Sensornetworks: Integration into IPv6 based networks and
security on layer 3

Andreas Scheibleger
Betreuer: Corinna Schmitt
Seminar Sensorknoten: Betrieb, Netze und Anwendungen SS2010
Lehrstuhl Netzarchitekturen und Netzdienste, Lehrstuhl Betriebssysteme und Systemarchitektur
Fakultat fir Informatik, Technische Universitat Minchen
Email: scheible@in.tum.de

ABSTRACT

Sensor networks are becomming more and more important.
They are no more only used internally in companies but get
gradually connected to the internet. As there are that much
sensor nodes it is sensible to use the IPv6 protocol, since it
provides a 128 bit address space. This technique however
needs some adaptation on the link layer as well as on the
network layer. Therefore there arise the same security risks
which need to be solved as on typical stationary devices.
Solving the integration and adding security on the network
layer is going to be discussed in this paper.

Keywords
IPv6, 6LoWPAN, MiniSec, Security, IEEE 802.15.4

1. INTRODUCTION

Sensor nodes get more and more connected to already estab-
lished conventional networks. For that to work there was the
need to develop methods, which allow the usage of standard
protocols on devices which have limited memory and pro-
cessor resources. In favor of that the “IPv6 over Low power
Wireless Personal Area Networks” (6LoWPAN [9]) architec-
ture was developed. This architecture describes a mecha-
nism to encapsulate the data and compress the headers in
order to send and receive IPv6 packets over a IEEE802.15.4
[5] network. In the area of sensor networks the usual secu-
rity criterias, namely “confidentiality”, “integrity” and “ac-
countability” need to be guaranteed as well as the criteria
of “freshness”. In addition there is the need for low energy
consumption. For this purpose the “MiniSec” [8] protocol
got developed. Those two topics are going to be covered in
the following.

2. CLASSIFICATION

This document refers to security on layer 3 whereas layer 3
in the OSI-model is meant. To make it clear the model is
shown in fig.1. By that one can see that it is not about how
packets are sent or received, but the type or content of the
packet is of interest. The network layer, loosely speaking,
is responsible for accepting packets destined for the device
and for forwarding packets if the current device is used as
an intermediate node, i.e. routing.

The first part of this document deals with integration of
sensor nodes into an IPv6 network. IPv6 (Internet Protocol
version 6) is settled as well on this layer, as is the actually
more widely used IPv4.

39

Application layer

Presentation layver

Session layer

Transpoart layer

Metwark layer

Cata link, layer
Pheesical laver
Figure 1: OSI-model
3. 6LOWPAN

3.1 Motivation

By extending LoWPAN or 802.15.4 [5] based networks so
that it is possible to transmit encapsulated IPv6 [4] pack-
ets, one can make a fully into the IP network integrated
device out of a simple sensor node. The problem is that the
maximum packet size for 802.15.4 is limited on the physical
layer (see fig.1) to 127 bytes. The maximum overhead for
the frame and for the security on the link layer amount 25
and 21 bytes, respectively. With a default size of 40 bytes
for the IPv6 header and 8 bytes for the UDP header, there
only remain 33 bytes for the payload. Thus it becomes clear
that a procedure must be introduced to shrink the large
IPv6 header as well as the UDP header in order to trans-
mit the packet over a LoWPAN network. In addition this
modified packet needs to be encapsulated into the existing
LoWPAN packet. For that an adaptation layer is inserted
at first which is needed for mesh-routing, fragmentation and
message identification. In connection it will be shown how
in accordance to RFC4944 [9] the IPv6 header can be com-
pressed in the extreme case from 40 down to 2 bytes and the
UDP header from 8 down to 4 bytes. Further how stateless
address autoconfiguration is done in order for every node
being reachable via IPv6.

