82 4. Methodology

Table 4.9: A history of two insert and two remove operations

Log ID Operation Start End Value

0 insert 0 2 1
1 insert 1 3 2
2 remove 4 6 2
3 remove 5 7 1

Table 4.10: State evolution derived from Table 4.9

Time States
4 {[1] , [1,2]}
5 {[] , [1] , [1,2]}
6 {[] , [1]}
7 {[]}

Table 4.11: Plain metastate evolution derived from Table 4.9

Time Metastates
4 {((l0,l1,l2),∅) , ((l0,l1),{l2})}
5 {((l0,l1,l2,l3),∅) , ((l0,l1,l2),{l3})} , ((l0,l1),{l2,l3})}
6 {((l0,l1,l2,l3),∅) , ((l0,l1,l2),{l3})}
7 {((l0,l1,l2,l3),∅)}

4.7. Advanced Operation Specification 83

is only a single first-level state to be inferred from the metastate description.

This first-level state is denoted as σ3,1 as the first inferred state at time 3.

At time 4, remove(2) with log ID 2, in the following denoted as remove2,

starts. The condition at time 3 of the only existing state C(remove2)|σ3,1 =

true, because the element of highest priority in the queue is the one with value

2. Consequently, both is possible, that remove2 takes effect or not. This

is indicated by once adding the operation to the OC sequence, and once by

putting it into the OP set. Now, there are two states σ4,1, where all operations

have been executed and σ4,2 where remove2 did not take effect.

At time 5, there are three possibilities. Either both remove operations have

been applied, or only remove2, or none of the remove operations. It is not

possible that remove3 takes effect without remove2 taking effect before, because

C(remove3)|σ(4,2) 6= true.

At time 6, remove2 is no longer pending and thus only the metastates are

left in which it is completed. At time 7, all operations are completed and

consequently there is only one metastate left because it is the only metastate

where all operations have been executed.

4.7.2 Redundancy

In Table 4.11 at time 7 there is one metastate left containing four operations.

However, in the actual inferred first-level state, there is not a single element in

the queue. This is due to the redundancy of insert/remove pairs.

Redundancy Let σ be the initial state, (o1, o2, ..., on) a n-tuple of operations

and c = ((X1, o1, X2, o2, ..., Xn, on, Xn+1), σ) a valid configuration where

Xi is some operation sequence for 1 ≤ i ≤ n+ 1. Then, we say

(o1, o2, ..., on) is redundant in c

⇐⇒((X1, X2, ..., Xn, Xn+1), σ) is valid (4.33)

∧((X1, o1, X2, o2, ..., Xn, on, Xn+1), {}) ∼S ((X1, X2, ..., Xn, Xn+1), {})

84 4. Methodology

Corollary 2: In PrioQueueSpec the operation pair (insert1(x), remove1(x))

is redundant in any valid configuration for all x ∈ Z, if the remove1

operation has removed the element inserted by the insert1 operation.

Proof: Let ((Xinsert1(x)Y remove1(x)Z), {Q = ∅}) be a valid configuration,

where X, Y , and Z are some operation sequences.

First of all it has to be proven that ((XY), {Q = ∅}) is valid. (X, {Q =

∅}) is valid according to the definition of validity. Now, for any insert

operation in Y , the condition is fulfilled because C(insert(x)) = TRUE.

For each changeKey operation there are three cases.

1. changeKey changes the value x of an object to another value inserted

by another insert operation. This object has not been modified in

Q since it has not been touched by insert1.

2. changeKey changes the value x of the object inserted by insert1 to

another value. ⇒ remove1 has not removed the value of insert1 ⇒
 to the initial assumption ⇒ it cannot have changed the value

inserted by insert1 but of another insert operation and hence, see

case 1.

3. changeKey changes the value y 6= x of an object to another value

⇒ the object has been inserted by another insert operation⇒ This

object has not been modified since it has not been touched by in-

sert1.

Consequently, for each changeKey operation in Y its precondition is still

fulfilled. For each remove operation there are two cases.

1. Remove removes an object with value y inserted by another in-

sert operation. Let Qσ be the value of Q at state σ inferred from

((Xinsert1(x)Y), {Q = ∅}) right before the remove operation is

taking effect ⇒ C(remove(y))|σ = true ⇒ y is the highest value in

Q ⇒ y is the highest value in Q \ {o1}, where o1 is the object in-

serted by insert1 ⇒ the condition of the remove operation is fulfilled

without insert1 taking effect before.

4.7. Advanced Operation Specification 85

2. Remove removes an object with value x inserted by insert1. ⇒
remove1 has not removed the object inserted by insert1 ⇒ to the

initial assumption⇒ it cannot have removed the object inserted by

insert1 but of another insert operation and hence, see case 1.

Consequently, for each remove operation in Y its precondition is still

fulfilled.

=⇒ ((XY), {Q = ∅}) is valid.

Now, it has to be proven that ε(Xinsert1(x)Y remove1(x))({Q = ∅}) =

ε(XY)({Q = ∅}). Let Qτ = ε(XY)({Q = ∅}) be the value of Q at state

τ right before the first operation in Z takes effect. As shown before in

this proof, there cannot be any operation in Y that has modified the

object inserted by insert1 ⇒ ε(Xinsert1(x)Y)({Q = ∅}) = ε(XY)({Q =

∅}) ∪ {o}, where IntVal(o) = x ⇒ ε(Xinsert1(x)Y remove1(x))({Q =

∅}) = Qτ ∪ {o} \ {o} = Qτ = ε(XY)({Q = ∅})

=⇒ ε(Xinsert1(x)Y remove1(x)Z)({Q = ∅}) = ε(XY Z)({Q = ∅})

=⇒ ((Xinsert1(x)Y remove1(x)Z), {}) ∼PrioQueueSpec ((XY Z), {})�

4.7.3 Specifying a Removal: Exploiting Redundancies

There are two issues with the metastate description of Table 4.11. Firstly,

there is more memory space needed for performing the verification procedure

because all executed operations are stored. Secondly, there are computational

steps needed for inferring that the queue Q is empty.

The redundancy property just introduced allows for a different handling of re-

move operations. If all elements were put into the queue by an insert operation

in its final appearance, a remove operation would always remove an element

that was inserted before by an insert operation in PrioQueueSpec. Therefore,

with this metaknowledge it is possible to specify a remove operation by chang-

ing the metastate rather than changing the first-level state as in Equation 4.5

86 4. Methodology

remove() (4.34)

:= ((int i), (parameters)

∀ insert i(x) ∈ OC : x ≤ i

∧ ∃insert j(y) ∈ OC ∪OP : y = i, (precondition)

(OC , OP)→ (OC \ {insert j(y)}, OP \ {insert j(y)})) (effect).

This specification states that a remove operation can take effect, if all com-

pleted insert operations have inserted only elements of lower or equal priority

than the element removed by this remove operation. The index i indicates that

all insert operations in the metastate are well-distinguished. Furthermore,

there must exist a completed insert operation that has inserted an element

with the same priority as the element that is removed. The effect is that the

corresponding insert operation is removed from the metastate.

Note that the assumption of this specification is that there is no changeKey op-

eration in the metastate. However, an insert/changeKey pair is semi-redundant

as will be shown in the next paragraphs which makes it possible that there still

remain only insert operations in the OC component of a metastate even when

applying changeKey operations.

Furthermore, here OC is considered to be a set but actually it is a sequence.

Since insert operations are permutable there is no difference in this example

but it is more readable to consider it as a set in the specification. Usually

another notation would have to be used for OC .

The result with this specification is that the example in Table 4.11 reduces to

the metastates in Table 4.13. Now, the metastates never contain more elements

in the OC component than the queue of their inferred first-level states.

4.7.4 Semi-Redundancy

In the history example of Table 4.14 first, there is executed an insert opera-

tion and then, a changeKey operation that changes the value of the inserted

element. Naively, this leads to the metastate descriptions in Table 4.15. The

4.7. Advanced Operation Specification 87

Table 4.12: Metastates from Table 4.11 for comparison

Time Metastates
4 {((l0,l1,l2),∅) , ((l0,l1),{l2})}
5 {((l0,l1,l2,l3),∅) , ((l0,l1,l2),{l3})} , ((l0,l1),{l2,l3})}
6 {((l0,l1,l2,l3),∅) , ((l0,l1,l2),{l3})}
7 {((l0,l1,l2,l3),∅)}

Table 4.13: Metastate evolution derived from Table 4.9 modulo redundancies

Time Metastates
4 {((l0),∅) , ((l0,l1),{l2})}
5 {((),∅) , ((l0),{l3}) , ((l0,l1),{l2, l3})}
6 {((),∅) , ((l0),{l3})}
7 {((),∅)}

Table 4.14: A history of an insert and a changeKey operation

Log ID Operation Start End Value 1 Value 2

0 insert 0 1 1
1 changeKey 2 3 1 2

88 4. Methodology

Table 4.15: Plain metastates derived from Table 4.14

Time Metastates
0 {(),{l0})}
1 {((l0),∅)}
2 {((l0),{l1}) , ((l0,l1),∅)}
3 {((l0,l1),∅)}

problem in this metastate description is similar to the problem before for re-

move operations. The first-level state is not trivially inferable and there are

cases where there are more elements in the OC component than in the inferred

first-level state. The next property helps to reason about a solution for this

problem.

Empty operation The empty operation is defined by default for any speci-

fication S as

skip() := ((),TRUE ,) (4.35)

The skip operation is always applicable, takes no parameters and does

not change the first-level state of a system. It is permutable with any

other operation and redundant in any metastate.

Semi-redundancy Let σ be the initial state, (o1, o2, ..., on) an n-tuple of oper-

ations and c = ((X1, o1, X2, o2, ..., Xn, on, Xn+1), σ) a valid configuration

where Xi is some operation sequence for 1 ≤ i ≤ n+ 1. Then, we say

(o1, o2, ..., on) is semi-redundant in c (4.36)

⇐⇒∃ a sequence of operations (p1, p2, ..., pn),

where at least one of the pi, 1 ≤ i ≤ n is the empty operation

with ((X1, p1, X2, p2, ..., Xn, pn, Xn+1), σ) is valid

∧((X1, o1, X2, o2, ..., Xn, on, Xn+1), {})

∼S ((X1, p1, X2, p2, ..., Xn, pn, Xn+1), {})

4.7. Advanced Operation Specification 89

Semi-redundancy is a generalization of redundancy.

