
Distributed PKI in P2P Networks

Martin Schanzenbach

Betreuer: Matthias Wachs

Seminar Innovative Internettechnologien und Mobilkommunikation SS2010

Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München

Email: schanzen@in.tum.de

ABSTRACT
Internet security today is based almost entirely on a public
key infrastructure that allows authentication and encryption
of data. However this PKI heavily relies on central institu-
tions, namely the Certification Authorities (CAs), that issue
certificates. In pure P2P networks such central instances are
unwanted because they contradict the P2P paradigms. In
this paper, we describe how a Certification Authority can
be e�ciently maintained and distributed across all peers in
a P2P network. This makes it possible to put away with
central CAs in P2P networks by establishing a distributed
public key infrastructure (DPKI).

Keywords
P2P, PKI

1. INTRODUCTION
Today peer-to-peer (P2P) networks are becoming increas-
ingly popular. They provide a lot of features that tradi-
tional client and server architectures simply don’t, for ex-
ample there is usually no single point of failure.

In common client and server architectures authentication is
often realised through a public key infrastructure (PKI). PKI
authentication today is usually done using X.509 certificates.
Servers can identify themselves to the client by showing their
certificate which needs to be signed by a trusted third party.
Those trusted third parties are also called Certification Au-
thorities (CA) because they have the ability to issue the
certificates.

However the CA is a central instance in the network and
thus opposes the idea of a pure P2P system. In this paper
we try to solve this issue by distributing the functionality
of the CA across all peers in a P2P network. In such a
distributed public key infrastructure (DPKI) collaborating
peers provide the functionality of the CA. Hence for example
issuing a certificate depends on multiple peers working to-
gether. Also the single trusted third party mentioned above
is represented by all the peers in the network.

This paper is structured as follows: At first we present some
related work that has already been done in terms of dis-
tributed cryptography. In chapter 3 we discuss the basics
of P2P networks. Chapter 4 deals with the cryptographic
routines used to realise the distributed PKI. A small intro-
duction of the PKI is given in Chapter 5. Chapter 6 then
explains in detail the approach to set up a distributed PKI.

Finally in chapter 7 a few possible attacks on this certifica-
tion scheme are discussed.

2. RELATED WORK
Shamir proposes a method in [5] that allows to divide any
data into n parts where the knowledge of k parts is enough to
completely reconstruct the original data. Whereas knowing
only k�1 parts will yield no information on the data whatso-
ever. The author called this a (k, n) threshold scheme that
can be “very helpful in the management of cryptographic
keys” [5]. This is particularly interesting in the scope of our
work to distribute a public key infrastructure.

Another interesting work was done by Rivest et al. [4]. They
present a ring signature scheme. This signature can be cre-
ated by anyone of the same group, or “ring”, with his own
secret key. The signature can be verified with the group’s
public key, that is shared across all members. Hence it is
not possible to identify the signer, which is an advantage in
terms of privacy. However they do not propose a concrete
implementation of their scheme.

Finally we are going to look at some related work regard-
ing distributed certification. Zhou et al. [6] propose a dis-
tributed Certification Authority by the use of threshold cryp-
tography. The authors present Cornell On-line Certification
Authority (COCA), a “fault-tolerant and secure on-line cer-
tification authority”. This approach allows a ratio of servers
that act as the CA to get compromised. As long as this ratio
is within a certain threshold the certification process is still
possible because enough servers can collaborate to create the
certificate. This is possible due to the use of threshold cryp-
tography which is explained in detail in section 4. However
this approach only addresses client and server architectures
and not P2P systems.

3. BASICS OF P2P NETWORKS
Peer-to-peer (P2P) networks are often used to design high
available and low-cost systems. Putting away with the tra-
ditional client/server model, in which one system acts as a
central instance (the server), the P2P network treats every
node in the network equally. This means that participating
peers can act as both – client and server – depending on
the situation. There are two di↵erent kinds of peer-to-peer
networks – structured and unstructured ones. Both will be
discussed in the following.

75

3.1 Unstructured
When a peer requests data in an unstructured P2P network
its request is flooded through the network. Such a technique
creates a very high amount of signalling tra�c [?]. An ex-
ample for an unstructured P2P network is Gnutella. Today
structured P2P networks are more common because they
provide the basics for a more e�cient network.

3.2 Structured
A structured P2P network allows any peer to e�ciently look
up data in the network. This is often realised through dis-
tributed hash tables (DHTs). DHTs serve a similar function
like traditional hash tables. Peers can e�ciently find data
by using the DHT to look up a peer that owns the data.
This works by querying the DHT for peers that can provide
a specific data set. An example for such a network, that is
using Kademlia DHTs, is the distributed tracking system of
the popular BitTorrent protocol.

