
The Traceroute zoo

Lukas Schwaighofer
Advisors: Dirk Haage, Johann Schlamp

Seminar course Innovative Internet Technologies and Mobile Communication, SS2010
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: schwaigh@in.tum.de

ABSTRACT
The well known traceroute utility can be used to gather in-
formation about the path packets take through a network.
Since traceroute is very error-prone, the results may be inac-
curate or even unusable. This paper will introduce and dis-
cuss some of the di↵erent traceroute implementations avail-
able.

Keywords
traceroute, load balancers, nmap, traceroute-nanog, Paris
traceroute, DisCarte

1. INTRODUCTION
Especially for system administrators, it is very useful to dis-
cover the route to a specific destination in order to locate
network problems. This task is mostly achieved with the
well-known traceroute tool. The Internet Protocol (IP) does
not provide any su�cient functionality for route discovery,
although two IP features will be discussed in Sections 4.3
and 4.5.1. As illustrated in Figure 1 the only available in-
formation is necessarily the first hop of the path. In order
to unravel the subsequent hops, the Time To Live (TTL)
header field is exploited. While this approach works good
enough within small and simple networks, the complexity
of the Internet causes inconsistencies. The main reason are
non-standard router implementations, firewalls and load bal-
ancers [1]. Approaches to deal with these problems and their
success will be discussed in this paper.

Figure 1: The path to the destination is unknown

2. STANDARD TRACEROUTE
The Time To Live (TTL) field in the IP header plays a cen-
tral role for traceroute. Each IP packet has a TTL that is
decremented by every router before forwarding it. In case
the TTL reaches the value of zero, the router will drop the
packet instead of forwarding it and send an error message
(Time Exceeded, TTL Expired) using the Internet Con-
trol Messages Protocol (ICMP) back to the original sender.

Dropping packets after they have stayed in the network too
long is crucial – otherwise corrupt routing tables could cause
a packet to be endlessly routed in a loop, thereby congesting
the network.

2.1 Discovering paths
In order to discover the path to a destination D, traceroute
exploits the TTL field with the following algorithm:

1. n := n+ 1

2. Send a packet with TTL n to D

3. Wait for an ICMP error message

4. Save the error message’s source IP

The above procedure starts with n = 0 and is repeated until
a reply from D is received.

The first packet sent by the initiator will have TTL 1. That
means the TTL will expire on the first router on the path
to D. Assuming this first router isn’t already the desired
destination D, it will drop the message as described above
and return an ICMP error (Time Exceeded, TTL Expired)
to the initiator. Now, knowing the first router on the way
to D, the initiator sends the next packet (according to the
algorithm) with TTL 2. This will yield the IP address of
the second router on the way to D.

The whole process goes on, until the received ICMP message
actually comes from D. This will usually also be an ICMP
error message (Port Unreachable), because most likely D
won’t be listening on the destination port we were using for
that packet.

2.2 Small variations
The above algorithm to discover paths isn’t completely spec-
ified yet. Most notably, the following details were left out:

• The transport layer protocol used for the package sent
to D in the first step

• The destination port used in the first step

Typical traceroute implementations use the User Datagram
Protocol (UDP) together with a non-reserved, arbitrary des-
tination port. This port is increased for each subsequent
packet in order to relate the sent packets to their responses.

89

Figure 2: A traceroute example

Technically speaking, it does not matter if the Transmission
Control Protocol (TCP) or ICMP is used instead of UDP for
sending the packets. The port number may also be chosen
from the pool of the well-known ports and doesn’t need to be
varied for each di↵erent packet. However, the packets have
to be di↵erent somewhere within the first 8 octets of the
transport protocol’s header, otherwise establishing a relation
between the sent packet and the ICMP response (holding
only the first 8 octets of the transport protocol’s header)
can’t be established.

Varying transport protocols and ports may seem insignifi-
cant, but they play a very important role, for example, when
trying to trace through a firewall (discussed in section 3.2).

2.3 An example
Figure 2 shows a trace of four hops to the destination. The
traceroute output for that example would look like this:

Traceroute to Dest (Dest.IP)
1 A (A.IP) xA ms yA ms zA ms
2 B (B.IP) xB ms yB ms zB ms
3 C (C.IP) xC ms yC ms zC ms
4 Dest (Dest.IP) xDest ms yDest ms zDest ms

In this example output, the letters A, B and C denote the
DNS names of the 3 routers that were discovered. With .IP
appended, they denote the respective IP address. For each
of the routers, three times in milliseconds (ms) are given. To
reduce the chance of failure, traceroute actually sends three
packets with the same TTL (thus reaching the same router)
and measures their round trip time. These three times are
given as x, y and z.