Corollary 3: In PrioQueueSpec a pair (insert1(x), changeKey1(x, y)) is semi-

redundant in any valid configuration for all x, y ∈ Z, if the changeKey1

operation has changed the value of the element inserted by the insert1

operation.

Proof: Let ((Xinsert1(x)Y changeKey1(x)Z), {Q = ∅}) be a valid configura-

tion, where X, Y , and Z are some operation sequences. Then the pair

(skip(), insert2(y)) fulfills the necessary properties in the definition for

semi-redundancy if insert2(y) inserts the same object as insert1(x)) but

with different value.

((Xskip()Y), {Q = ∅}) = ((XY), {Q = ∅}) is valid for similar reasons as

in the proof of Corollary 2.

Now, it has to be proven that ε(Xinsert1(x)Y changeKey1(x, y))({Q =

∅}) = ε(XY insert2(y))({Q = ∅}). Let Qτ = ε(XY)({Q = ∅}) be the

value of Q at state τ right after the last operation in Y takes effect. Then

as in the proof before, ε(Xinsert1(x)Y)({Q = ∅}) = ε(XY)({Q = ∅}) ∪
{o}, where IntVal(o) = x ⇒ ε(Xinsert1(x)Y changeKey1(x, y))({Q =

∅}) = Qτ ∪ {o}, where IntVal(o) = y.

On the other hand, ε(XY insert2(y))({Q = ∅}) = Qτ ∪ {o}, where

IntVal(o) = y. =⇒ ε(Xinsert1(x)Y changeKey1(x, y)Z)({Q = ∅}) =

ε(XY insert2(y))({Q = ∅})

=⇒ In PrioQueueSpec ((Xinsert1(x)Y changeKey1(x, y)Z), {}) is equiva-

lent to ε(XY insert2(y))({})�

4.7.5 Exploiting Semi-Redundancies in a Specification

As we have seen, an insert/changeKey pair is semi-redundant in PrioQueueSpec.

It can be represented by discarding the first insert operation and replacing the

changeKey operation by another insert operation. Consequently, an alterna-

tive specification of the changeKey operation to the one of Equation 4.6 in

PrioQueueSpec would be

90 4. Methodology

Table 4.16: Metastates from Table 4.15 for comparison

Time Metastates
0 {(),{l0})}
1 {((l0),∅)}
2 {((l0),{l1}) , ((l0,l1),∅)}
3 {((l0,l1),∅)}

Table 4.17: Metastates derived from Table 4.14 without semi-redundancies

Time Metastates
0 {(),{l0})}
1 {((l0),∅)}
2 {((l0),{l1}) , ((l2),∅)}
3 {((l2),∅)}

changeKey(int i1, int i2) (4.37)

:= ((int i1, int i2), (parameters)

∃insert j1(y) ∈ OC ∪OP : y = i1, (precondition)

(QC , QP)→ ((OC ∪ {insert j2(i2)}) \ {insert j1(y)}, (effect)

OP \ {insert j1(y)})).

Now the metastate description in Table 4.15 changes to the one in Table 4.17.

The operation ID 2 denotes an artificially created insert operation that in-

serted an element with value 2. Since a changeKey operation acts like a se-

quence of a remove and an insert operation with a new value, the new insert2

operation may have the same start and end timestamp as the changeKey op-

eration.

4.8 Additional Special Cases

It can happen that during the execution of a program an operation is executed

but has no effect for some reason. For example a remove operation might be

executed on an empty data structure. Nevertheless, this case has to be treated

4.9. Summary 91

correctly. If such an operation is executed but does not perform its actual task,

there must be a description of what happened.

According to the example specification of a priority queue, a remove operation

that removes a null value can only occur if the queue is empty at the time of

its occurrence according to the precondition of the operation specification. An

operation that does not change the system’s state is redundant in itself and

thus, does not need to be considered in the OC component of a metastate at

all.

An insert operation that inserts a null value is invalid per definition. If however

a maximum queue size is defined, then an insertion of a null value can become

valid. In the next chapter there will be a more detailed description of how

special cases are treated for example programs.

4.9 Summary

This chapter introduced a new verification scheme for verifying execution traces

against linearizability that does not require any backtracking and has proven its

validity. First, an outline of the method has been given. Second, the assumed

specification format has been described. Third, the format of the history that

is necessary has been given. Fourth, an alternative view of the system’s state

by using the level of metastates has been detailed. Fifth, another specification

possibility has been given with the use of metastates. Sixth, it has been proven

that the verification methodology is generally applicable. At last, some possible

special cases have been mentioned.

The next chapter uses all the theory of this chapter and shows how this method-

ology is applicable in practice.

92 4. Methodology

5. Implementation

The previous chapter has given all necessary formal background for a verifier

implementation and proven that this method is applicable. This chapter de-

scribes the implementation that realizes the method. One goal is to have a

framework that can be easily adapted to complex concurrent systems for veri-

fying their correctness against linearizability. Another goal is to show example

implementations for concrete verification case studies. The implemented veri-

fier is capable of verifying not only common data structures like lists or sets but

also more complex ones like the priority queue which has never been proven

against linearizability before.

First, this chapter presents the general framework. After that, it outlines

the implementation of operation handlers. Finally, it mentions optimization

elements. Parts of the implementation described in this document are patented

in [DrBGE10].

5.1 Framework

The implementation of the verifier for a specific case consists of two parts.

The first part is the generic framework which is adaptable code for special

purpose verifications. It provides the basic structures that are necessary for an

application of the method introduced in this thesis. It assumes a determined

format for the history that is verified. Furthermore, it defines interfaces that

have to be provided for a specific verification. This framework can be used in

all verification cases applying this method. The second part is the concrete

implementation of the provided interfaces that will be described in the next

section. An overview of the verification procedure is given in the previous

94 5. Implementation

chapter in Figure 4.1. Following three points form the critical parts of the

implementation

1. Space efficiency

2. Time efficiency

3. Ensuring completeness of the solution

The first two items are issues that can be tackled by both the general frame-

work and the implementations of the provided interfaces. The third item is

an issue that is not a general problem but rather an issue for some special

cases like the priority queue. Space efficiency is tackled by gathering common

information among different metastates. It is very important to make the im-

plementation as space efficient as possible since the increased performance is

gained by paying with higher space requirements. Although, the implemented

method is faster than currently available methods, it is always an issue to op-

timize the performance as much as possible. Ensuring the completeness of the

solution is very challenging since this requires the realization of a complete

recursion so that all possible sequences are covered.

5.1.1 Building a History

The verifier runs on a test-case. So before the verifier can run, the system

under test (SUT) needs to produce a history by logging all operations and

their effects. Hence, the three basic steps of the verification procedure are:

1. Devise a test scenario

2. Instruct the SUT to build a history

3. Verify the history

The overview of the use cycle for the verification is schematized in Figure 5.1.

After the design of the code the three basic steps of the verification are exe-

cuted. If the verification issues that the histories generated by the SUT are

5.1. Framework 95

Figure 5.1: Schema of the design/verification cycle for the use of the introduced
method

correct, the code can be used. Otherwise, more design or debug cycles are

necessary and the changed code has to be verified once more. It is necessary to

define sensible test cases for the SUT to obtain expressive verification results.

The memory space for logging operations has to be allocated as a whole before

the beginning of a test run. By this, no time is wasted for memory allocation

during the execution of the actual program code. If time is wasted unneces-

sarily during a test of a concurrent program, this means that the test scenario

has lesser characteristics of a stress test which makes the occurrence of poten-

tial errors less likely. A concurrent program is much more likely to produce

potential errors if as many parallel accesses are executed as possible within a

time period.

The number of operations executed during a test run is limited to a fixed num-

ber so that it is assured that the allocated memory space is sufficient for all

logged operations. During the test run, a global pointer points to the first

free memory location for a log entry. This memory space is reserved at the

96 5. Implementation

Table 5.1: The format of log entries in a history

Log ID Operation Start End Thread Value

0 remove 0 2 1 null
1 insert 1 5 2 5
2 insert 3 7 1 4
3 remove 4 6 3 4

Table 5.2: A history of operations sorted according to event times

Time Log ID

0 0
1 1
2 0
3 2
4 3
5 1
6 3
7 2

beginning of an operation by the compare-and-swap instruction (CAS) which

atomically sets the pointer to the next free memory location. When an oper-

ation is ending, it fills the reserved memory with all necessary information for

the verifier. This information is the ID of the operation, the operation name,

the start time, the end time and the values manipulated by the operation. Of-

ten the ID can be identified with the start or end time because these values are

unique by definition. In addition, a thread ID can help to analyze the structure

of the history but it is not essential for the actual verification procedure.

After finishing the test run, the entire log history is stored in a file as binary

data. Now, the history is ready to be analyzed.

5.1.2 Preprocessing the History

The test run of the program produces an unsorted history in a format similar to

the one shown in Table 5.1. This format contains operations in some arbitrary

order. However, in this raw appearance the necessary information for the

verification process is not conveniently extractable.

5.1. Framework 97

Therefore, a new list of sorted entries is produced as in Table 5.2. Here, each

operation occurs twice, once at its start time and once at its end time (compare

section 4.3).

5.1.3 Verifier Harness

The verifier harness performs the actual verification. Figure 5.2 shows the

UML schema of the most important data structures of the harness.

For all SUT’s, the verification procedure is basically the same. The first log

entry in the sorted list is removed and checked whether the current virtual

time is equal to the start time or the end time of the entry. The operation

of the log entry is extracted and the proper operation handler is called. An

operation handler for a specific operation has to implement an interface that

provides two functions. One that handles the start and one the end event of an

operation. After handling all events faultlessly, the success of the verification

is issued.

The state set is managed mainly by two data structures which are the Meta-

State and the MetaStateUniverse. The MetaState contains a list for pending

operations, one for finished operations and one for neutralized operations. Fin-

ished operations are part of the completed component introduced in the pre-

vious chapter. If operations are permutable, it is not necessary to store their

precise sequence. Neutralized operations are those which form a redundant

operation sequence in the specification. Hence, all finished and neutralized

operations with the proper pending operations that are ready to take effect at

any time imply the actually managed first-level state.