3.2 Adaptation header

Fig.2 shows a full adaptation header including the fields for
mesh-routing as well as the fields for fragmentation. Those
are optional and are only used if necessary to avoid unnec-
essary overhead.

| Mesh Ty | Mesh Hdr | Frag Typ | Frag Hdr l:)\spatch Tv;#\spatch Hd|1 Payload |

Figure 2: full adaptation header

Mesh type: This type field with the corresponding header
field should only be inserted if the connection is not a di-
rect one, but needs mesh-routing. The mesh-type starts as
shown in fig.3 with the bit sequence 10 followed by two bits
(V, F) which indicate the adress type. Subsequently a 4
bit hops-left counter which is decreased at every hop is ap-
pended. If this counter reaches a value of 0 the packet should
be dropped. V specifies the address type of the originator

| 10 | W | F |Hops Ien| originator addr, target addr

Figure 3: Mesh type and header

address and should be set to 0 if it is a IEEE extended 64-bit
address or otherwise to 1 in case of a short 16-bit address.
F is used the same way for the destination address.

fragment type: If the whole payload fits into a single 802.15.4
frame, this type field and its corresponding header field
should be left away. In case of needed fragmentation the
header of the first fragment should be built according to
fig.4, the header of the subsequent fragments according to
fig.5. The datagram size is 11 bits long and should be the

| 1110| clatagram size | tag |

Figure 4: First fragment

| 1110 | clatagram size | tag |offset |

Figure 5: Subsequent fragments

same for all correlated fragments indicating the size of the
whole packet. The tag is 16 bits wide and should be the
same for all correlated fragments, either. It should be reset
to zero if it reaches the maximum possible value. The 8 bit
wide offset is present with all fragments but the first one.
The offset for the first fragment is implicitly set to 0.

Dispatch type: This field is mandatory and starts as shown
in fig.6 with the bit sequence 01 follwed by a 6 bit wide
selector which indicates the header type of the subsequent
header. Thereby the values for the selector are defined as
listed in table 1.

| 01 | selector type-specifig header

Figure 6: Dispatch type and header

40

00 xxxxxx | NALP The following data is not
part of the LoWPAN en-
capsulation

01 000001 | IPv6 An uncrompressed IPv6
header is next

01 000010 | LOWPAN_HC1 A LOWPAN_HC1 com-
pressed header is next

01 ... reserved

01 010000 | LOWPAN_BCO A LOWPAN_BCO header
for mesh broadcast-
ing/multicasting is next

01 ... reserved

01 111111 | ESC Another 8 bit selector is
following in order to have
values greater than 63

Table 1: Selector values

3.3 Address autoconfiguration

The interface identifier for an IEEE 802.15.4 interface can-
not directly be used as interface identifier for IPv6 as this
one is 2 bytes longer. After optaining such a compatible
interface identifier (see 3.3.1) we can generate a IPv6 link
local address (see 3.3.2).

3.3.1 Interface identifier

IEEE 802.15.4 devices may have an IEEE EUI-64 address
or a short 16 bit address. If it is a short 16 bit address then
one has to derive a IEEE EUI-64 bit address out of this
very short address. This is achieved by firstly generating a
32 bit prefix which is built out of the concatenation of the
16 bit PAN ID (Personal area network Identifier) and a se-
quence of 16 zero bits. This prefix is prepended to the 16
bit short address which gives a 48 bit pseudo interface iden-
tifier. This is then equally long as a default built in ethernet
interface identifier. In accordance with RFC2464 [3] this 48
bit long address is then enlarged to an EUI-64 address as
described in the following. Let the 48 bit address be the
one shown in fig.7. To form the EUI-64 interface identifier

7th mast significant bit
Qx1l

[olefefefefefo]sfeforfefofefr]o]ene

0x22

Figure 7: interface identifier

(11:22:33:44:55:66)

original

needed, the first three bytes are used as company identi-
fier and are copied into the EUI-64 identifier. The next two
bytes are statically set to FFFE hexadecimal. Afterwards
the last three bytes are appended to the EUI-64 identifier.
The last thing to be done is to set the Universal/Local bit
to 1 as this derived EUI-64 identifier is in general not uni-
versally unique. This bit is the seventh most significant bit.
Applying this we get the following:

13:22:33:FF:FE:44:55:66

Now that we either have a EUI-64 built in address or a de-
rived one we can go further an build the interface identifier

out of it. This is simply achieved by complementing the Uni-
versal/Local bit. This needs to be done as global uniqueness
in EUI-64 is indicated by a 0 and global uniqueness in the
IPv6 interface identifier is signified by a 1. To go on with the
example above we end up with the following IPv6 interface
identifier:

11:22:33:FF:FE:44:55:66

3.3.2 IPv6 link local address

Now having obtained the interface identifier as described
in 3.3.1 we can form the IPv6 link local address out of it
to the prefix FE80::/64 which identifies an IPv6 link local
address. It is built as shown in fig.8 by appending the 64 bit
interface identifier to the already mentioned IPv6 link local
prefix FE80::/64.