4. BASICS OF DISTRIBUTED ASYMMET-
RIC CRYPTOGRAPHY

PKI in general is based on asymmetric cryptography. The
distributed approach for P2P networks we propose is no dif-
ferent. However the processes of key generation, generation
of signatures and encryption di↵er slightly from the tradi-
tional non-distributed approach.

At first we are going to discuss the basics of asymmetric
cryptography. Then we take a look at methods for key gen-
eration as well as signing and encrypting in a distributed
fashion.

4.1 Asymmetric cryptography
Asymmetric cryptography is a method that can be used to
sign and encrypt data. It is quite di↵erent to its symmetric
counterpart. Instead of using a single secret key for encryp-
tion so called key-pairs (P, S) consisting of a public key P

and a private key S are used. The public key P can be
distributed through insecure channels whereas the private
key S should always remain secret. To encrypt any kind of
data t the public key can be used. Decryption is possible
by applying the private key. RSA is a well known cryp-
tosystem that can be used for asymmetric cryptography. It
defines P = (d,m) and S = (e,m). In this case e is the se-
cret part of the key pair, whereas d is the public part. The
modulo m = p ⇤ q is required for the calculations when de-
and encrypting and p and q are big prime numbers. This is
why the security of the RSA cryptosystem is largely based
on the mathematical problem of factoring large numbers.
To encrypt any data t it is exponentiated with the secret
e: s = t

e[m]. Decryption is done by exponentiating the
encrypted data with the public part d: t = s

d[m] An addi-
tional feature of RSA is called signing. To sign any data
set the private key is used. Consequently verifying the re-
sulting signature is possible with the public key. Anybody
who knows the public is then able to verify this signature.
Hence this feature unsuitable to ensure that the data can-
not be read by a third party. But for example it is useful
for identifying its origin.

4.2 Distributed RSA key generation
For asymmetric cryptography to be of any use in a dis-
tributed environment like a P2P network it is also necessary
to think of a distributed way to generate the key pair (P,
S). It is important that no peer in the network knows the
secret key S entirely. So the peers have to jointly generate
shared RSA keys. Fortunately e�cient algorithms to do
this already exist like the one proposed by [1].

4.3 Distributed signing and encryption using
RSA

RSA has a crucial property: It is a homomorphism. With-
out this property it would not be possible to use it in a dis-
tributed environment. Using the distributed key generation
algorithm introduced above all parties know only a part e

i

of
the secret e after the key pair is generated. However due to
the homomorphic property of RSA it is possible to assemble
partial signatures t

ei into the full signature t

e. Equation 1
illustrates how the homomorphic property of RSA can be
utilised. By applying basic rules of exponentiation it can
be shown that instead of computing t

e[m] it is also possible
to compute t

ei [m] for every part e

i

of the secret e and in
the end multiplying the results. In other words it is possible
to generate a signature without actually knowing the secret
key S as long as all partial signatures are available.

t

e[m] = t

Pn
i=1 ei [m] = (

nY

i=1

t

ei [m])[m] (1)

In fact it is not necessary to combine all partial signatures.
It is su�cient to settle for a ratio or threshold r on key
generation. To retrieve the full signature it is then enough to
combine any r% partial signatures. This method is based on
[5] and [2] and is accordingly called threshold cryptography.
This feature can be used in a P2P network to sign data, or
create certificates for that matter, without any party in the
network actually knowing the secret key S = (e,m).

5. PUBLIC KEY INFRASTRUCTURE
In a Public Key Infrastructure (PKI) certificates are issued
by a Certification Authority (CA). A certificate can be used
by the party that it was issued to, to authenticate itself by
showing it to another party. Such a certificate is signed and
issued by the CA. Hence if one party trusts the CA it can
also trust the certificate that was issued to the other party.
Today the PKI is often used in combination with HTTPS
and SSL/TLS for secure interaction on websites with sensi-
tive content. For example on-line-banking or web mail ser-
vices take advantage of the PKI to authenticate themselves
to the user to prevent fraud.

5.1 Certification Authorities
CAs issue digital certificates signed with their private key.
If two parties, A and B, do not trust each other but one of
them owns a certificate signed by a CA, this party can au-
thenticate itself by showing this certificate. The other party
can validate the certification by checking the signature with
the CA’s public key. Unless both parties have a certificate,
though, this authentication can only go one-way.