The MetaStateUniverse forms the entire metastate description. It contains all

MetaStates and a DefiniteState that stores a sequence of finished operations

modulo redundancies that is common for all MetaStates in the MetaState-

Universe. Figure 5.3 shows the logical structure of MetaStates which are com-

posed by their three components completed by the DefiniteState.

The DefiniteState decreases significantly the required memory because if for

example a collection contains definitely x elements at some point in time and

if there are y different possible metastates, then we save (x− 1) · y references

98 5. Implementation

Figure 5.2: Verifier harness schema

5.1. Framework 99

Figure 5.3: Logical scheme of MetaStates in the implementation

to operations. In practice, the DefiniteState often contains more finished op-

erations than the currently managed MetaStates altogether. Note, that the

concept of a shared state for all state alternatives has to be treated carefully

if operations are not permutable.

Another advantage is that if the operations in the DefiniteState are stored in

a sophisticated manner, it is very fast to find the relevant operation entries.

For example in the case of a priority queue, the DefiniteState itself can be a

priority queue so that the important operations are obtained quickly. Hence,

the DefiniteState saves time and space.

5.1.4 Specifier Interface

The specifier interface provides all functions that are necessary for an oper-

able verification. It defines how the parameters for each operations are read

since they can vary in number and types. Furthermore, it delivers the Oper-

ationHandlers for each operation which are described in the next section. It

also stores the internal appearance of the DefiniteState that is used for opti-

mization purposes. Lastly, it also defines print functions for all kinds of data

structures that are important especially for the debugging procedure.

100 5. Implementation

5.2 Operation Handlers

For each data structure or system to be verified there are operation handlers

for each operation necessary. The OperationHandler is declared by an interface

and implements the start and the end event handling for an operation.

5.2.1 End Event Handler

The end event handler is implemented for most operations in a very similar

manner. Following steps are executed for an operation O

1: for each MetaState in MetaStateUniverse do

2: if O ∈ MetaState.pending then

3: if O is trivially applicable in MetaState then

4: shift O from MetaState.pending to MetaState.finished

5: else

6: discard this MetaState

7: end if

8: end if

9: if O is in a tuple in MetaState.neutralized then

10: remove the tuple if all its operations occurred in the past

11: end if

12: end for

13: if MetaStateUniverse is empty then

14: issue “History not linearizable”

15: end if

16: if O ∈ MetaState.finished ∀ MetaState ∈ MetaStateUniverse then

17: remove O from all MetaStates and put it into the DefiniteState

18: end if

19: check for equivalent states

So first, the end event handler checks for all MetaStates in the MetaStateU-

niverse whether the currently handled log entry is in the pending operations

component of the MetaState. In the case of insert operations for lists or pri-

ority queues, the log entry is merely shifted from the pending component to

5.2. Operation Handlers 101

the finished component since such an operation can never fail. For other op-

erations, the MetaState is discarded if an operation is located in the pending

component.

Afterwards, the MetaStateUniverse is checked on emptiness. If there is no

MetaState left, the failure of the verification is issued.

Furthermore, elements in the neutralized component which are mostly pairs

but sometimes higher tuples of operations are removed if all operations in the

tuple are in the past relative to the current event time. That is, all log entries

have an equal or earlier end time than the currently handled entry.

5.2.2 Start Event Handler

The complexity of the start event handler depends on the properties of the

handled operation. If an operation O is handled that is permutable and ready

to take effect at any time, the handler is very simple.

1: for each MetaState in MetaStateUniverse do

2: if there exists fitting neutralizing operations in MetaState.pending then

3: create new states with this neutralized tuple

4: end if

5: add O to MetaState.pending

6: end for

7: check for equivalent states

Here, for each MetaState the current log entry is put into the pending list.

If there are other log entries of operations that are in the pending component

which might neutralize the currently handled operation, all possible neutraliza-

tions are considered and respected in a new state each. Examples for operations

of this kind are insert operations for lists and priority queues. If an operations

is permutable but not trivially applicable, than it has to be checked whether

the invariant is fulfilled.

1: for each MetaState in MetaStateUniverse do

2: if O is applicable in MetaState then

102 5. Implementation

3: apply O in all ways and create new states with O being neutralized or

finished

4: end if

5: add O to MetaState.pending

6: end for

7: check for equivalent states

Since this operation is permutable there is no recursion necessary for further

investigation of the MetaState. One example for such an operation is the re-

move operation of lists. The most complex case is the handling of operations

that are not permutable and consequently not trivially applicable.

1: for each MetaState in MetaStateUniverse do

2: if O is applicable in MetaState then

3: apply O in all ways and create new states with O being neutralized or

finished

4: end if

5: add O to MetaState.pending

6: end for

7: for all newly created MetaStates do

8: perform a recursive check for all operations in MetaState.pending for

applicability

9: end for

10: check for equivalent states

Elaborate recursions are necessary to ensure that all possibilities of orderings

are covered during the verification procedure. For each existing state, it is

checked whether the currently handled operation can be applied. Furthermore,

it is added as pending in each state. If it can be applied in a given state, a new

state is created with the necessary modifications. Then for each new state, a

recursive check for potential applications of pending operations is performed.

This recursion produces new states with each iteration. In the case of a remove

operation it is possible that in some states multiple possibilities are available

for an operation application. If the value x shall be removed but there are

5.3. Optimization 103

multiple x’s inserted, all possibilities have to be considered in a combinatorial

way which is a non-trivial effort.

In all three cases, redundancies might occur in the sense that after applying

all recursions and applications of operations that there are multiple equivalent

states that have to be eliminated. Consequently, in a last step the MetaSta-

teUniverse is checked for equivalent states which are discarded. This step is

executed by the verifier framework rather than the operation handler and can

be optimized as described in the next section.

5.3 Optimization

As described before, after each operation handling there is a consolidation step

for gathering identical states. This step can be optimized by computing a hash

value for each state depending on the operations finished and pending in a

MetaState. By this, MetaStates with different hash values are certainly not

identical and consequently do not need an entire operation-by-operation com-

parison for all sets. However, if there is a hash collision, all operations must

be compared because it is not certain whether the two MetaStates are really

identical. Nevertheless, comparing hash values will save a detailed operation-

by-operation comparison most of the time and hence makes it a useful opti-

mization.

In the case of our implementation, the hash value is a 64-bit long integer. The

first 32 bit encode the pending operations whereas the second 32 bit encode the

finished operations. The hash value for the empty MetaState is 0. Neutralized

operations are considered as finished.

In Java each object has a 32-bit hash value. Hence, if he is the 32-bit hash

value of a VerifierLogEntry e and hm is the 64-bit hash value of a MetaState

m and e is added as pending to m then the new hash value h′m of m is

h′m = hm ⊕ he (5.1)

The advantage of the bitwise XOR operator is that if the operation is removed

from the pending component, the new value can be computed by simply using

104 5. Implementation

the same function again. The obtained hash value will be the same as before

adding the operation. If e is added to the finished or neutralized component

of m then

h′m = hm ⊕ (he · 232) (5.2)

Again, the removal of an entry from the finished component induces the same

computation of the new MetaState hash value. If an entry is shifted from the

pending to the finished or neutralized component, first Equation 5.1 and then

Equation 5.2 is applied. The effectiveness of this optimization is discussed in

the next chapter.

There is still space left for optimizations, but they are often connected to

special use cases. One possibility is to perform the verification in a multi

threaded manner. However, deeper thoughts on how the results of parallel

verification procedures can be attached to each other properly are necessary.

The parallelizability of a problem is also strongly attached to the considered use

case. Moreover, there is the question of how redundancies can be avoided from

occurring at all instead of consolidating them after they have appeared already.

Furthermore, a general question is how the test cases could be generated such

that errors occur as likely as possible if existent so that less test cases are

needed for a practical result. Those are still open questions that could be

dealt with in future work.

5.4 Applicability

The framework has been adapted for a number of different data structures.

The simplest case study data structure is the list. Furthermore, this method

is implemented also for sets. It is of no relevance, in which way the checked

data structures have been implemented. For the verifier it is not necessary to

know whether the list is implemented by a linked list, an array list or a vector.

Both, the list and the set, have already been verified by other tools before.

However, this method has also been implemented for priority queues which up

to now have never been verified by any tool known to the author. The next

5.5. Summary 105

chapter shows an evaluation and test results that demonstrate the efficiency

and capability of the tool and the method. It is compared to a brute force ap-

proach described in the next section. In addition to that, there is a theoretical

analysis of the expressiveness of the outcome of the verification procedure and

how it can be used and interpreted.

5.5 Summary

This chapter described in detail the implementation of the verifier method and

highlighted the main programming issues. It started with an overview of the

generic framework of the implementation. Then, it elucidated the functionality

of the operation handlers which form the core of each verification application.

Finally, it touched the realized scenarios for this verification method. The next

chapter analyzes the practicability and behavior of the verifier implementation

and shows performance numbers.

106 5. Implementation

6. Evaluation

The previous chapter described the realization of the verification methodol-

ogy. This chapter provides an evaluation of the introduced method and its

implementation. First, the experiments are described. Second, the brute-force

approach is detailed that is used as a reference. Third, the performance results

are presented. At last, other issues are mentioned like space consumption and

effectiveness of the introduced method.

6.1 Description of the Experiments

The experiments in this evaluation focus mainly on the performance compari-

son between the method introduced in this thesis and the brute-force approach

which until now has been the only approach used in the literature for verifying

execution histories to the best of the author’s knowledge. To some extent the

optimized method mentioned in section 5.3 that uses hashes for MetaStates is

also included in the analysis. In the current literature there is no verification

code available for histories generated by priority queue implementations that

could be used for a comparison with the introduced method. Therefore, the

code described in the next section has been used as a reference for brute-force

approaches.