3. PROBLEMS
Since traceroute wasn’t really the intended use of the TTL
field, this approach of finding paths introduces some prob-
lems.

3.1 Non-standard routers
One major problem for traceroute is caused by routers that
disregard RFC 1812 [3]. In this paper, three common prob-
lems caused by such non-standard routers will be discussed.

3.1.1 Unknown routers

This problem exists due to routers discarding packets, with-
out sending an ICMP Time Exceeded message back to the

origin. When traceroute tries to discover such a router, it
won’t receive a response. The result in the output of tracer-
oute will be a star (*) instead of the DNS name and IP
address of the router in question.

3.1.2 Missing routers

Routers not decrementing the TTL field at all cause this
problem. When the TTL reaches the appropriate value to
discover such a router, the next router in the path will in-
stead be discovered. This will result in a router completely
missing in the trace. Even worse: There is no way of know-
ing that the packet has passed an additional router.

3.1.3 Loops in trace

We will call the appearance of the same router twice in the
same trace a loop. Routers causing this problem decrement
the TTL as they should but fail to discard packets that have
reached a TTL of zero. When the TTL of the probe packet
reaches the right value to discover this router, the packet
will be forwarded once more and the next router on the path
(N) will be discovered instead. When traceroute increases
the TTL by one, it will again discover the router N, which
correctly drops the packet once again. In the resulting trace,
the router N appears twice in a row while the non-standard
router causing this problem is missing.

3.2 Firewalls
Firewalls play an important role in today’s Internet. Almost
every corporate network will operate at least one firewall as
gatekeeper to their network. As operating systems and ap-
plications are – due to their complexity – error prone, using
firewalls plays a vital role in security. Even though tracer-
oute itself should not be regarded as an attack, it may give
a potential attacker valuable insight into the network inter-
nals. Since this information can be used for planning and
carrying out attacks, some network administrators deliber-
ately block traceroute with their firewall policy.

Two types of problems when dealing with firewalls will be
discussed.

3.2.1 Blocked protocols and ports

A very common way of protecting a network is to limit in-
coming tra�c to certain combinations of protocol and port
depending on the destination. A company operating a web
server within their corporate network, for example, needs to
allow incoming tra�c to that particular host on TCP port
80.

This problem can be circumvented by trying di↵erent proto-
col and port combination, as described in Section 2.2. Even-
tually a combination allowed by the firewall policy will be
found and a path to the destination within the firewall pro-
tected network can be detected.

3.2.2 Blocked ICMP time exceeded

Firewalls blocking ICMP packets of the type time exceeded
deliberately block attempts to gain information about the
network with traceroute. Since the ICMP time exceeded
packets generated from within the network can’t reach the
initiator of the trace, there is no way to gain information
about the network beyond such a firewall.

90

Figure 3: Problem caused by load balancers

3.3 Load balancers
Networks are usually designed to deal with failures of sin-
gle points without loosing connectivity. This implies, that
in most cases multiple possible paths between two distinct
nodes exist. In the Internet, routers automatically update
their routing tables when they realize that a certain connec-
tion is no longer available.

In order to increase performance of the network, backup
routes are not only used to avoid fatal failures but also to
provide extra bandwidth by distributing the packets over
all available routes to the desired destination. [2, 11]. This
behavior makes traceroute’s life hard: As one trace consists
of multiple packets that are individually balanced over the
available paths, traceroute may actually detect non-existent
links.

An example is given in Figure 3: Node A is a load balancer
and in order to reach our desired destination we have to
pass router E. For simplicity reasons we assume that A is
already our next hop router, reachable with TTL 1. For the
second packet (sent with TTL 2), the load balancer decided
to forward the packet to router B. The third packet (TTL
3) was sent via router C. The resulting route to E looks like
this:
A ! B ! E
We will wrongly assume that there exists a link between the
routers B and E.