76

Of course this only works in the first place if the CA is
trusted by both parties. This is also called a chain of trust
and the CA is often referred to as the trusted third party
(TTP).

5.2 Disadvantages for P2P systems
In (pure) P2P networks there are no central instances. Ev-
ery peer is treated equally. Consequently an institution like
a CA contradicts this paradigm. To fully integrate the con-
cept of a PKI into a P2P network this central CA needs
to get distributed across all the peers that participate in
the network. Illustration 1 opposes the central PKI and
the distributed PKI (DPKI). In the following we propose an
approach to build such a DPKI for a P2P network.

Certificate Authority

PKI DPKI

A

B

A

B

Figure 1: Left: A is issued a certificate by the CA
and authenticates itself to B. Right: A is issued par-
tial certificates and assembles the full fletched cer-
tificate to authenticate itself to B.

6. PROPOSED DISTRIBUTED P2P PKI
First we take a look at how the distributed PKI is boot-
strapped. This includes initial key distribution and the ba-
sic layout of the network. Furthermore we explain how the
PKI can be maintained by defining a set of operations on a
structured P2P network like Kademlia as proposed by [3].
In theory, however, all operations discussed in the follow-
ing can also be implemented for unstructured P2P networks
with little extra work [3].

The idea behind this approach is that every node in the net-
work knows only part of the private key S = (e,m) that is
used for certification. However, in the beginning this secret
has to be generated. It is important that also in this gen-
eration phase no peer knows e completely at any time. To
achieve this an e�cient distributed algorithm already exists
for RSA as proposed by [1]. After the generation of the pri-
vate key S any peer in the network only knows the modulo
m and e

i

|i 2 {1...n} where n is the number of unique key
parts or shares. Here it makes sense to introduce the concept
of Sharing Groups. A Sharing Group consists of nodes that
share the same information: Any peer in the Sharing Group
i (SG

i

) knows only the share e

i

. This aggregation of peers

into groups has the advantage that e
i

is not instantly lost if
a peer that knows this part of the secret leaves the network.
Every share has a unique shareId. At the same time every
peer in the network is assigned a unique peerId. The shareId
is a prefix within the peerId in the form peerId = shareId*.
Consequently when given a shareId it can be instantly de-
termined if a peer knows this share (or at least part of it) by
looking at its peerId. This feature combined with a struc-
tured P2P network makes it easy to find required shares that
are needed to complete a certification process. Our approach
for distributed certification is presented in the following.

6.1 Certification scheme
To perform an actual certification all Sharing Groups have
to collaborate. Only if at least one peer of every Sharing
Group takes part in the certification process it is possible to
generate a valid certificate. An example certification process
can look like this:
We assume there are three Sharing Groups (SG

shareId

) in
the network. Those are SG0, SG10 and SG11. An exem-
plary walkthrough is illustrated in 2 and the stages will be
explained one by one in the following.

 A (e0:)

B (e10:) C (e11:)

sig0

sig1?

sig10

sig11?

sig10

+ =

(1)

(2)

(3) (4)
(5)

(6)

(7)

(8)

sig1

sigfull

Figure 2: The distributed certification process.

The peer A, which is part of Sharing Group 0 (SG0), wants
to sign a certificate cert. Since A knows the share e0 it can
compute the partial signature sig0 for the certificate (1).
The calculation of the partial signature looks like this:

sig0 = cert

e0 (2)

(Note: Generally when creating a signature a one-way hash
function like SHA-1 is applied on the data and the resulting
hash is signed. In our example, though, this step is omitted
to keep it simple.)

As explained previously when using RSA the full signature
can be calculated by multiplying all partial signatures. To
generate the full signature sig

full

= sig0 ⇤ sig10 ⇤ sig11 A
requires the help of the other two Sharing Groups. A now
asks a peer B that is in SG10 for the partial signature sig1

(2). This also requires A to send the certificate to B. B on
the other hand does not know sig1 completely but only sig10

(3). Fortunately it holds that sig1 = sig10 ⇤ sig11 so B can

77

ask (4) any peer C in SG11 for the partial signature sig11

(5),(6) to calculate sig1. After B sent sig1 to A (7) the
certification process can finish. A only needs to calculate:
sig

full

= sig0 ⇤sig1. By using this signature A can complete
the certification process (8).