Two implementations of priority queues have been used to produce histories

for different settings. The first implementation is a coarse-grained locking im-

plementation in which in each operation a thread is acquiring a global lock for

the execution. The second implementation is the fine-grained STM-based im-

plementation described in section 2.7. During its development phase, this im-

plementation has also produced incorrect histories due to coding errors, which

108 6. Evaluation

Table 6.1: Test cases for the verified histories

Operations 200K 300K 400K 500K 600K

2 threads × × × × ×
3 threads × × × × ×
4 threads × × × - -
5 threads × × - × -
6 threads × × - - ×

have been used as examples. By the aid of the verifier, those coding errors

could be identified and fixed. However, it is not possible to guarantee the cor-

rectness of the implementation for all possible executions due to the nature of

the method as will be discussed later. An element of risk remains.

The histories have been generated on a Linux SMP-system running on an Intel

Xeon multi processor with 8 (2×4) cores. Due to the limited availability of this

system, the histories have been verified in a Java 5.0 runtime environment on an

Intel Pentium 4 dual core machine. The verification has been performed single-

threaded, though. A multi-threaded execution of the verification procedure

could be an issue for future work.

The covered test cases are marked in Table 6.1 by x’s. These test cases are

adequate for showing the behavior of the verifiers in different dimensions. Five

lines can be identified - two horizontal, two vertical and a diagonal line. The

numbers of total operations increase from left to right whereas the number

of threads increases from top to bottom. Each thread executes Total operations
Number of threads

operations.

For each test case three histories per implementation are generated. The veri-

fication of a history produces two numbers of relevance which are

• the preprocessing time

• the verification time

The preprocessing time includes the reading of the history file and the prepa-

ration of the data structures that are used for the actual verification like the

sorted list of log entries in our method. The verification time measures the

6.2. Brute-Force 109

time from the first step of the actual verification algorithm to the moment the

result is issued. For both values the average of the three times measured are

taken as the performance result for a test case.

6.2 Brute-Force

The brute-force approach is used as a reference for comparison with the method

introduced in this dissertation. It uses the input described before and system-

atically checks all possible orderings of operations one by one respecting the

time constraint of linearizable histories. Fraser used a brute-force verification

approach in [Fras03] as well. However, he verified implementations of sets that

contain elements with a key and a value whereas in the test scenarios con-

sidered here, there are elements with values only. Not all implementations of

data structures use keys but primitive values only and hence it is desirable to

have a verification method that is more generic than that. If keys are absent,

this is a higher challenge for the verification tool because finding the correct

pair of inserting and removing operations is much harder whereas with keys it

is clear which removing operation has removed the element of which inserting

operation. This is the reason why the brute-force approach used here had to be

adapted to become more generic and will be detailed in the next subsections.

6.2.1 Preprocessing the History

For a higher efficiency during the verification procedure, preprocessing is very

important for the brute-force approach. Following data structures contain

necessary information during the verification.

sortedEntr A tree of log entries sorted according to their end time

parEntr A tree map consisting of log entries as keys sorted according to their

start time and lists of parallel log entries as values.

nextEntr A tree map consisting of log entries as keys sorted according to

their start time and lists of next log entry candidates as values.

110 6. Evaluation

The idea is that the parEntr tree map stores all parallel operations to the

key operation whereas the nextEntr tree map stores all operations that might

follow the key operation as next. An operation a is a next operation candidate

of b if the following conditions are fulfilled.

• The start time of a is later than the end time of b

• There exists no operation c which has a start time later than b’s end time

and an end time earlier than a’s start time

It is obvious that the first condition must hold, otherwise a would be parallel to

or earlier than b. If the second condition does not hold, than c must occur after

b but before a. Thus a could never follow b directly. An example of a history

is shown in Figure 6.1. It leads to the mappings in parEntr and nextEntr as

shown in Table 6.2.

6.2.2 Algorithm

Operations that are in the parEntr value of a key operation o may follow o or

can be followed by o in a sequential history according to the time constraint

of the linearizability definition. On the other hand, operations that are in the

nextEntr value of a key operation o may follow o but cannot be followed by

o in a sequential history. Consequently, the Figure 6.2 can be inferred from

Table 6.2. Now, the goal is to find a traversing of the graph starting from Start

that covers each node exactly once and respects the arrows’ directions.

As the name indicates, the brute-force algorithm checks this by counting up

all possibilities. The sequences are checked on the fly on a violation of the

object invariant. A number of different variables are needed throughout the

verification procedure.

current The log entry that is currently checked on applicability

before The log entry that has been previously checked on applicability but

failed

execPath The entire currently assumed execution path

6.2. Brute-Force 111

Figure 6.1: History example for the brute-force illustration

Table 6.2: The format of log entries in a history

Key operation Parallel entries Next entries

Start - O1, O2
O1 O2 O3, O4
O2 O1, O3 O4
O3 O2, O4 -
O4 O3 -

Figure 6.2: Resulting graph from Table 6.2

112 6. Evaluation

The algorithm starts by picking the first element in the list which is the value

of the first key in the next map and sets current to that element. The first key

of the next map is an artificially generated key that indicates that no operation

has been executed and thus, the value contains all candidates of operations that

might be the first operation to take effect according to the time constraint.

This first operation is applied by a sequential implementation of the checked

system or data structure. If it can be applied, its entry is removed from the

sorted tree and used as the key value for the search of the next operation

candidates that can be applied. Furthermore, the operation is added to the

execPath and before is set to null indicating that the previous operation has

been successfully applied. If it cannot be applied, before is set to current. The

pseudo code of each of the next iterations of the brute-force algorithm is shown

below.

1: if execPath is empty then

2: current := nextEntr.getFirstValue().getNext(before)

3: if current = null then

4: all possibilities have been checked and the verification failed

5: end if

6: else

7: lastExecuted := execPath.getLast()

8: if parEntr.getValuesOf(lastExecuted) is empty then

9: current := null

10: else

11: if before = null then

12: current := parEntr.getValuesOf(lastExecuted).getFirst()

13: else

14: current := parEntr.getValuesOf(lastExecuted).getNext(before)

15: end if

16: end if

17: if current = null then

18: if before = null then

19: current := nextEntr.getValuesOf(lastExecuted).getFirst()

6.2. Brute-Force 113

20: else

21: current := nextEntr.getValuesOf(lastExecuted).getNext(before)

22: end if

23: end if

24: end if

25: if (current = null)∨(current.startTime > sortedEntr.getFirst().startTime)

then

26: before = execPath.pollLast()

27: sortedEntr.add(before)

28: else

29: if current is applicable in execPath then

30: before = null

31: execPath.add(current)

32: sortedEntr.remove(current)

33: if sortedEntr is empty then

34: a valid sequential order has been found and the verification suc-

ceeded

35: end if

36: else

37: before = current

38: end if

39: end if

Note that each operation may occur only once in the execPath in the end.

However, due to overlaps of operations the above iteration might select already

handled operations as current. This problem is avoided by marking entries that

are put into the execPath and skipping them in the selection process for the

current entry.

By using the data structures build up in the preprocessing phase, the way how

this algorithm counts up all possibilities can be illustrated by a tree of checked

execution paths. The tree in Figure 6.3 shows the example obtained from the

graph in Figure 6.2. A path from the root to a leaf is a complete execution

path respecting the arrows’ directions without traversing any node more than

114 6. Evaluation

Figure 6.3: Execution tree resulting by applying the brute-force approach for
Table 6.2

6.3. Performance Results 115

once. The gray paths are shorter than the number of operations handled.

These paths break the time constraint and hence are not further checked by

the verifier. The tree is traversed from left to right by the brute-force verifier

and each potentially valid (black) path is checked for the validity of the systems

invariant. As soon as a correct path has been found, the algorithm terminates.

6.3 Performance Results

This section summarizes the obtained performance results. The results will be

discussed in the three dimensions - horizontal, vertical, diagonal - as mentioned

in section 6.1. In the following, systematic refers to the verification method in-

troduced in this thesis and optimized denotes the systematic method including

the optimizations described in section 5.3. Although, the brute-force method

follows a system as well, we will stick to this denotation as it is not as refined

as in our approach.

6.3.1 Horizontal Analysis

The first part of the evaluation of the performance results deals with the be-

havior of the verification methods for an increasing amount of operations in

histories which is referred to as horizontal analysis, here. The chart in Fig-

ure 6.4 shows the horizontal picture for verifying histories generated by the

STM-based implementation executed by two threads. The brute-force ap-

proach performs better than the systematic approach for an amount of up to

500 thousand operations in total. However, for 600 thousand operations the

introduced method overtakes brute-force. There is no significant difference

between the optimized and the standard systematic method.

The graph shows a quite exponential growth of time consumption with in-

creasing numbers of operations for the brute-force method. The factor per

100k operations is about 1.8. The systematic methods show a fairly linear

growth.

The picture looks even worse for brute-force if the preprocessing time is added

to the graphs as in Figure 6.5. Here, only the preprocessing takes more time

then the total time of the systematic methods.

116 6. Evaluation

Figure 6.4: Horizontal chart for 2 threads of the STM implementation (verifi-
cation time)

Figure 6.5: Horizontal chart for 2 threads of the STM implementation (total
time)

6.3. Performance Results 117

Figure 6.6: Horizontal chart for 2 threads of the locking implementation (ver-
ification time)

Figure 6.7: Schema of the structure of histories produces by the STM-based
implementation

Figure 6.8: Schema of the structure of histories produces by the lock-based
implementation

118 6. Evaluation

Another interesting result is the verification time in dependence on the history

structure. Figure 6.6 shows the verification times for similar test scenarios

as before but now for the locking implementation. The observation is that

here, the systematic approach performs even better than before whereas the

brute-force approach performs worse.

This can be explained by having a closer look at the structure of histories

generated by STM- and locking-based implementations as illustrated in Fig-

ure 6.7 and 6.8, respectively. The lines represent the time intervals of oper-

ations when they are executed. While in the STM-based implementation all

intervals are roughly of the same length, the intervals in the locking-based im-

plementation can be very short but also very long. There are many sequences

of short intervals. In a locking-based history it is very likely, that the correct

order of operations is the one where the sequences occur logically before the

long running parallel operations. Hence, this is almost the worst case for the

brute-force approach because it will try most of the other possibilities first.

However, for the systematic approach, it is even advantageous if there are se-

quential parts in the history because they are processed pretty easily by the

method.