Dealing with this problem is di�cult. Traceroute uses 3
packets for each single router to discover. This ensures that
it will likely be noticed that something unexpected is hap-
pening since packets sent with the same TTL result in re-
sponses from di↵erent IP addresses. Unfortunately there is
no way to decide on a correct path based on the available
information. Nevertheless, some traceroute-like implemen-
tations that will be discussed in Section 4 have come up with
ideas to deal with this problem.

4. DIFFERENT APPROACHES
In this section di↵erent route discovery approaches will be
introduced. Most important, the di↵erences from standard
traceroute will be pointed out and discussed.

4.1 Nmap traceroute
The well known port scanner nmap (Network MAPper) brings
it’s own traceroute implementation. That way, portscan-

ning and tracing target hosts can be conveniently combined.
While nmap uses basically the same approach as standard
traceroute, it starts the trace with a high TTL decreasing it
step by step to 1 instead of starting with 1 and increasing.
This feature is meaningful when tracing whole subnetworks:
Once the performed backward trace reaches a point that was
passed in a previous trace, there is no need to complete the
whole trace any more since the path from that point to the
initiator is already known. Thus, for tracing whole networks,
the amount of packets required is significantly reduced. For
single hosts, this attempt is a little bit slower, because the
correct highest TTL value has to be discovered.

4.2 Traceroute-nanog
Traceroute-nanog is a route discovery application from the
North American Network Operators’ Group (NANOG). This
is just another standard traceroute implementation with the
following additions:

• Option to lookup Autonomous System (AS) numbers
for each hop.

• Change the Type Of Service (TOS) field in the IP
header of sent packages to arbitrary values.

• Option to perform a Maximum Transmission Unit (MTU)
discovery along the path being traced.

• Can detect the use of the Multiprotocol Label Switch-
ing (MPLS) protocol (application described in [4])

• O↵ers a parallel mode: In order to speed up the trace,
multiple packets are sent at the same time. Since some
routers limit the amount of ICMP packets per minute,
setting this value too high may result in packet loss.

4.3 Traceroute using an IP Option
In an attempt to simplify traceroute, the Internet Engineer-
ing Task Force published RFC 1393 [6], introducing an IP
option for traceroute. Using this IP option, traceroute is
performed in the following way:

1. The initiator sends a packet to the desired destination
with the IP traceroute option set.

2. Every router receiving the packet will not only forward
it but additionally send a newly generated extra packet
back to the initiator.

This approach has two advantages. Firstly, the amount of
packets needed for the whole trace is n+ 1 packets (with n

denoting the length of the path). The total number of hops

taken by all the packets is n+
Pn

i=1 i =
(n+1)2+n�1

2 . Using
traceroute, the number of packets required is 2n (without
doing multiple measurements per router) and the number of
total hops is 2 ·

Pn
i=1 i = (n+1)2�n+1. This comparison is

actually in favor of traceroute, because the main reason for
doing multiple measurements is not averaging the round trip
times. It’s all about at least detecting problems described
in Chapter 3.

Secondly, the one packet traveling from the source to the des-
tination while triggering an extra packet from each router

91

travels through the network on just one (naturally consis-
tent) path. While there’s no way to notice load balancers
on the way, the resulting path is always valid and all de-
tected links actually exist.

Unfortunately, this option isn’t implemented on any public
router. This is mainly due to the security risk such an option
represents: A malicious user could trigger a large number of
packets sent to a particular host by sending just one packet
with forged source address to a far away destination. It
is very unlikely that we will see such a convenient way to
discover paths in the future.

4.4 Paris traceroute
Paris traceroute’s [1] main goal is to do better in the presence
of load balancers. The programmers use the fact, that most
load balancers use a per-flow approach in their load balanc-
ing decision: packets from the same flow are forwarded along
the same path. This implementation’s main achievement
is to control the packet header fields of the probe packets,
thereby enabling them to be detected as part of the same
flow and routed along the same path by per-flow load bal-
ancers.

Through experimentation, the scientists discovered that, apart
from some fields in the IP header – namely the TOS, proto-
col, source address and destination address – the first four
octets of the transport layer header are used to identify a
packet as being part of a flow. On the other hand, only
the first eight octets of that header are encapsulated in the
ICMP time exceeded message. So, in order to establish a
relation between the probe packets and the ICMP errors,
we need to perform modifications in octets 5 to 8 of the
transport layer header.