6.2 Maintenance operations
Peer-to-peer networks can be very dynamic. This means
that peers frequently leave or join the network. Hence it is
essential that the partial secrets distributed across the peers
are redundantly available. Consequently there are multiple
peers that know the same share of the public key S. Those
peers are put into Sharing Groups. As long as there is at
least one peer in each Sharing Group the network’s public
key S is safe. Before the network can be set up, however, it
is necessary to settle for a maximum (max

SG

) and minimum
number (min

SG

) of members in a single Sharing Group. As
discussed above to successfully sign a certificate at least one
peer of every Sharing Groups has to participate in the pro-
cess. This implies that the ratio r of required peers depends
on the maximum and minimum size of the Sharing Groups.
In fact it holds that:

1
max

SG

< r <

1
min

SG

(3)

However, if all peers of a Single Sharing Group leave, the net-
work’s private key S is lost and cannot be recovered because
the other peers, by definition, do not know S completely. To
counter this a few maintenance operations are proposed in
the following sections.

6.2.1 Split
If the size of a Sharing Group exceeds max

SG

peers it should
split. Without a split the ratio r would no longer be within
its boundaries (see equation 3). This, however, is not the
only reason why keeping the number of Sharing Groups high
is a good idea. It also minimises the probability of a certain
attack that can occur when there are only a few Sharing
Groups. A detailed explanation of the attack is discussed
later in section 7.

When a split occurs in a Sharing Group SG

i

, the secret all
peers in this group know (e

i

) is split into two parts: e
i0 = �

and e

i1 = e

i

� � with � being a random number. Re-
spectively Peers split into the new Sharing Groups SG

i0

and SG

i1. A peer can determine by itself in which Sharing
Group it splits because peerId = shareId⇤ = i⇤ must still
hold for i1 as well as i0. Consequently the peerId of a peer
determines the Sharing Group it will belong to after a split.
The split operation is illustrated in figure 3.

6.2.2 Refresh
The split operation has some drawbacks: Both Sharing Groups
that result from a split know the original share e

i

. This
means that both Sharing Groups can calculate the other
Group’s share. For example SG

i0 can calculate e
i1 = e

i

�e

i0.
That is obviously a security flaw because no Sharing Group
should know the share of any other Sharing Group.

To achieve this, [3] propose the refresh operation: After
a split the Sharing Group selects a random other Sharing
Group and they swap share information. By doing so the

Figure 3: The split operation divides the secret
across the new Sharing Groups. Key parts are rep-
resenting the secrets.

resulting share is no longer calculable by the other peers that
split into the opposite Sharing Group. The refresh process
is outlined in figure 4.

Random other Sharing Group:

Figure 4: A Sharing Group performing the refresh
operation after a split.

6.2.3 Merge
To ensure that the secret S = (e,m) is not lost, it is im-
portant that no Sharing Group dissolves because all of its
peers disconnect. Hence if the ratio of peers inside a Shar-
ing Group SG

i0 drops below 1
maxSG

it simply merges with
another Sharing Group SG

i1. After the merge, the Sharing
Group SG

i

consisting of all the peers that were previously
part of SG

i0 or SG

i1 is created. The share all the peers in
SG

i

know is then simply calculated like this: e

i

= e

i0 + e

i1

The operation is illustrated in figure 5.

6.2.4 The Sharing Trees
The above operations work well in theory. However, they
rely heavily on byzantine agreements. For instance peers
always need to monitor their Sharing Group and all of them
have to agree to split at some point. The same problem
arises for the merge operation, of course. Also when the
refresh operation is executed all peers of a Sharing Group

78

Figure 5: Two Sharing Groups merging together.

have to agree on a random value � and a random other
Sharing Group. Those agreements are infeasible to fulfil in
a practical implementation.

To solve this issue [3] propose the use of Sharing trees. Every
Sharing Group is associated with such a Sharing tree. It
defines for instance how the secret e is divided if a split
occurs. This makes it possible for peers to split at di↵erent
times because they will all split into the same Sharing Group
and calculate their new secret in the same way. The secret e
can be seen as the root of the main Sharing tree as illustrated
in figure 6. If a peer decides to perform a refresh operation

e

e1e0

e10
e00 e01

e011e010e001e000 e100 e101 e110 e111

SG0 SG10 SG11

e11

Figure 6: Here three sharing trees are highlighted
of the three Sharing Groups SG0, SG10 and SG11.

it can select a random other Sharing Group and the random
value � that will be exchanged. Then it tells all members of
its Sharing Group to perform the refresh with its chosen
variables. All peers in both Sharing Groups are able to
update their Sharing tree correctly.

7. VULNERABILITIES AND DEFENCE
Just like with any system this proposed approach for a dis-
tributed PKI is not perfect. Two straightforward attack vec-
tors are presented in the following along with probabilities
of success and defensive measures.

7.1 Attacker in each Sharing Group

The first obvious issue to discuss here is: What happens if
collaborating attackers manage to infiltrate every Sharing
Group. This scenario would require n attackers sitting in n
di↵erent Sharing Groups where n is the current number of
Sharing Groups.

In this case the attackers can combine their knowledge and
assemble the network secret S = (e,m) resulting in a com-
promised PKI. Generally it can be said that the more Shar-
ing Groups there are in the network the less probable this
attack becomes if newly joining peers are always assigned to
random Sharing Groups. Say the probability that a peer is
an attacker is k

a

. Now the amount of members of a Sharing
Group i is g

i

. The probability that all members of a Sharing
Group i are not attackers is (1 � k

a

)gi . Consequently the
probability that there is in fact at least one attacker in SG

i

is 1 � (1 � k

a

)gi < 1. Now we can also calculate the prob-
ability that there is at least one attacker in each Sharing
Group:

P

att

=
#SGY

i=1

1� (1� k

a

)gi (4)

This equation proves that the probability of this attack (P
att

)
decreases if the number of Sharing Groups (#SG) increases.
This is the most important reason why the split operation
exists. By applying this operation it is possible to ensure
that a reasonable high number of Sharing Groups exist. A
visual representation of such an attack can be seen in figure
7.

Figure 7: In this illustration three attackers from
three di↵erent Sharing Groups participate in the re-
trieval of the secret key.

7.2 Misbehaving Sharing Group
Another possible attack consists of attackers “taking over” a
single Sharing Group. This attack does not expose the net-
work’s private key S like the one discussed previously, but
if a certificate needs to be signed the compromised Shar-
ing Group can block the process by not answering to any
requests. This attack, if successful, also makes the PKI un-
usable. Figure 8 illustrates the attack.

We can now look at the probability of this attack: Let k

a

be again the probability that a peer is evil and g

i

is the
number of peers in Sharing Group i. The probability that

79

Figure 8: In this illustration two of three Sharing
Groups participate in the certification process. The
Group on the bottom, however, denies the final part.

there are only attackers in SG i is: k

a

gi . Accordingly the
probability that there is at least one peer in the SG that is
not an attacker is: 1 � k

a

gi . Consequently the probability
that there is at least one Sharing Group containing only
attackers is:

P

att

= 1�
#SGY

i=1

1� k

a

gi (5)

Paradoxically every split operation theoretically raises the
probability of this attack, because the less peers there are in
a Sharing Group the more likely it is that all of those peers
are attackers.

In conclusion it is obvious that the size limits of the Sharing
Groups determine the success probabilities of those two at-
tacks. Unfortunately minimising the likelihood of success of
one attack increases the probability of success for the other.
In other words the Sharing Group size describes a trade-o↵
between those two issues and should be chosen wisely.

8. CONCLUSION
We presented an approach that can be used to distribute a
public key infrastructure in a P2P network. It allows to put
away with a central Certification Authority by distribut-
ing the certification process. Future work can be focused
on making the system more robust against attacks. Also,
as with any PKI implementation, certificate revocation is
still an issue. The creation and distribution of the revoca-
tion lists (CRLs) would have to be distributed just like the
decision process that determines what certificates are to be
revoked and for what reason. An advantage in terms of secu-
rity and availability of CRLs is that denial of service attacks
against the PKI could be avoided. If the CRLs are properly
distributed across a large number of peers the probability
that a certification process fails because of an unavailable
CRL could be minimised.

9. REFERENCES
[1] D. Boneh and M. Franklin. E�cient generation of

shared rsa keys. J. ACM, 48(4):702–722, 2001.
[2] Y. Desmedt and R. Holloway. Some recent research

aspects of threshold cryptography. In In Proc. of the

1st Intl. Information Security Workshop, pages
158–173. Springer-Verlag, 1997.

[3] F. Lesueur, L. Mé, and V. V. T. Tong. An e�cient
distributed pki for structured p2p networks. In
H. Schulzrinne, K. Aberer, and A. Datta, editors,
Peer-to-Peer Computing, pages 1–10. IEEE, 2009.

[4] R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a
secret. In ASIACRYPT ’01: Proceedings of the 7th
International Conference on the Theory and
Application of Cryptology and Information Security,
pages 552–565, London, UK, 2001. Springer-Verlag.

[5] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[6] L. Zhou, F. B. Schneider, and R. V. Renesse. Coca: A
secure distributed online certification authority. ACM
Transactions on Computer Systems, 20:329–368.

80