Although it is an interesting observation that the verification time depends

on the history structure, it does not change the fact, that horizontally, there

is an exponential growth for the brute-force approach whereas the systematic

approach grows linearly concerning time consumption. The intuitive reason

for this exponential behavior can be given by having a look at the following

simple example.

Let us consider a history H1 = {o3, o4, o5} where o3 and o4 are parallel and the

right order of those two operations is resolved by considering o5 which follows

strictly sequentially after the two parallel operations. In the worst case, the

brute-force verifier will have to traverse two orders which are

1. o3, o4, o5

2. o4, o3, o5

6.3. Performance Results 119

If the history is extended by another two parallel operations o1 and o2 which

strictly occur before o3 and o4, but now o5 deciding the order of the two new

operations, then we already have four orders in the worst case. For further two

operations we then have 8 orders etc. Of course, the worst case is not always

the actual case. Moreover, the probability that an operation has a critical

impact on the order of an operation pair that occurred much earlier is lower

for higher distances between the deciding operation and the pair. Nevertheless,

with increasing numbers of operations in a history these cases occur more often

and this is the reason for the exponential growth that can be observed. The

systematic approach, however, keeps all possible orderings in memory and

hence there is no big difference for when the right order is actually decided.

6.3.2 Vertical Analysis

The results in the previous subsection have already given an impression of

the advantages of the systematic approach for increasing sizes of histories that

are verified. The most interesting question is how the complexity grows for

increasing numbers of threads.

The Figures 6.9 and 6.10 show the graphs for increasing numbers of threads

on a logarithmic scale. There is one graph for 200k operations executed by

the locking implementation and another for 300k operations by the STM im-

plementation. The brute-force exhibits an even worse behavior than in the

horizontal analysis. The time consumption increases in a factorial manner

which is even worse than an exponential increase. The values for 6 threads

were not obtained because a verification has been aborted after a time span of

more than 72 hours for both depicted scenarios.

The systematic approaches also show a factorial increase of time consumption.

However, the practicality is obvious compared to the brute-force approach. In

Figure 6.9 the systematic approaches are faster than the brute-force approach

by a factor of 10 for 4 threads, of 100 for 5 threads, and of a higher factor than

10, 000 for 6 threads.

The optimized approach also shows a slight advantage over the standard version

by 5− 20%. However, for lower numbers of threads the overhead produced by

the hash value computation leads to slightly worse results.

120 6. Evaluation

Figure 6.9: Vertical chart for 200k operations of the locking implementation
(verification time)

Figure 6.10: Vertical chart for 300k operations of the STM implementation
(verification time)

6.4. Other Issues 121

6.3.3 Diagonal Analysis

The diagonal analysis is a summarization of the vertical and horizontal anal-

ysis. After going through the first two analyses the result of the diagonal

consideration is foreseeable.

Figure 6.11 shows the graph for increasing numbers of threads but constant

numbers of operations per thread. Again, the case for the brute-force approach

for 6 threads is not included for the same reason as in the vertical analysis.

Figure 6.12 summarizes the preprocessing times. There are small deviations

observable for the standard and optimized version of the systematic approach.

These deviations can be explained by the influences of the operating system

since the time for loading the file that contains the target history is included

in the results.

6.3.4 Verification of Incorrect Histories

A structured approach for measuring the verification time of incorrect histories

has not been used. The reason for this is that the results for such an investiga-

tion deviate strongly depending on when the error actually occurs. However,

it is obvious that the systematic approach finds errors in a history quicker than

it proves the correctness of a history, because if there is an error, not the entire

history is traversed.

The brute-force approach works the opposite way. An incorrect history forces

the brute-force approach to try all possible operation orderings, whereas a

correct order can be found before traversing them all. Consequently, this is

an issue that favors our approach even more. This issue was confirmed by

randomly chosen incorrect histories which have been generated by the STM-

based implementation during its debugging time.

6.4 Other Issues

The following two issues also have to be considered for a complete evaluation

of the method. Space requirements have to be taken into account as well as

the actual expressiveness of a test run.

122 6. Evaluation

Figure 6.11: Diagonal chart for the locking implementation (verification time)

Figure 6.12: Diagonal chart for the STM implementation (preprocessing time)

6.4. Other Issues 123

6.4.1 Space Requirements

As we have seen in the previous section, the performance of the introduced

verification method is for some cases better than the brute-force approach

by multiple orders of magnitude. However, this gain of performance is not

obtained for free.

While in principle the brute-force method only stores the currently tested exe-

cution path, the introduced method has to store all currently valid alternatives

of execution paths. The space requirement increases exponentially but can be

reduced drastically by the considerations of equivalent states and the like as

discussed in chapter 4 and implementation optimizations like the Definite-State

in chapter 5. The observation here is that the space requirements increase by

some factor around 3 per added thread. This is one of the biggest problems to

solve and optimize in future work because currently often the limits are reached

at 11 or 12 threads. The following itemization gives a very rough impression of

how many metastates are kept in memory at maximum for different numbers

of threads.

2 threads →≈ 10 states

3 threads →≈ 30 states

4 threads →≈ 100 states

5 threads →≈ 300 states

6 threads →≈ 1000 states

Still, many errors can be detected for test runs of up to 9 threads. Despite the

space problem, there can be obtained many more practical results than in the

brute-force approach. Histories generated by 8 threads where still verified in

feasible time.

6.4.2 Error Detection Effectiveness

Since this method does not prove the correctness of an SUT but only of exe-

cutions of it, there is never a real certainty of whether the implementation of

124 6. Evaluation

the SUT is really correct. However, under certain assumptions it is possible to

give a probability analysis of how likely an error is to occur if it exists.

While the probability for an error to occur increases linearly with the number of

operations executed, it is, however, very difficult to estimate how it increases for

the number of threads without any knowledge of the concrete implementation.

The overlaps of operations do not necessarily follow a regular pattern as seen

before. It is also important that the SUT produces sane histories that cover

as much of the parameter and state space as possible. This is part of other

research that deals with the generation of complete test scenarios.

Therefore, a simple assumption of the likeliness of errors occurring is used.

Figure 6.13 shows the probabilities for finding an error with increasing numbers

of verified operations for the following scenarios

• an error occurs once every million operations

• an error occurs once every three million operations

• an error occurs once every ten million operations

• an error occurs once every thirty million operations

• an error occurs once every a hundred million operations

The first value has been chosen out of own practical experience during the

development time of parallel code. Based on the verification, an error that

occurred once every million operations was a common case. Hence, this value

and higher ones are considered for the following analysis. For a probability of

an error occurring of Perror = 1
x
% and a number of verified operations y, the

probability Pdetect of detecting an error is

Pdetect = 1− (1− 1

x
)y (6.1)

For big x and y = a · x, we have

Pdetect ≈ 1− lim
x→∞

(1− 1

x
)ax = 1− e−a (6.2)

6.4. Other Issues 125

Figure 6.13: Probability for finding errors with different assumptions

Table 6.3: Values of Pdetect for different a’s

a 1 2 3 4 5 6

1− e−a 63.21% 86.47% 95.02% 98.17% 99.33% 99.75%

126 6. Evaluation

Table 6.3 shows how Pdetect changes for different a. With this information

it is also possible to interpret a positive verification for y operations. If y

operations have been verified to be correct, we can say that the probability

that the implementation has an error probability of at most 1
y

is P (Perror ≤
1
y
) ≈ 1

e
≈ 36.79%. In the general case, we have

P (Perror ≤
a

y
) ≈ e−a (6.3)

It strongly depends on the use case, which error detection probability is neces-

sary or which error probability is acceptable. This requires an analysis for each

scenario and is also an issue in other areas for example observation of memory

errors in hardware [ScPW09, ScGi06, LiSH07].

Note, that the error detection effectiveness can be increased by defining sensible

test cases. However, this is not in the scope of this thesis. There exists already

work in the area of test generation [EFNR+01, Eyta06, MMPK+07].

6.4.3 History Shape

In a test run it is virtually impossible to start all threads at exactly the same

time. Consequently, it takes n1 operations for a test run with m logged opera-

tions to evolve an execution pattern as defined by the test scenario. The same

is true for the end of a test run. Since all threads execute the same number

of operations, some threads will be finished earlier than other threads. Let

assume n2 is the number of operations that are executed after the first thread

has finished its last operation. Then n = n1 + n2 is the number of operations

that are not executed in the way that was defined by the test scenario. n is

bigger for shorter operations and higher numbers of threads. Thus, a history

should be as long as possible so that n becomes negligible. Since this section

shall only give a feeling for the expressiveness of a verification, in the previous

detection effectiveness we assumed for simplicity n = 0. Nevertheless, the issue

described here should be taken into account in practice.

6.5 Summary
This chapter has given an evaluation of different aspects of the introduced

method. First, it showed performance numbers of the new method compared

6.5. Summary 127

to a brute-force approach. The result is that the use of the new method is much

more practicable than brute-force. This gain of performance is bought through

higher space consumption. This chapter closed by showing the expressiveness

of using a post-execution verification. It is necessary to verify an adequate

number of operations assuming that the error probability is equally distributed.

128 6. Evaluation

7. Summary & Outlook

This dissertation has introduced a new post-execution verification method for

parallel programs against linearizability. The motivation of this dissertation

was to have a tool that gives an indication of the correctness of complex parallel

implementations which are difficult or impossible to be treated with known

methods. This tool is valuable to complex concurrent implementations because

it is the only practical solution that is currently existing for these kind of

programs.

For understanding the area this work is placed in, chapter 2 explained the

difficulties in developing concurrent code. Therefore, it detailed a refined con-

current STM-based implementation that has been developed in the scope of

this dissertation. Then, after giving a detailed introduction to correctness

reasoning and introducing the term linearizability and its known verification

methods, the core work of this thesis was treated in chapter 4 which is the

theoretical base for the introduced method. All contributions of that and the

following chapters are enumerated in the next section. It picks up the claims

that were defined in section 1.4. In the last section, future research that could

be done for continuing the work in this dissertation will be proposed.

7.1 Contributions

In the first chapter the general contributions of this dissertation has been an-

nounced. This section picks up on them and summarizes how those contribu-

tions have been realized.