This is easiest when using the TCP protocol: the first 4
octets of the TCP header consist of the source and destina-
tion port, the second 4 octets hold the 32 bit sequence num-
ber. Thus, varying only the sequence number while keeping
source and destination port constant allows all the packets
to be regarded as the same flow.

Using UDP things get slightly more di�cult: The first four
octets also hold source and destination port, but the sec-
ond four octets hold the length and checksum of the packet.
Since neither length nor the checksum can be changed inde-
pendently from the payload (otherwise the packet is liable to
be discarded because of an incorrect checksum), Paris tracer-
oute actually varies the payload in order to produce di↵erent
checksums. The value of those checksums is ultimately the
information used to relate the ICMP time exceeded messages
with the sent probe packets.

Using ICMP for sending the probes is the most challeng-
ing: The header’s first four octets hold the type, code and
checksum header fields. The second four octets consist of
the identifier and sequence number fields. In order to allow
the packets to be identified as part of the same flow, Paris
traceroute varies both the Identifier and Sequence number
fields in such a way, that the computed checksum remains
constant.

According to the authors, Paris traceroute does significantly

better than traditional traceroute. According to their paper
[1], the number of loops observed was reduced by approxi-
mately 84%. Also, this variant of traceroute is less likely to
report non-existent links as explained in Section 3.3. The
number of faulty links reported is reduced by about 64%.

4.5 DisCarte
DisCarte [8] – standing for Disjunctive Internet Cartogra-
pher – is the most advanced route discovery program covered
in this paper. It is really more than just another traceroute
utility: It can be used to generate topology maps of net-
works. DisCarte makes good use of traditional traceroute
together with an additional feature of the IP protocol: the
Record Route (RR) option.

4.5.1 The record route option

The record route option as specified in RFC 791 [7] is older
than the IP traceroute option discussed in Section 4.3. It
works as follows:

1. The initiator sends a packet with the RR option set to
the desired destination.

2. Every router on the path will, while forwarding the
packet, add it’s own IP address to the IP header.

This approach has a major drawback: The amount of space
in the IP header is limited – only up to 9 addresses may be
recorded with the record route option. After nine addresses
have been added, subsequent routers will just forward the
packet without performing any manipulation. This is not
as bad as it may seem at first, since using a geographically
distributed set of starting points usually o↵ers one point
within (or at least close to) the distance of nine hops from
the destination.

Surprisingly, only very few routers – according to [8], just
a little bit more than 1% – actually filter packets with the
RR option set. At the same time, due to the fact that RR is
under-standardized, router implementations vary in the way
they treat packets with RR set:

• NotImpl: About 9% of the routers don’t implement
this option at all.

• Departing: About 62% update the RR array at the
time packets leave the router, adding the IP address
of the router’s outgoing interface. This implies that
packets arriving with TTL 1 will be dropped before
the RR array is updated.

• Arriving: A rather small number of the routers, ap-
proximately 7%, already update the RR array at the
time the packet arrives, putting the IP address of either
the router’s outgoing interface or the router’s internal
loopback interface into the RR array. Those routers
also update the RR array of packets that are about to
expire.

[8] introduces even more classes of di↵erent behavior in re-
spect of the RR option, but introducing them all would go
beyond the scope of this paper.

92

Probe TTL ICMP source IP RR Array
1 A -
2 B X
3 C X, Y, Z

S A X

Departing

B Y

Departing

C Z
Arriving

S ? Y
Missing

B X
Arriving

C Z
ArrivingNotImpl

A ?

Figure 4: Example taken from [8] showing how the

combination of di↵erent RR implementations and

wrong behavior with respect to the TTL parameter

may yield ambiguous results.

4.5.2 Combining RR and traceroute

The idea of combining record route with traceroute seems
to be simple enough. In practice, combining the informa-
tion in a meaningful way becomes quite challenging: ICMP
time exceeded messages usually contain the address of the
router’s incoming interface while the RR array mostly con-
tains the address of the router’s outgoing interface (see Sec-
tion 4.5.1). Moreover, due to some abnormalities caused by
non-standard routers as described in Section 3.1, the routers
discovered by RR and traceroute may di↵er. For that reason,
the actual architecture of the path often becomes ambigu-
ous.

The example in Figure 4 illustrates such a case: The table on
top shows the information gained by both the IP address of
the returning ICMP packet (traditional traceroute) and the
content of the RR array. A, B, C denote the router’s incom-
ing and X, Y, Z the router’s outgoing interface respectively.
From the information given in the table, at least two di↵er-
ent topologies for the path can be inferred, illustrated by the
two paths drawn. Arriving, Departing and NotImpl refer to
the di↵erent possible record route implementations as de-
scribed in Section 4.5.1. Missing refers to the non-standard
router implementation introduced in Section 3.1.2.

In order to cross-reference the results, DisCarte uses Dis-
junctive Logic Programming: Using the results from both
the traceroute and the RR trace, all possible paths that do
not contain the same router twice in a row are generated.
The most likely path (according to the likeliness of each
router type) is then selected. In Figure 4 it is easy to see
that the upper (smaller) path would be selected, because the
combination (Departing, Departing, Arriving) has a higher
probability than (NotImpl, Arriving, Departing).

It should be noted, that only a small part of DisCarte was
described – the discovery of one single route. The authors
of DisCarte evaluate their program against other cartogra-
phers (namely Passenger [9] and Rocketfuel [10]) and not
against any of the pure traceroute utilities explained in this
paper. Therefore no direct comparison and evaluation can
be o↵ered at that point. However, according to [8], Dis-
Carte performs significantly better than Rocketfuel, which
relies on pure traceroute for route discovery.

5. CONCLUSION
Many scientists have tried dealing with the problem of find-
ing routes and many di↵erent implementations for route
discovery are available. Nevertheless, taking a closer look,
most of these implementations are not very di↵erent from
standard traceroute. And, just like standard traceroute, all
of these implementations have problems when dealing with
non-standard situations. Still – over 20 years after the first
traceroute application was implemented by Van Jacobson
[5], traceroute remains a di�cult problem.

6. REFERENCES
[1] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger,

T. Friedman, M. Latapy, C. Magnien, and R. Teixeira.
Avoiding traceroute anomalies with paris traceroute.
In IMC ’06: Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, pages 153–158,
New York, NY, USA, 2006. ACM.

[2] B. Augustin, T. Friedman, and R. Teixeira. Measuring
load-balanced paths in the internet. In IMC ’07:
Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, pages 149–160, New York, NY,
USA, 2007. ACM.

[3] F. Baker. Requirements for IP version 4 routers. RFC
1812, Internet Engineering Task Force, 1995. Available
from: http://www.ietf.org/rfc/rfc1812.txt.

[4] R. Bonica, D. Gan, D. Tappan, and C. Pignataro.
ICMP Extensions for Multiprotocol Label Switching.
RFC 4950, Internet Engineering Task Force, 2007.
Available from:
http://www.ietf.org/rfc/rfc4950.txt.

[5] V. Jacobson. Traceroute [online]. 1989. Available
from: ftp://ftp.ee.lbl.gov/traceroute.tar.gz.

[6] G. Malkin. Traceroute using an IP option. RFC 1393,
Internet Engineering Task Force, 1993. Available from:
http://www.ietf.org/rfc/rfc1393.txt.

[7] J. Postel. Internet Protocol. RFC 791, Internet
Engineering Task Force, 1981. Available from:
http://www.ietf.org/rfc/rfc791.txt.

[8] R. Sherwood, A. Bender, and N. Spring. Discarte: a
disjunctive internet cartographer. In SIGCOMM ’08:
Proceedings of the ACM SIGCOMM 2008 conference
on Data communication, pages 303–314, New York,
NY, USA, 2008. ACM.

[9] R. Sherwood and N. Spring. Touring the internet in a
TCP sidecar. In IMC ’06: Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement,
pages 339–344, New York, NY, USA, 2006. ACM.

[10] N. Spring, R. Mahajan, and D. Wetherall. Measuring
isp topologies with rocketfuel. SIGCOMM Comput.
Commun. Rev., pages 133–145, 2002.

[11] D. Veitch, B. Augustin, R. Teixeira, and T. Friedman.
Failure control in multipath route tracing. In
INFOCOM, pages 1395–1403. IEEE, 2009.

93

http://www.ietf.org/rfc/rfc1812.txt
http://www.ietf.org/rfc/rfc4950.txt
ftp://ftp.ee.lbl.gov/traceroute.tar.gz
http://www.ietf.org/rfc/rfc1393.txt
http://www.ietf.org/rfc/rfc791.txt