1PV link local prefix

A

111111101000000 | filled with O bits

Interface identifier

Figure 8: IPv6 link local address

3.4 Header compression

Given the assumption that the LoWPAN devices are in
the same network they share some information that is not
needed to be transmitted, so these informations can be left
away in order to compress the IPv6 header. So the following
fields can be left away or considered to be compressable:

e Version: is automatically set to IPv6

e both IPv6 source and destination addresses are con-
sidered to be link local and in addition can be derived
from the link layer interface identifiers.

e packet length can be inferred either by the
datagram_size in the fragmentation header or by the
frame length on the link layer.

e traffic class and flow label are considered to be zero

e the next header is UDP, ICMP or TCP

So the only field that needs to be transmitted as a whole
is the hop limit. This is of course the best case scenario.
For example by changing the link layer interface identifier
by software for security reasons the source and destination
addresses cannot be derived that easily. Packets follow-
ing the assumption to be compressible can be compressed
via the LOWPAN_HCI1 format by using a dispatch-type of
LOWPAN_HCI1 followed by a “HC1 encoding” field as shown
in fig.9 and additionally the uncrompressible header fields.
Thereby the encoding field is defined as described in tables
2,3,4 and 5, where PI indicates that the prefix is carried un-
compressed, PC stands for the prefix being compressed that
means it is a link local prefix, II stands for the interface
identifier being carried uncompressed and IC stands for the

41

HC1 encoding non compressed fields

Figure 9: LOWPAN_HC1 encoding

00 | PI, II
01 | P1, IC
10 | PC, 1I
11 | PC, IC

Table 2: HC1 encoding: IPv6 source (bits 0 and 1)
and destination (bits 1 and 2) address

0 | not compressed
1 | both are zero

Table 3: HC1 encoding: Traffic class and flow label
(bit 4)

00 | not compressed

01 | UDP
10 | ICMP
11 | TCP

Table 4: HC1 encoding: next header (bits 5 and 6)

0 | no more header compression
1 | HC2 encoding is following the HC1 encoding header

Table 5: HC1 encoding: HC2 encoding (bit 7)

interface identifier being elided as it is derivable from the
link layer interface identifier. ~ Analysing this one can see
that in the ideal case having a HC1 encoding of “11111011”
leads to an IPv6 header of as low as 2 bytes as 1 byte is used
for the encoding field and the other one is the hop limit. All
other fields are given implicitly.

By setting anything but 00 in the two next header bits as
shown in table 4 and in addition setting the HC2 encoding
bit to 1 as shown in table 5 it is possible to compress the
next header as well. RFC4944 [9] describes a HC2 encoding
for UDP packets called HC_UDP. This encoding mechanism
allows to compress the source as well as the destination port
and the length field. This modified header is of the form
shown in fig.10, where the bits 3 through 7 are reserved for
future use. The compression can be achieved according to
tables 6 and 7. If a port is compressed, it is compressed to 4
bits and the full 16 bits port number is calculated by adding
this short port to the fixed port 61616.

HC_UDP encoding non compressed fields

Figure 10: HC_UDP encoding

3.5 Integration

So far we have seen how in general IPv6 packets can be
encapsulated into 802.15.4 packets (3.2). Then we have seen
how those IPv6 packets can be compressed for the sensor
nodes to be able to transmit them. But there is a last point

0 | not compressed
1 | compressed

Table 6: HC_UDP encoding: source (bit 0) and des-
tination (bit 1) port

0 | not compressed
1 | compressed. Can be calculated from the IPv6 payload
length

Table 7: HC_UDP encoding: length (bit 2)

that needs to be achieved and that is the one of integrating
the sensor nodes into an existing IPv6 network. For that
to be done we need a topology similar to the one shown in
fig.11 where the sensor nodes can directly communicate with
one another and if they want to open a connection with a
full IPv6 station they have to route their packets over an
edge router which translates those 802.15.4 packets into real
IPv6 packets and vice versa.

| -
— e
switch
I | IPv6
Edge router '.!
‘:-.;_ B cLowPAMN

Figure 11: 6LowPAN network integrated into IPv6
network

4. MINISEC
4.1 Basics

MiniSec was developed to address and guarantee the needed
security criterias “confidentiality”, “authenticity” and
“replay-protection” as well as freshness and low energy con-
sumption. Thereby the two modes of communication must
be addressed seperately as the replay protection cannot be
guaranteed the same way. Namely this is unicast and broad-
cast which get addressed by MiniSec-U as described in 4.2.1
and MiniSec-B as described in 4.2.2, respectively. Authen-
ticity is warranted in this protocol by the use of OCB (Offset
Codebook) [12] as block cipher mode. Same is used to en-
sure confidentiality. Replay protection depends on the com-
municationmode, as already stated. As initialisation vector
MiniSec uses a counter which is different depending on the
mode of communication as well.

42

The key distribution system is not specified with MiniSec
so any system can be applied to fit the individual needs for
security.

4.1.1 OCB

In order to describe OCB [7] we need to define some notation
first. The notations used are listed in table 8. It must be
noted that MiniSec-U uses a directed key, i.e. there is a
key for the communication from A to B as well as for the
communication from B to A. In contrast Minisec-B uses one
network-wide key per sender.

M the message to be encrypted

H an optional header that is correlated with M

E a block cipher (e.g. AES)

K the key to be used for the communication

N a nonce

S « 1 | Left-shift S by 1 bit, eliminating the first bit and
appending a “0”

A Ek(N) is the encryption of N with the cipher E
and key K

¢ Ex(0)

2S S « 1 if S starts with a 0, otherwise
(S <« 1) ® 02000...087

3S 25@ S

55 (2(259))® S

So* S with appended 0s, such that the desired length
is achieved

S10* S with an appended 1 followed by Os such that
the desired length is achieved

len the binary representation of the length repre-
sented with the desired amount of bits

Table 8: OCB notation

In the beginning M is divided into equally sized blocks while
the last one may be of shorter size. The block size is chosen
such that the block cipher used is capable to process the
blocks. Additionally an arbitrary nonce N of the same size
is required. The encryption works as shown in fig.12. The
XOR of Pad and M,, means that only the first len(M,,) Bits
of Pad are used. The checksum is calculated as follows:
MI®M2® .0 Mp—1 ® (Cr0*®Pad).

Checksumm

len
ay 2 4 2mM 222020

a
]
-

91— Auth

s

Figure 12: OCB main scheme

Auth can be neglected if no additional header H was handed
over as in this case Auth only consists of 0 bits. Otherwise
Auth is calculated according to fig.13. For that the header is
divided into equally sized blocks while the last may again be

of shorter size. If H, is as big as the other blocks, then (gnq
is equal to 3(2(2(2(5¢)))). Otherwise H,, is padded with a 1
bit and as many 0 bits as needed (H,10*) and (gnq is equal
to 5(2(2(2(5¢))))-

[| [w]

6?4— 262) 6?4— 2060 *(Lj
Z

Figure 13: OCB auth calculation

The outcome then is the tupel containing the cipher-text
C and the authentication tag “Tag”. In order to prove au-
thenticity and integrity the receiver only has to apply the
inverse OCB on the cipher-text and calculate the tag on its
own. The message was mangled or injected, if the received
and calculated tags do not match.

The advantage directly arising for sensor networks is that
authenticity and encryption are achieved in one step and
therefore less computational resources are needed. In addi-
tion no unnecessary bits are transmitted as a shorter block
is not enlarged to fit a given block size.

4.2 The protocol
4.2.1 MiniSec-U

MiniSec-U is the variant used if the connection is a unicast
one. At this a message is sent by exactly one sender and
is destined for exactly one receiver. For this connection a
key K p is used for messages sent from A to B and a dif-
ferent key Kp A for the opposite direction. For each key a
monotonous increasing synchronized counter Cp g or Cg
is needed in addition. This counters are used as initialisa-
tion vectors between the two parties A and B. This vector
is not transmitted as a whole with every message, but only
the last A bits as shown in fig.14. Thus no unnecessary in-

A B
B »> B
&E OCB(CAE, M, H, KAB) || A(CAR) &E
KB,A KB,A
CB A OCR(CE,A, M, H, KB A) || AICE A CB, A

Figure 14: MiniSec-U communication scheme

formations about the initialisation vector are transmitted.
This is of benefit for sensor networks since transmission of
data is the most energy consuming operation. Each of the
parties increases the internally stored counter with each sent
or received message. The receiver in addition can adjust its
counter based on the last A bits received with the message,
if the counter is no more in sync. If too many messages were
lost in transmission and so simply adjusting according to the
last few bits does not work, it is still possible to adjust the

43

counter by gradually increasing the counter by 22. If this
does not work after repeated attempts, resynchronisation
will be needed which is quite energy consuming.

4.2.2 MiniSec-B

This variant is used if broadcast messages need to be trans-
mitted. It is clear that in a broadcast environment it is not
possible to use the already exchanged unicast keys. There-
fore a network-wide key is used for every principal that wants
to send a broadcast message. This key is used to encrypt
the message with OCB. As it is not possible for low memory
reasons that every node holds a counter for every possible
sender, a different approach must be used. Nevertheless it
is possible to guarantee replay protection by combining two
Methods. These are the sliding-windows and bloom-filters

(2].

With the sliding-windows approach a finite time t,, is defined
which is used to determine the length of a so called epoch.
Afterwards the time is divided into epochs of length t.. By
a loose time synchronisation between the nodes the current
epoch E is known to every participant. t, is chosen such that
it equals twice the time of the maximum possible time syn-
chronisation error Ag plus the maximum network latency
Ar (te =2+ Ag+ Apr). By using the current epoch number
as initialisation vector for OCB, packets from past epochs
could automatically be detected as replays. But since by the
time synchronisation error and network latency a correctly
sent message can reach the receiver in a wrong epoch, two
epochs will be put into consideration. As shown in fig.15
based on the time of arrival either the previous or the fol-
lowing epoch will be considered in addition. Let t be the

aL &5

j

Figure 15: Sliding-window approach and Replay-
attack window

time at the beginning of epoch E1 as shown in fig.15. Then
epochs E0 and E1 will be considered if and only if the arrival
time tp is between t and ¢t + Ag + Ar. Epochs E1 and E2
are considered accordingly if and only if tp is between the
rest of the current epoch, i.e. between t + Ags + Ar and
t+2+xAg+Ap.

To validate that this division is correct, we consider the
least possible time and the highest possible time the mes-
sage could be sent such that it arrives in the respective time
window.

Case 1: Packet arrives such that EQ and E1 are put into
consideration. In this case the least possible time spin is
t—Ag — Apr lying in EQ. The maximum possible time Smaz
ist+ As+ AL+ Ag lying in E1. Hence this part is correct.

Case 2: Packet arrives such that E1 and E2 are put into
consideration. In this case the least possible time $y,in is
t+ As+ AL — As — Ar =t and lyes therefore in E1. The

maximum sent time Smqz 1S t+ 2 % As + A + Ag lying in
E2. Hence this part is correct either.

This shows directly that packets captured at the beginning
of an epoch can be replayed during this whole epoch and in
addition up to As + Ar in the following epoch.

In order to guarantee replay protection during this time win-
dow, the sender holds an internal counter which is increased
with every sent packet. The counter is reset at the end of
every epoch and can therefore be very short. The advantage
of a short counter is that it can be transmitted as a whole
and the receivers do not have to save the state of the counter
themselves. In addition bloom-filters are used.
Bloom-filters are probabilistic datastructures which can be
used to check whether an element is present or not and that
in a very memeory and processor efficient way. The only
two possible operations are adding elements and checking
whether an element is present. Deleting is not possible.
When checking for the presence of an element false-positives
are possible false-negatives in contrast are not. For this to
achieve an array is used which is filled initially with O bits.
By adding an element this element gets mapped by different
hash-functions to different indices which are then set to 1.
In order to check whether an element exists one has to calcu-
late all the hash-functions and check whether all fields in the
array that the indices refer to are set to 1. If even one such
array field is set to 0 it is sure that the given element was not
yet added. This procedure is shown schematically in fig.16.
The initialisation vector is constructed by the concatenation

= Insert| hash 1
I hash 2

S

True False True
psitive positive negative

Figure 16: Bloom-Filter

of the senders ID, the counter of the sender and the current
epoch number. Since the epoch number is never reset this
vector will never be reused. The receiver has to manage
two separate bloom-filter in which the received packets are
inserted. As key for the insertion the concatenation of the
senders counter and the senders ID is used. One has to
use two separate bloom-filters since as shown in fig.15 two
epochs are checked at every time. Further the counter of
the sender is reset at the end of every epoch and therefore
an assignment to the epoch is necessary. It would be pos-

44

sible to add the epoch number to the key when inserting
into the bloom-filter, but by that many elements would be
added to the filter very quickly. Hence the false-positive rate
would increase steadily. By resetting the bloom-filter after
its validity and reusing it for a new epoch the problem of an
increasing false-positive rate is elided.

One of the two filters always belongs to the current epoch
and the other one belongs either to the previous or the fol-
lowing epoch. Being within Ag 4+ Ap from the beginning
of the epoch the second filter will be used for the previous
epoch. When leaving this time slot the filter is reset and
used for the following epoch.

As a valid message must belong to any of the considered
epochs and the counter as well as the ID of the sender is
sent in plain text, one can determine the correct epoch by
decrypting the message. To accomplish this one simply has
to decrypt the ciphertext with both epoch numbers one af-
ter another and check whether the decryption succeeded.
Afterwards it can be checked whether the message already
exists in the corresponding bloom-filter. If this check returns
true it is most likely that the message was replayed and can
therefore be dropped. Otherwise it is for sure that it is new
and can be accepted and inserted into the bloom-filter.

4.3 Security analysis

As stated in [14] in order to analyse security it is at least nec-
essary to consider the criterias confidentiality, authenticity
and in the case of sensor networks freshness. In the follow-
ing im going to split authenticity further into accountability
and integrity.

Confidentiality: Confidentiality is given in both MiniSec-U
as well as MiniSec-B by applying encryption utilising OCB
(4.1.1). This procedure is as safe as the underlying block
cipher that is used. So by using a cipher that has no yet
known security threats this criteria can be considered as
proofed. Semantic security is given in case of MiniSec-U by
using a counter as IV for every direction. In case of MiniSec-
B this is achieved by using the epoch number and a shorter
counter.

Integrity: Integrity is directly given in both variants by the
tag. Here the security directly depends on the length of the
tag. The probability to guess a correct tag with a length of
32 bit is 2732 and this can be considered as inveasible.

Accountability: MiniSec-U directly provides accountability
by using a seperate key for every node and direction. With-
out the knowledge of this key it is inveasible to calculate
a correct tag and can therefore not masquerade as another
node. MiniSec-B in contrast uses a network wide key that
every receiver knows. By that every node connected to the
network that has received this key can masquerade as the
sender since all other parameters like the counter are known
as well. This could be remedied by not allowing to use a
network wide key a second time.

Freshness: In the variant of MiniSec-U monotonous increas-
ing counters are used as initialisation vectors which are kept
internally by both parties. Hence the receiver can check
at any time whether the packet is fresh or replayed. In
MiniSec-B it would be possible to replay packets during a
certain time window if only sliding-windows were applied.

By additionally utilising bloom-filters these packets can be
detected. Replayed packets from old epochs are detected
by the sliding-windows and replayed packets that would be
accepted by the sliding-windows are detected by the bloom-
filters. Hence freshness is guaranteed with both variants.

4.4 Comparision to similar protocols

4.4.1 TinySec

As stated in [6] TinySec uses CBC (Ciffer Block Chaining) as
block cipher mode and in addition for authentication a CBC-
MAC. The great disadvantage with that is that in order to
calculate the authentication code the whole encryption al-
gorithm has to be recalculated a second time. One cannot
simply use the same key for encryption and authentication
as this would lead to great security threats [1]. In this case
it would be possible to change the ciphertext without the
possibility to notice the modification. Further CBC-MAC
uses an initialisation vector 0 and therefore the first encryp-
tion round cannot be reused. TinySec uses a 8 bytes long
initialisation vector which is used as a counter as MiniSec
does in order to prevent a quick repetition. However this ini-
tialisation vector is appended to every packet which means
an overhead of 8 bytes minus a few bits in comparison to
MiniSec. The last block is not enlarged to a given block
size but kept as short as possible by using “ciphertext steal-
ing” [13]. TinySec uses a network wide key even for unicast
communications. This arises the advantage that no key-
exchange algorithms have to be performed neither in uni-
cast nor in broadcast communications. This is achieved for
the cost of lower security as accountability can not be guar-
anteed at any degree. Further, none of the receivers saves
anything about the received packets or the state of the last
initialisation vector. So freshness can’t be guaranteed as
well.

4.4.2 SNEP & uTESLA

Another possible protocol combination is SNEP (Sensor net-
work encryption protocol) [11] for unicast connections and
#TESLA [11] for broadcast authentication.

SNEP is a procedure which guarantees confidentiality, au-
thenticity and freshness for unicast connections. Confiden-
tiality is achieved by using symmetric cryptography as

MiniSec does, but SNEP only uses one key per communica-
tion pair. As initialisation vector there is a counter for each
direction which is managed by both parties like it is man-
aged in MiniSec. In comparison to MiniSec this counter is
not at all transmitted with the packets and thus reduces the
energy consumption. The drawback is that in lossy networks
the counter cannot be resynchronized without the influence
of the other party and the resynchronization consumes much
energy. By using a non repeating counter as initialisation
vector, freshness is given out of the box as no packet can be
replayed. Authenticity is achieved by a separate MAC. This
is as already discussed in 4.4.1 a drawback in so far as the
whole message needs to be taken into account another time.

In order to authenticate broadcast messages one can use a
simpler variant of TESLA [10] called pTESLA. This is a
procedure which can be used for authentication but not for
encryption. It is again necessary that the parties are loosely
time synchronized in order to divide the time in parts as it is

45

done in MiniSec-B (4.2.2). In each of these parts a separate
key K; is used. For this purpose the sender generates a
key K, and calculates based on that subsequent keys K, _;
by using a one-way-function F as shown in fig.17. Based
on this function every node can calculate the key K, _; out
of K, but never K,,;;. By negotiating a key K, between
the sender and all the receivers, every receiver can proofe
the authenticity of a key with a higher index. The sender

1

I

I

I I

I I

| KO | K1 K2 Kn
I I

I

I

I

time

Figure 17: yTESLA representation

authenticates in the time slot T; every packet with the key
K, and the receiver buffers the packets in the first instance in
memory. After a certain defined amount of time the sender
discloses the key K; whereupon the receiver can check the
authenticity of this key by subsequently utilising the one-
way-function F, whereas the following must apply: Ko =
F'(K;). Is this the case all the packets buffered for the time
slot T; can be authenticated with the Key K; and this key
can now be set to be the new trusted key so that the applied
one-way-function chain is kept as short as possible. The
advantage in comparison to MiniSec is that no other node
can masquerade as the sender as keys with a higher index
cannot be calculated and old keys are no more valid after
disclosing it. The drawback however is that this can nearly
not be used for sensor nodes to send broadcast messages,
but only to receive them. This is because the full key chain
cannot be saved in the limited memory of such nodes and
recalculation of the keys all the time is very computationally
expensive.

4.4.3 Common security protocols

Common security protocols have the big advantage that they
are widely used and are therefore tested by a wide variety
of users and got analysed by security experts. The draw-
back however is that they are not built to be used in an
environment with limited resources. Common security pro-
tocols often implement very complex algorithms to achieve
a very high rate of security. However this is not possible on
sensor nodes as they are very limited in memory and com-
puting power. Further most of the protocols rely on TCP
which needs many packets to be received and sent which
consumes much of the limited energy. Asymmetric cryptog-
raphy would be very secure but considering for example a
2048 bit key would impose that every node saves the pub-
lic keys of its neighbours and this is nearly impossible be-
cause of the very limited memory. In addition assymmetric
encryption algorithms are way more computationally expen-
sive than symmetric ones. Another criteria is as discussed in
[6] that in conventional networks most connections are end-
to-end ones and the intermediate nodes (e.g. routers) do not
check the packets but simply forward them as transmission
does not matter. In sensor networks however data transmis-
sion is the most energy consuming factor and therefore such
a procedure should not be chosen.

5. CONCLUSION

As we have seen 6LoWPAN is fairly well suited for the in-
tegration of 802.15.4 capable devices into existing IPv6 net-
works. The specification not only allows these devices to
be integrated but in addition defines procedures that are
optimized for the usage in environments with very limited
resources and therefore can be used without any doubt even
with very cheap and simple sensor nodes.

MiniSec is, as well as 6LoWPAN is, highly optimized for the
use with sensor nodes and networks. This protocol tries to
eliminate all the overhead that is not absolutely needed to
guarantee the security requirements. But it does not simply
leave away every conceivable overhead but tries to find the
golden mean between letting informations away and sending
that much that no additional negotiation is needed. Never-
theless at least the unicast method fully assures the security
requirements in wireless networks. The broadcast variant
ensures the main criterias namely confidentiality, integrity
and freshness as well, but not accountability. So this proto-
col is quite well suited for sensor networks particularly as it
is not vulnerable to any known attack except brute-forcing,
which is always a possible attack.

46

6. REFERENCES

[1] M. Bellare, J. K. T, and P. Rogaway. The security of
the cipher block chaining message authentication
code, 2001.

[2] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13:422-426, 1970.

[3] M. Crawford. RFC2464 transmission of ipv6 packets
over ethernet networks.
http://www.fags.org/rfcs/rfc2464.html, December
1998.

[4] S. Deering and R. Hinden. RFC2460 internet protocol,
version 6 (ipv6) specification.
http://tools.ietf.org/html/rfc2460, December 1998.

[5] IEEE Computer Society. leee std. 802.15.4-2003,
December 2003.

[6] C. Karlof, N. Sastry, and D. Wagner. Tinysec: a link
layer security architecture for wireless sensor networks.
In SenSys ’04: Proceedings of the 2nd international
conference on Embedded networked sensor systems,
pages 162-175, New York, NY, USA, 2004. ACM.

[7] T. Krovetz and P. Rogaway. The ocb
authenticated-encryption algorithm.
http://www.cs.ucdavis.edu/ rogaway/papers/draft-
krovetz-ocb-00.txt, March
2005.

[8] M. Luk, G. Mezzour, A. Perrig, and V. Gligor.
Minisec: a secure sensor network communication
architecture. In IPSN ’07: Proceedings of the 6th
international conference on Information processing in
sensor networks, pages 479-488, New York, NY, USA,
2007. ACM.

[9] G. Montenegro, J. Hui, and D. Culler. RFC4944
transmission of ipv6 packets over ieee 802.15.4
networks. http://tools.ietf.org/html/rfc4944,
September 2007.

[10] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. The
tesla broadcast authentication protocol. RSA
CryptoBytes, 5:2002, 2002.

[11] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. E.
Culler. Spins: Security protocols for sensor networks.
Wireless Networks, 8(5):521-534, September 2002.

[12] P. Rogaway, M. Bellare, and J. Black. Ocb: A
block-cipher mode of operation for efficient
authenticated encryption. ACM Trans. Inf. Syst.
Secur., 6(3):365-403, 2003.

[13] B. Schneier. Applied cryptographie, second edition.
John Wiley and Sons, 1996.

[14] L. Tobarra, D. Cazorla, F. Cuartero, and G. Diaz.
Analysis of security protocol minisec for wireless
sensor networks. In Proceedings of the IV Congreso
Iberoamericano de Seguridad Informatica (CIBSI
2007), pages 1-13, November 2007.