130 7. Summary & Outlook

1. New state representation

The brute-force verifier for parallel programs of today usually operate on ob-

jects. This lowers the flexibility of these kind of applications because there exist

numerous data structures that are based on primitive values instead of objects.

Therefore, another view on the state of a system is introduced by the metastate

construct which also allows for operating on primitive values.

The construct metastate has been introduced that considers pending and com-

pleted operations at a certain point of verification time instead of all concrete

states. For handling primitive values during a verification it is necessary to

wrap those values into objects as a meta-construct for being able to distin-

guish them. If multiple occurrences of primitive values in a data structure are

not distinguished properly, it is not possible to reproduce the behavior of a

parallel program. Metastates provide such an implicit meta-construct. Fur-

thermore, metastates can be compressed in such a way that it becomes more

practical to consider them instead of concrete system states.

2. Metastate compression

In state exploration algorithms, one of the biggest problems is the state space

explosion for parallel programs. Therefore, the newly introduced metastate

construct is elaborated for potential compression of its representation such that

there is a huge gain for the verification performance in using it.

The theory on metastates has been studied such that a compression of the

realization of the metastates could be accomplished. Potential for compression

has been worked out by regarding permutable operations, equivalent and re-

dundant states. The gains of this part of the work are that the big issue of

space requirements can be reduced to a feasible level. These observations have

been worked into the theory of the method, so that implementations can take

advantage of this knowledge for a more practical operability.

3. New verification methodology

The core work is a formal description of the applied verification methodology. It

proves the validity of the method. It is the first non-brute-force method that can

be used for linearizability checks which does not need any backtracking within

7.1. Contributions 131

the verification procedure whereas brute-force approaches go back and forth in

the execution stream.

Basic terms have been given and defined like the metastate and the event func-

tion which later on have been used as theoretic fundamentals for the introduced

method. With the aid of these definitions, the validity of the method has been

proven. The method stores all possible states at a certain point of virtual time

in the memory such that there is no backtracking necessary. The advantage of

having no backtracking is that the history can be processed in a linear manner

and program errors that occurred can be identified easier. We learnt that there

is a practical possibility to find failures in an output and to locate them exactly

instead of merely saying that a program is non-linearizable.

4. Generic verifier framework

The implementation of a generic verifier framework provides interfaces that

allow a wide range of use cases to be implemented and execute a verification

against it. It also gives a generic base implementation that can be used by

verifiers using this method. This generic verifier framework is the first step

towards a realization of the introduced methodology.

A generic verifier framework has been described that delivers interfaces for

many different use cases to execute a verification against it. The base im-

plementation of the verifier contains mostly the data structures that store all

state alternatives, whereas the interfaces enable the opportunity to provide

specifications and operation handling. The results indicate that this method

is already applicable for a large space of programs. Furthermore, the results

show that this method can provide outstanding performances compared to a

brute force approach which has been in the only used approach up to now.

5. Foundation for systematic state pruning

There is given concrete implementations for two different use cases that have

already been verified before which are the list and the set. However, the veri-

fication tools implemented here are more generic than the known ones because

it can operate merely on keys of elements whereas other approaches needed

keys and unique values of elements in collections. Furthermore, this method

132 7. Summary & Outlook

does not require any backtracking which increases the chance for finding coding

errors.

The set and list use cases which already have been verified were also imple-

mented according to the introduced methodology. This shows that with little

effort this tool is applicable for different algorithms whereas other implemen-

tations of verifiers could only be used for only one certain specification. While

in the literature each key was assigned to a value, the introduced method can

do just by knowing the keys but not the value. Having a pair of a key and a

unique values reduces the verification procedure to just finding the right oper-

ation pairs like remove/insert of a certain element and checking their times-

tamps. If only keys are present, there are more possible candidates of insert

operations for a remove operation which increases the complexity. Hence, the

introduced method allows for a more generic approach of the already known

use cases and thus extends the already known verifiers of those data structures

in this respect. It also does not use any kind of backtracking which makes

error finding easier.

6. High-performance verification of the priority queue use case

Implementations for the priority queue use case have never been verified before.

The implemented tool is the first verifier applied for priority queues and shows

a high performance compared to a brute-force approach.

The priority queue use case has been verified which has never been done before.

The implemented tool is the first that was capable of achieving a verification

for this use case. This use case has been analyzed thoroughly and has been

compared to a brute-force approach. The outcome of the analysis is that

the introduced method has huge advantages compared to brute-force in most

dimensions. Although, space can be an issue, the limits of the performance

of the brute-force approach are reached much faster than the limits of space

for the introduced method. This verification tool can provide a satisfactory

confidence on implementations. It has also been used for debugging purposes

during the development of priority queue implementations.

7.2. Outlook 133

7. Fine-grained STM-based priority queue

A case study of a sophisticated software transactional memory-based data struc-

ture is given. This case study shows an example for a priority queue which

made verification necessary for the development of a parallel implementation

especially in the case of STM.

A sophisticated software transactional memory-based priority queue has been

described in detail. The algorithm has many features that were not used be-

fore in an STM environment and thus is a very complex example of a parallel

implementation which was treated by this verification method. This STM-

implementation contains features that can be considered by expert program-

mers for their implementation purposes when trying to produce optimized par-

allel code based on STM. Despite the complexity of realizing those features,

this implementation can still be treated by this verification method since the

method does not consider implementation details but only its output.

7.2 Outlook

The work in this thesis is the initial work for a history-based verification tool.

The ultimate goal is a tool that is capable of accepting a wide range of specifi-

cations and of performing a verification against them. For reaching this goal,

there are some suggestions that could be picked up.

Optimizing space and time requirements

There are multiple optimizations that could be applied. Avoiding redundancies

that occur from recursions is essential for optimizing the space requirements.

More efficient storing strategies of the data structures used during the veri-

fication could also improve this aspect. A way of subdividing histories in a

way that they can be verified in a multi-threaded manner would improve the

time consumption especially for verifications dealing with histories generated

by executions of a high number of threads.

Further analysis of the theory base

Furthermore, there could be more research done for the theoretical fundamen-

tals such that more facts can be learned from relations among operations.

134 7. Summary & Outlook

There are still many different characteristics of operations that can be inves-

tigated and treated in a general way. Especially arithmetic operations have

not been dealt with intensively in this dissertation but rather collections. The

difficulty with arithmetic operations is that operations altering the value of a

variable often cannot be permuted generally. There are still open questions

how for example a simple increment could be treated in an efficient way.

Generating histories with high state space coverage

Another issue that has to be further dealt with is how histories can be generated

from a system under test such that the probability of an error to occur increases

if existent. A history should contain as many different execution orderings as

possible and the space of global states of the system should be ideally covered

completely. There has been already done a lot of work in the area of test case

generation [EFNR+01, Eyta06, MMPK+07]. In this work values have been

generated randomly. Another possibility is to produce a execution simulator

of the verified code that produces artificially steered histories such that the

possible state space is covered in a more reliable way.

Implementing generic specifications

Ultimately, it is very motivating to have a generic verifier that reads a speci-

fication file for example in XML and provides verifier code that can be used.

With such an interpreter it would be no longer necessary to implement the

operation handlers for each use case which makes it very convenient for any

kind of user.

If the issues enumerated here are tackled properly, there is a potential for

very powerful verification tools that provide accurate and practical results for

almost any arbitrary piece of software. Software development could be well

supported by this kind of tools until source code verification tools become

advanced enough for complex software. The work in this thesis is a first step

towards a generic verification methodology against linearizability and shall

encourage more research in this area such that parallel code can be developed

more efficiently and with higher quality.

References

[ABCG+06] Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph J.

Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson,

William L. Plishker, John Shalf, Samuel W. Williams und

Katherine A. Yelick. The landscape of parallel computing re-

search: a view from Berkeley. Technical Report UCB/EECS-

2006-183, Electrical Engineering and Computer Sciences, Uni-

versity of California at Berkeley, December 2006.

[ABDD+07] Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian

Hackett und Peter Hawkins. An overview of the saturn

project. In PASTE ’07: Proceedings of the 7th ACM SIGPLAN-

SIGSOFT workshop on Program analysis for software tools and

engineering, New York, NY, USA, 2007. ACM, S. 43–48.

[AHMQ+98] Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz

Qadeer, Sriram K. Rajamani und Serdar Tasiran. MOCHA:

Modularity in Model Checking. In CAV’98: Tenth Inter-

national Conference on Computer-aided Verification. Springer-

Verlag, 1998, S. 521–525.

[Alph96] Alpha Architecture Handbook, Version 3, October 1996.

[Amda67] G. Amdahl. The Validity of the Single Processor Approach to

Achieving Large Scale Computing Capabilities. AFIPS Confer-

ence Proceedings Band 30, 1967, S. 483–485.

136 References

[Ayan90] Rassul Ayani. LR-Algorithm: Concurrent Operations on Prior-

ity Queues. In Proceedings of the Second IEEE Symposium on

Parallel and Distributed Processing. IEEE, 1990, S. 22–25.

[BBCL+06] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin,

Jakob Lichtenberg, Con McGarvey, Bohus Ondrusek, Sriram K.

Rajamani und Abdullah Ustuner. Thorough static analysis of

device drivers. SIGOPS Oper. Syst. Rev. 40(4), 2006, S. 73–85.

[BeHG86] Philip A. Bernstein, Vassos Hadzilacos und Nathan Goodman.

Concurrency control and recovery in database systems. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA. 1986.

[BHJM07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala und Rupak Ma-

jumdar. The software model checker Blast: Applications to soft-

ware engineering. Int. J. Softw. Tools Technol. Transf. 9(5),

2007, S. 505–525.

[BrLi89] Stefan Brass und Udo W. Lipeck. Specifying Closed World As-

sumptions for Logic Databases. In MFDBS ’89: Proceedings of

the 2nd Symposium on Mathematical Fundamentals of Database

Systems, London, UK, 1989. Springer-Verlag, S. 68–84.

[ChSh04] Hao Chen und Jonathan S. Shapiro. Using build-integrated

static checking to preserve correctness invariants. In CCS ’04:

Proceedings of the 11th ACM conference on Computer and com-

munications security, New York, NY, USA, 2004. ACM, S. 288–

297.

[Cous07] Patrick Cousot. Proving the absence of run-time errors in safety-

critical avionics code. In EMSOFT ’07: Proceedings of the 7th

ACM & IEEE international conference on Embedded software,

New York, NY, USA, 2007. ACM, S. 7–9.

[Dijk68] Edsger W. Dijkstra. Cooperating sequential processes. 1968.

[Dijknd] Edsger W. Dijkstra. Over seinpalen. circulated privately, n.d.

References 137

[DiSS06] Dave Dice, Ori Shalev und Nir Shavit. Transactional Locking II.

In DISC’06: Proceedings of the 20th International Symposium

on Distributed Computing, 2006, S. 194–208.

[DrBa08] Kristijan Dragičević und Daniel Bauer. A survey of concurrent

priority queue algorithms. In IPDPS’08: 22nd IEEE Interna-

tional Symposium on Parallel and Distributed Processing. IEEE,

2008, S. 1–6.

[DrBa09] Kristijan Dragičević und Daniel Bauer. Optimization Tech-

niques for Concurrent STM-Based Implementations: A Concur-

rent Binary Heap as a Case Study. In IPDPS’09: 23nd IEEE

International Symposium on Parallel and Distributed Process-

ing. IEEE, 2009, S. 1–8.

[DrBGE10] Kristijan Dragičević, Daniel Bauer und Luis Garcés-Erice. Sys-

tem and method for demonstrating the correctness of an execu-

tion trace in concurrent processing environments. Patent appli-

cation number: 20100205484, December 2010.

[EFNR+01] Orit Edelstein, Eitan Farchi, Yarden Nir, Gil Ratsaby und

Shmuel Ur. Multithreaded Java program test generation. In

JGI ’01: Proceedings of the 2001 joint ACM-ISCOPE confer-

ence on Java Grande, New York, NY, USA, 2001. ACM, S. 181.

[EnAs03] Dawson Engler und Ken Ashcraft. RacerX: effective, static de-

tection of race conditions and deadlocks. SIGOPS Oper. Syst.

Rev. 37(5), 2003, S. 237–252.

[Enna06] Robert Ennals. Software transactional memory should not be

obstruction-free. Technical Report, Intel Research, 2006.

[Eyta06] Yaniv Eytani. Concurrent Java Test Generation as a Search

Problem. Electron. Notes Theor. Comput. Sci. 144(4), 2006,

S. 57–72.

138 References

[FiLP85] Michael J. Fischer, Nancy A. Lynch und Michael S. Paterson.

Impossibility of distributed consensus with one faulty process.

Journal of the ACM 32(2), 1985, S. 374–382.

[FLLN+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg

Nelson, James B. Saxe und Raymie Stata. Extended static

checking for Java. In PLDI ’02: Proceedings of the ACM SIG-

PLAN 2002 Conference on Programming language design and

implementation, New York, NY, USA, 2002. ACM, S. 234–245.

[FLMS05] Faith Ellen Fich, Victor Luchangco, Mark Moir und Nir Shavit.

Obstruction-Free Algorithms Can Be Practically Wait-Free. In

DISC’05: Distributed Computing, 19th International Confer-

ence, Band 3724. Springer, 2005, S. 78–92.

[Flyn72] Michael J. Flynn. Some Computer Organizations and Their Ef-

fectiveness. IEEE Transactions on Computers 21(9), September

1972, S. 948–960.

[Fras03] Keir Fraser. Practical lock freedom. Dissertation, Cambridge

University Computer Laboratory, 2003.

[Gode97] Patrice Godefroid. Model checking for programming languages

using VeriSoft. In POPL ’97: Proceedings of the 24th ACM

SIGPLAN-SIGACT symposium on Principles of programming

languages, New York, NY, USA, 1997. ACM, S. 174–186.

[GoJS96] James Gosling, Bill Joy und Guy L. Steele. The Java Language

Specification. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA. 1996.

[GoYS04] Ganesh Gopalakrishnan, Yue Yang und Hemanthkumar Sivaraj.

QB or not QB: An efficient execution verification tool for mem-

ory orderings. In In Computer-Aided Verification (CAV), LNCS

3114, 2004, S. 401–413.

References 139

[GSVW+09] Justin E. Gottschlich, Jeremy G. Siek, Manish Vachharajani,

Dwight Y. Winkler und Daniel A. Connors. An efficient lock-

aware transactional memory implementation. In ICOOOLPS

’09: Proceedings of the 4th workshop on the Implementation,

Compilation, Optimization of Object-Oriented Languages and

Programming Systems, New York, NY, USA, 2009. ACM, S. 10–

17.

[Gust88] John L. Gustafson. Reevaluating Amdahl’s law. 31(5), 1988,

S. 532–533.

[HaFr03] Tim Harris und Keir Fraser. Language support for lightweight

transactions. SIGPLAN Notifications 38(11), 2003, S. 388–402.

[Hans75] Per Brinch Hansen. The Programming Language Concurrent

Pascal. IEEE Trans. Software Eng. 1(2), 1975, S. 199–207.

[HeMo93] Maurice Herlihy und J. Eliot B. Moss. Transactional Memory:

Architectural Support for Lock-Free Data Structures. In Pro-

ceedings of the 20th Annual International Symposium on Com-

puter Architecture. ACM Press, Mai 1993, S. 289–300.

[Herl88] Maurice P. Herlihy. Impossibility and universality results for

wait-free synchronization. In PODC ’88: Proceedings of the sev-

enth annual ACM Symposium on Principles of distributed com-

puting, New York, NY, USA, 1988. ACM, S. 276–290.

[Herl03] Maurice Herlihy. Obstruction-free synchronization: Double-

ended queues as an example. In ICDCS’03: In Proceedings

of the 23rd International Conference on Distributed Computing

Systems. IEEE Computer Society, 2003, S. 522–529.

[HeWi90] Maurice P. Herlihy und Jeannette M. Wing. Linearizability: a

correctness condition for concurrent objects. ACM Trans. Pro-

gram. Lang. Syst. 12(3), 1990, S. 463–492.

140 References

[HLMI03] Maurice Herlihy, Victor Luchangco, Mark Moir und William

N. Scherer III. Software transactional memory for dynamic-sized

data structures. In PODC ’03: Proceedings of the twenty-second

annual symposium on Principles of distributed computing, New

York, NY, USA, 2003. ACM, S. 92–101.

[HMPS96] Galen Hunt, Maged M. Michael, Srinivasan Parthasarathy und

Michael L. Scott. An Efficient Algorithm for Concurrent Priority

Queue Heaps. Inf. Proc. Letters Band 60, 1996, S. 151–157.

[Hoar74] Charles Antony Richard Hoare. Monitors: an operating system

structuring concept. Commun. ACM 17(10), 1974, S. 549–557.

[Hoar83] Charles Antony Richard Hoare. An axiomatic basis for computer

programming. Communications of the ACM 26(1), 1983, S. 53–

56.

[HuAh90] Phillip Hutto und Mustaque Ahamad. Slow Memory : Weaken-

ing Consistency to Enhance Concurrency in Distributed Shared

Memories. Proceedings of Tenth International Conference on

Distributed Computing Systems, 1990.

[Jone83] Cliff B. Jones. Specification and Design of (Parallel) Programs.

In Proceedings of IFIP’83. North-Holland, 1983, S. 321–332.

[JrGP99] Edmund M. Clarke Jr., Orna Grumberg und Doron A. Peled.

Model Checking. MIT Press. 1999.

[Lamp79] L. Lamport. How to Make a Multiprocessor Computer That

Correctly Executes Multiprocess Progranm. IEEE Trans. Com-

put. 28(9), 1979, S. 690–691.

[LCLS09] Yang Liu, Wei Chen, Yanhong A. Liu und Jun Sun. Model

Checking Linearizability via Refinement. In FM 2009: Formal

Methods, Second World Congress, Eindhoven, The Netherlands,

November 2-6, 2009. Proceedings, 2009, S. 321–337.

References 141

[LiSH07] Xin Li, Kai Shen und Michael C. Huang. A memory soft error

measurement on production systems. In In USENIX Annual

Technical Conference, 2007.

[Mich04] Maged M. Michael. Hazard Pointers: Safe Memory Reclama-

tion for Lock-Free Objects. IEEE Transactions on Parallel and

Distributed Systems 15(6), 2004, S. 491–504.

[MMPK+07] Saša Misailović, Aleksandar Milićević, Nemanja Petrović, Sar-

fraz Khurshid und Darko Marinov. Parallel test generation and

execution with Korat. In ESEC-FSE ’07: Proceedings of the the

6th joint meeting of the European software engineering confer-

ence and the ACM SIGSOFT symposium on The foundations of

software engineering, New York, NY, USA, 2007. ACM, S. 135–

144.

[OwGr76] Susan S. Owicki und David Gries. An axiomatic proof technique

for parallel programs. Acta Informatica Band 6, 1976, S. 319–

340.

[Pugh90] William Pugh. Skip lists: a probabilistic alternative to balanced

trees. Commun. ACM 33(6), 1990, S. 668–676.

[SATHM+06] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson,

Chi Cao Minh und Benjamin Hertzberg. McRT-STM: a high

performance software transactional memory system for a multi-

core runtime. In PPoPP ’06: Proceedings of the eleventh ACM

SIGPLAN symposium on Principles and practice of parallel pro-

gramming, New York, NY, USA, 2006. ACM, S. 187–197.

[ScGi06] Bianca Schroeder und Garth A. Gibson. A Large-Scale Study of

Failures in High-Performance Computing Systems. In In Pro-

ceedings of the 2006 International Conference on Dependable

Systems and Networks (DSN’06), 2006, S. 249–258.

142 References

[ScPW09] Bianca Schroeder, Eduardo Pinheiro und Wolf-Dietrich Weber.

DRAM errors in the wild: a large-scale field study. In SIG-

METRICS ’09: Proceedings of the eleventh international joint

conference on Measurement and modeling of computer systems,

New York, NY, USA, 2009. ACM, S. 193–204.

[ShTo95] Nir Shavit und Dan Touitou. Software Transactional Memory. In

PODC’95: Proceedings of the 14th annual ACM symposium on

Principles of distributed computing. ACM Press, August 1995,

S. 204–213.

[SMATB+07] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai,

Steven Balensiefer, Dan Grossman, Richard L. Hudson, Kather-

ine F. Moore und Bratin Saha. Enforcing isolation and ordering

in STM. SIGPLAN Notices 42(6), 2007, S. 78–88.

[SuTs05] H̊akan Sundell und Philippas Tsigas. Fast and lock-free concur-

rent priority queues for multi-thread systems. J. Parallel Distrib.

Comput. 65(5), 2005, S. 609–627.

[TaSt07] Andrew S. Tanenbaum und Maarten Van Steen. Distributed

Systems: Principles and Paradigms. Prentice Hall. 2007.

[TMGH+09] Fuad Tabba, Mark Moir, James R. Goodman, Andrew W. Hay

und Cong Wang. NZTM: nonblocking zero-indirection transac-

tional memory. In SPAA ’09: Proceedings of the twenty-first an-

nual symposium on Parallelism in algorithms and architectures,

New York, NY, USA, 2009. ACM, S. 204–213.

[Vafe07] Viktor Vafeiadis. Modular fine-grained concurrency verification.

Dissertation, Cambridge University Computer Laboratory, 2007.

[VeYa08] Martin Vechev und Eran Yahav. Deriving linearizable fine-

grained concurrent objects. SIGPLAN Notices 43(6), 2008,

S. 125–135.

References 143

[ViIS05] J. Marathe Virendra, William N. Scherer III und Michael L.

Scott. Adaptive Software Transactional Memory. In In Proceed-

ings of the 19th International Symposium on Distributed Com-

puting, 2005, S. 354–368.

[Vola06] Nic Volanschi. A Portable Compiler-Integrated Approach to

Permanent Checking. In ASE ’06: Proceedings of the 21st

IEEE/ACM International Conference on Automated Software

Engineering, Washington, DC, USA, 2006. IEEE Computer So-

ciety, S. 103–112.

[WiGo93] Jeannette M. Wing und Chun Gong. Testing and verifying

concurrent objects. J. Parallel Distrib. Comput. 17(1-2), 1993,

S. 164–182.

[XiCE03] Yichen Xie, Andy Chou und Dawson Engler. ARCHER: using

symbolic, path-sensitive analysis to detect memory access errors.

In ESEC/FSE-11: Proceedings of the 9th European software en-

gineering conference held jointly with 11th ACM SIGSOFT in-

ternational symposium on Foundations of software engineering,

New York, NY, USA, 2003. ACM, S. 327–336.

[YuVa02] Haifeng Yu und Amin Vahdat. Design and evaluation of a conit-

based continuous consistency model for replicated services. ACM

Trans. Comput. Syst. 20(3), 2002, S. 239–282.

[Zö83] Dieter Zöbel. The Deadlock problem: a classifying bibliography.

SIGOPS Oper. Syst. Rev. Band 17, October 1983, S. 6–15.

144 Index

Index

ABA-problem, 20

Binary heap, 23

Bit-reversal technique, 24

CAS, see Compare-and-swap

Closed-world assumption, 59

Compare-and-swap, 5

Concurrent programming, 11

Configuration, 74

Primitive, 74

Trivial, 74

Consistency, 37

Continuous, 39

Eventual, 41

Numerical, 40

Quality, 39

Sequential, 42

Staleness, 40

Strict, 47

Weak, 40

Contention manager, 18

Convoying, 14

CPU hopping, 34

Critical section, 37

Data parallelism, 3

Data structure, 8

Deadlock, 15

Definite state, 97

Effect, 74

Embarrassingly parallel, 12

Event

Function, 69

FAA, see Fetch-and-add

Fetch-and-add, 5

FIFO queue, 39

First-level state, see State

Flynn’s taxonomy, 11

Garbage collection, 21

History, 37, 54

Linearizability, 45

Linearization point, 45, 54

Livelock, 17

LL, see Load-linked

Load-balancing, 34

Load-linked, 18

Lock-freeness, 17

Locking, 3, 13

Coarse-grained, 5, 14

Fine-grained, 5, 14

Logic, 47

Index 145

Hoare, 47

Composition, 47

Post-condition, 47

Pre-condition, 47

Program segment, 47

Triple, 47

Owicki-Gries, 48

Rely/guarantee, 48

LR-algorithm, 24

Memory model, 12

Metastate, 66

Cardinality, 77

Equivalence, 77

Equivalence class, 77

Implication, 78

Minimal element, 77

Redundancy, 83

Semi-redundancy, 88

Metastate description, 67

MIMD, 12

MISD, 12

Model checking, 49

Abstraction, 50

State-less, 50

Monitor, 16

Moore’s law, 2

Multi core, 2

Multiple-instructions-multiple-

data, see

MIMD

Multiple-instructions-single-data,

see MISD

Mutex, 13

Mutual exclusion, see Mutex

Non-blocking algorithm, 16

Obstruction-freeness, 17

Open-world assumption, 59

Operation

Empty, 88

Operation type, 74

Partial order reduction, 50

Pending operation, 65

Permutability, 76

Precondition, 75

Priority queue, 13

Program, 6

Race condition, 13

Read-modify-write, 5

SC, see Store-conditional

Second-level state, see Meta-state

Segmented memory, 12

Semaphore, 15

Binary, 15

Serializability, 44

SIMD, 11

Single-instruction-multiple-data,

see SIMD

Single-instruction-single-data, see

SISD

SISD, 11

Skip-list, 25

Software Transactional Memory, 5,

21

146 Index

atomic block, 22

TM Object, see Transactional

Memory object

Transaction, 22

Transactional Memory object,

22

Specification, 57

Effect, 57

Operation, 57

Precondition, 57

State, 64

Static source code analysis, 6

STM, see Software Transactional

Memory

Store-conditional, 18

Task parallelism, 3

Test-and-set, 5

TM, see Transactional Memory

Transactional Memory, 5

Validity, 75

Verification, 6, 36

Static code analysis, 47

Wait-freeness, 17

ISBN 3-937201-20-3

ISSN 1868-2634 (print)
ISSN 1868-2642 (electronic)

	diss-cover-vorne
	Vorne�

	Innenleben
	Title
	Contents
	1 Introduction
	1.1 Motivation
	1.2 A Short History of Parallel Computing
	1.3 The Challenge of Verification of Parallel Implementations
	1.4 Claims
	1.5 Outline

	2 Concurrent Programming
	2.1 Classification of Parallel Systems
	2.2 Memory Model
	2.3 Mutual Exclusion Locks
	2.3.1 Coarse-Grained Locking
	2.3.2 Fine-Grained Locking

	2.4 Semaphores
	2.5 Monitors
	2.6 Non-Blocking Synchronization
	2.6.1 Non-Blocking Properties
	2.6.2 Non-Blocking Primitives
	2.6.3 The ABA-Problem

	2.7 Software Transactional Memory
	2.8 Concurrent Priority Queue Examples
	2.8.1 Lock-Based Priority queues
	2.8.2 Hand-Crafted Lock-Free Priority Queue Example
	2.8.3 Comparison of the Performance of Lock-Free and Lock-Based Approaches
	2.8.4 Naive STM-Based Concurrent Binary Heap
	2.8.5 Fine-Grained STM-Based Concurrent Heap
	2.8.6 Comparison of the Performance of the Naive and Fine-Grained STM-Based Binary Heap

	2.9 Summary

	3 Correctness Reasoning
	3.1 Correctness Fields
	3.2 Correctness Criteria
	3.2.1 Correctness Reasoning
	3.2.2 Arbitrary Correctness
	3.2.3 Weak Consistency
	3.2.4 Causal Consistency
	3.2.5 Sequential Consistency
	3.2.6 Serializability
	3.2.7 Linearizability

	3.3 Related Work
	3.3.1 Formal Proof-Based Static Code Analysis
	3.3.2 Model Checking
	3.3.3 Simulation and Testing Techniques
	3.3.4 Chosen Verification Approach

	3.4 Summary

	4 Methodology
	4.1 Outline of the Execution Trace Verification Method
	4.2 Basic Program Specification
	4.2.1 Abstract Operation Specification
	4.2.2 Difference Between Value and Object Consideration
	4.2.3 Example: Specifying an Insertion
	4.2.4 Defining an Initial State
	4.2.5 Example: Specifying a Removal of an Object
	4.2.6 Example: Specifying a Modification
	4.2.7 Abstract Program Specification

	4.3 History
	4.4 Metastate
	4.4.1 Common State
	4.4.2 From States to Metastates and Back
	4.4.3 Basic Structure

	4.5 Proving Linearizability
	4.5.1 Basic Idea
	4.5.2 Event Functions
	4.5.3 Extension of Event Functions
	4.5.4 The History Verification Theorem

	4.6 Metastate Representation
	4.6.1 Permutability of Operations
	4.6.2 Equivalence Classes
	4.6.3 Implied Metastates

	4.7 Advanced Operation Specification
	4.7.1 Plain Metastate Transition
	4.7.2 Redundancy
	4.7.3 Specifying a Removal: Exploiting Redundancies
	4.7.4 Semi-Redundancy
	4.7.5 Exploiting Semi-Redundancies in a Specification

	4.8 Additional Special Cases
	4.9 Summary

	5 Implementation
	5.1 Framework
	5.1.1 Building a History
	5.1.2 Preprocessing the History
	5.1.3 Verifier Harness
	5.1.4 Specifier Interface

	5.2 Operation Handlers
	5.2.1 End Event Handler
	5.2.2 Start Event Handler

	5.3 Optimization
	5.4 Applicability
	5.5 Summary

	6 Evaluation
	6.1 Description of the Experiments
	6.2 Brute-Force
	6.2.1 Preprocessing the History
	6.2.2 Algorithm

	6.3 Performance Results
	6.3.1 Horizontal Analysis
	6.3.2 Vertical Analysis
	6.3.3 Diagonal Analysis
	6.3.4 Verification of Incorrect Histories

	6.4 Other Issues
	6.4.1 Space Requirements
	6.4.2 Error Detection Effectiveness
	6.4.3 History Shape

	6.5 Summary

	7 Summary & Outlook
	7.1 Contributions
	7.2 Outlook

	References
	Index

	diss-cover-hinten
	Hinten�

