Purpose and security analysis of RASTER

Oliver Gasser
Advisor: Christian Grothoff
Seminar Future Internet SS2010
Lehrstuhl Netzarchitekturen und Netzdienste
Fakultat fir Informatik, Technische Universitdt Minchen
Email: gasser@in.tum.de

ABSTRACT

In this paper we survey the purpose of the RASTER rout-
ing protocol and study its input on a P2P network’s se-
curity. Routing in P2P-systems using adaptive distributed
hash tables (DHT) poses different challenges than routing in
traditional deterministic DHT-based P2P systems. Routing
algorithms designed for deterministic DHTs do not always
find those shortest paths in adaptive networks. The rout-
ing protocol RASTER tries to solve this problem. It mini-
mizes the storing and forwarding overhead and has a good
routing performance. We study RASTER(a)’s performance
and examine the impact of faulty or malicious nodes on a
P2P system which uses the RASTER routing protocol and
discover that such a system is more vulnerable to routing
manipulation attacks or erroneous nodes.

Keywords
Distributed hash table, Security, Adaptive DHT, Random-
ized DHT, Routing

1. INTRODUCTION
1.1 Terminology

Participants in a Peer-to-Peer (P2P) network are called nodes.

A hash table matches a key k to its value v. A distributed
hash table (DHT) is a hash table distributed over multiple
nodes. A routing protocol for DHT tries to retrieve the value
v for a certain key k as fast and efficiently as possible. If
a certain v is not found at the node itself the node has to
make a decision to which neighbor it forwards the query.

In a traditional deterministic DHT [6, 7, 9] each node selects
its neighbors deterministically. This means, that a node has
no influence over the nodes which will be its neighbors. Each
node selects a certain fixed number of neighbors, the degree
k of the overlay structure. Neighbors are selected based on
their position in the overlay’s hash space. A drawback of
this procedure is that it does not consider the heterogeneity
of nodes, i.e. the differences in nodes’ Internet connectiv-
ity, service capacity, lifetime in the system or willingness to
perform a certain task.

Adaptive DHT P2P systems overcome this shortcomings by
giving nodes some flexibility to select their neighbors. Specif-
ically a node chooses its neighbors based on characteristics
such as their Internet connectivity, service capacity, lifetime
in the system and service willingness. The nodes are, how-
ever, not chosen totally at random as the term randomized

55

DHT may suggest in Wang et al.’s paper [11]. Total ran-
domness in neighbor selection would lead to some problems
which will be discussed in Section 3.1. Each node always
has some near neighbors in order to ensure that a request
can be routed towards its destination without looping back
and forth. It has been shown [4] that picking neighbors
with certain randomness leads to overall better performance
specifically in terms of path latency, resilience to churn and
local convergence.

1.2 Routing in adaptive DHTs

Unfortunately greedy routing, the dominant routing strat-
egy in deterministic DHTSs, falls short of finding the short-
est overlay paths in adaptive DHTs. This strategy forwards
queries to neighbors who are thought to be closest to the des-
tination node, but do not respect the DHT’s nondetermin-
istic overlay structure. The Neighbors of Neighbors (NoN)
strategy proposed by Manku et al. [5] performs better than
greedy routing but is still far from optimal. In order to get
better routing performance, NoN routing could be general-
ized, i.e. nodes also save 3rd, 4th etc. degree neighbors in
their routing tables. However, this creates a huge space and
communication overhead.

RASTER [11], a routing protocol for adaptive P2P net-
works, addresses this problem. It solves the overhead prob-
lem caused by having an exponentially increasing number
of neighbors in routing tables, by aggregating routing states
and encoding routing tables as bitmaps. It maintains rout-
ing information within a radius of a. It outperforms NoN
and is more resilient to churn (nodes joining and leaving the
network). RASTER guarantees the discovery of shortest-
path overlay routes if the destination d is within a hops, but
not otherwise.

In this paper we are describing RASTER in more detail.
We then present measurement data investigating the claim
of RASTER(a)’s better performance and survey the perfor-
mance impact of changing parameters. Additionally we are
also examining the impact of more information on the neigh-
boring topology on a P2P network’s security. If a malicious
node joins a network which uses the RASTER algorithm,
it has a greater influence factor than by joining a network
relying solely on greedy routing.

The rest of this paper is structured as follows. In Section 2
we will examine Chord [9] as an example of a routing algo-
rithm for deterministic DHTs and then in Section 3 we will

take a look at general routing strategies and see why greedy
routing encounters problems in adaptive DHTs. Thereafter,
as a possible solution for these problems, the bitmap con-
cept and the RASTER routing algorithm [11] are introduced
in Section 4. In Section 5 we do a performance comparison
of RASTER’s two different forwarding decision implemen-
tations. In Section 6 we discuss the impact of faulty or ma-
licious nodes and we conclude this paper in Section 7 with
the result of our inquiries.

2. DETERMINISTIC DHT ROUTING

This section will describe Chord [9], a typical, simple, de-
terministic DHT routing algorithm.

In Chord, a hash function assigns each node an m-bit ID
by hashing the node’s IP address. IDs are ordered in an
identifier circle modulo 2™. The key k is assigned to a node
as follows: (1) If a node n exists with the same ID as the key
k, then k is assigned to n, or (2) if there is no such node, then
k is assigned to the successor node or successor(k) which is
the first actual node on the circle following k’s ID.

For key location purposes each node n maintains a finger
table, a routing table with m (number of bits of the hash
space) entries. Each entry in this table consists of a Chord
ID and an IP address. The *" entry in the table points to
the node s = successor(n+2°"1) for 1 < i < m. This is the
first node which succeeds n by at least 271, Note that these
neighbors in the finger table are selected deterministically.

In our example the nodes’ IDs have a length of 6 bit (m = 6)
and there are 10 nodes in the system. Figure 1 illustrates
the finger table entries of node 48.

N6L it
S B \

N50, N14
N48
JN21
N22

N42

N32
Figure 1: Chord neighbors of node with ID 48.

If a node n gets a request to retrieve the value v for the
corresponding key k it first checks if itself is responsible for
this key, i.e. k € (n,successor(n)). If that is the case v
is either stored at n and returned right away or can not be
found in the DHT. Otherwise n forwards the request to the
neighbor with the largest ID m smaller or equal to k. More

56

formal:

Py tm <
where F'T is the set of finger table IDs. This algorithm
is of complexity O(logn) as each node has logn neighbors
and after at most O(logn) hops the node responsible for the
value v has been found. Each forwarding decision at least
halves the distance to the destination.

3. ROUTING STRATEGIES IN DHTS
3.1 Greedy routing

Greedy routing is a strategy which bases its forwarding deci-
sion as follows: A node n forwards a request to that neighbor
W™, which is closest to the destination d. In a more formal
way it selects W™ of its neighbors Wy, W, ..., Wy for which
|d — W7*| is minimal. Assuming that the out degree of each
node is O(logn), the storage and forwarding overhead for
each node in a deterministic DHT is O(logn), the average
path length between two arbitrary nodes is O(logn).

As shown in Section 2, nodes in deterministic DHT net-
works select their neighbors based on a specific algorithm.
For demonstration purposes we assume that the nodes are
aligned like a matrix in the hash space and two nodes are
neighbors, if they are side by side in a matrix’ row or column.
In an environment with deterministic neighbor selection, the
greedy route always leads to shortest overlay paths (see Fig-
ure 2 (a)). Algorithms that are based on the greedy routing
strategy do not find shortest paths in adaptive DHTSs, i.e.
with a somewhat irregular overlay structure. By forwarding
the message to a neighbor they come closer to the destina-
tion. However, it is not guaranteed that this really is the
route with the fewest hops. It is possible that the neighbor,
to whom the request has been forwarded to, has neighbors
which come only a little closer to the destination node d
(see Figure 2 (b)).! The origin of the problem is that al-
though you make a locally optimal choice, i.e. you make the
biggest step towards the destination, you can’t assume the
same about it globally as in adaptive networks you don’t
have sufficient knowledge about the structure of the node’s
neighbors, the neighbors’ neighbors etc.

Greedy routing (e.g. Chord), however, is not optimal for
adaptive networks, i.e. where each node chooses its neigh-
bors not deterministically but according to the neighbor’s
latency, service capacity, lifetime in the DHT etc. To find
a better solution than greedy we need to survey the differ-
ent requirements for routing in deterministic and adaptive
DHTs.

3.2 NoN routing

An approach similar to greedy but specifically designed for
adaptive DHTs is Neighbor of Neighbor routing (NoN) pro-
posed by Manku et al. in [5]. In this algorithm each node
not only saves information about its neighbors but also of its
neighbors’ neighbors (also called neighbors of ond degree).
When making a decision to which node to forward a re-
quest, the node forwards it to neighbor W*, which has itself

'If the nodes chose neighbors at random as the term ran-
domized DHT in [11] suggests, it would even be possible that
there is no neighbor which gets locally closer to d, resulting
in the wrong peer being identified as the target.

a neighbor closest to the destination node d. I.e. n identifies
W*, which can be of n’s 1°* and 2" degree neighbors, and
forwards the request to W*. The average path length be-
tween two arbitrary nodes with NoN routing in a DHT where
each node has O(logn) neighbors is O(lolgc_’lgogn). This perfor-
mance improvement compared to greedy routing comes with
a significant drawback: Each node’s routing tables contain
O(log® n) entries and the communication overhead is also

greater.

(a) Deterministic DHT

(b) Adaptive DHT

Figure 2: Difference between shortest path route
(dashed line) and greedy route (solid line).

The NoN strategy performs slightly better than greedy rout-
ing as it can avoid neighbors which are perceived to be close
to the destination node d but where then their neighbors are
not rapidly progressing towards d. NoN is not the panacea as
it only includes neighbors of 15" and 2"¢ degree. As pointed
out in [11] (1) the average number of overlay hops indepen-
dent of the overlay structure approaches the Moore bound
[log, m], where n is the number of nodes and k the degree.
(2) The performance gap between shortest route and cho-
sen route can be bridged by generalizing NoN routing, i.e.
nodes also maintain information about higher degree neigh-
bors. This, however, is not practical as it comes with high
communication and storage overhead. The RASTER rout-
ing protocol, which will be explained in detail in the next
section, addresses this issue.

4. RASTER ROUTING PROTOCOL

This section describes the definition and reasoning behind
using bitmaps instead of traditional routing tables, construc-
tion of and operations on such bitmaps and the RASTER
decision procedure in detail.

4.1 Bitmaps

A bitmap is an encoded representation of a set of nodes in
a DHT network. It is important to note that the size of the
bitmap is independent of the number of nodes in the DHT.

DEFINITION 1. Bg" is a bitmap of resolution r, from an
arbitrary node s and covering a radius a. It is an r-bit binary
string representing the overlay positions that can be reached
from node s within a hops. The system’s hash space is to be
partitioned evenly into T bins of the same size. If the it" bit
(0<i<r—1)in By is set to 1, at least one node in bin
i 1s reachable within a hops from node s.

BL" therefore represents the overlay neighbors of node s,
B2 neighbors of 2"¢ degree and so on. See Figure 3 and

57

Figure 3: Constructing By'® = 0000 0110 0010 0000.

Figure 4 on how to construct bitmaps. Contrary to tra-
ditional routing tables these bitmaps hide routing details,
which are not relevant for forwarding decisions. Bitmaps
don’t contain entries for every single node but combine them
into bins. Furthermore a node only retains IP addresses for
its direct neighbors and not for all routing table entries. This
makes bitmaps much smaller than routing tables.

10
1/1
1|0
0

oo e] ()
O 00O
[
o000
QOO0
=
elel| e
o oo
Ooo|o|o

ool o]l

0

1,16

B,

FE I PR Y P

Bitwise ORing

2,16
Bs

&
0
1
0
0

(===

O|||—=

ol e

Figure 4: Constructing B>'® = 0110 1111 0110 0010
and BZ* = 1111

4.2 RASTER routing

For RASTER to be able to make a forwarding decision,
each node needs to store certain bitmaps. RASTER(a) de-
fines the algorithm, where each node s maintains bitmaps
about its neighboring topology within a radius of a: Each
node s keeps Bl"maz BZTmaz B%Tmaz and addition-

1 1 .
ally B, ..., By~ "™ for all neighbors k, where rmaa
is the maximum resolution.

The storage amount for each node is therefore a-7.mq2 bits for
its own bitmaps plus k- (a— 1) - rmqs for its neighbors, where
k is the out-degree, i.e. number of neighbors. Assuming
that each node has a logarithmic number of neighbors (k €
O(logn)), the total storage cost for one node is (a + logn -
(@ — 1)) - "maa bits.

The general approach of the routing decision procedure is as
follows. When a node s receives a query for a key k, it first
identifies the corresponding bin in the system’s hash space,
i.e. the bit in the bitmap, by. The node then forwards the
query to its neighbor k*, which (1) can reach the closest bin
to bp and (2) following the minimum number of hops.

4.2.1 Straightforward implementation

Upon receiving a query node s searches Bl"mae B2rmaz,
..., BY"maer to find the closest bit to by set to 1. If is bg
found in more than one bitmap, choose the one with the
smallest radius H. RASTER stops looking when the bit
representing the destination bin is set. This means that
there is a neighbor which can reach the closest bin in H — 1
hops. To find this neighbor we look through B,f_l’””'” for
all neighbors k until one of them, k*, has set the bit by to 1.
This is the neighbor to which the query will be forwarded
to. Wang et al. [11] claim, that this approach had a signif-
icant drawback: Searching through all the bitmaps for the
bit closest to bg is expensive. The real RASTER(a) imple-
mentation solves this problem by maintaining and searching
through different resolution bitmaps. We will survey this
claim in Section 5.

4.2.2 RASTER(a) implementation

The idea of this implementation compared to the straight-
forward one is to keep multiple resolutions for each bitmap.
First you determine where the queried key resides for all

maintained resolutions. Then, instead of searching all bitmaps
with resolution 7,4z, different resolution bitmaps are searched

for the bit closest to by. See Figure 5 for a visual represen-
tation.

4.2.3 Processing overhead

In an adaptive DHT network with n nodes and an out-degree
of k € O(logn) which implements RASTER(a) maintaining
[resolutions, has the following overheads [11]: To make the
forwarding decision O(logn) bitwise operations are neces-
sary. The cost of ezchanging bitmaps is ©(a:Tmae -logn) bits
and the cost of storing this information is ©(a -l rmez -logn)
bits.

S. ROUTING DECISION PERFORMANCE
COMPARISON

In this section we will compare the decision process’ perfor-
mance of the straightforward implementation and the more
elaborate RASTER(a). These benchmarks written in Java
were conducted on a regular consumer laptop.?

2Intel Core2Duo T7500 @ 2.21 GHz, 2 GiB RAM, Ubuntu
9.10, source code found at [3]

58

®—s
AL

Step 1

Gverlay topology within 2 hops
of node S (grey background)

(r = 64, Bit 42) (r =16, Bit 9) (r=4,Bit2)
oiotaioee 0[1]1]0
G 1]
0/0/0/1]1[1]0[0 0 1|0
sitit oot L LIL
B;.GA B;,lﬁ lel
Step 2)
Deti?mine (r =16, Bit 9)
closest bin
0/0|0|0] OJ1]10
0/1/11|0 111/]1]1
0/01/0f 0/]11/0
0/0/0/0 0010
B,lé B;‘lé
of hops
0[1/0/0) O|0]1]|0/0|0|0|0] 00|00
1{1{1|0] O[1[1[0| |0j0J1|1, 0/0|1]0
0/1/0/0/ 0/00/0] 0/0Q/1/0 0[1/1]0
0/0]0]0] 0J0|0|0, O]0]0|0]0j0]1 |0
. B;,lﬁ i B(l:,lé B1D,16
Forward query to
neighbour whose Forward query for
bitmap matches to node A or D

Step2 &3

Figure 5: Node S’ forwarding decision following
RASTER(2): (1) Identify the destination bin’s bit
for every resolution (bold bits). (2) Find the largest
resolution where this bit is set (r = 16). (3) Find
smallest radius for which this bit is set (a = 2). (4)
Find neighbor who can reach the destination bin in
a—1=1 hops.

5.1 Benchmarks

In a DHT with 80,000,000 nodes, an average out-degree of
50, a maximum resolution of 100 and a radius of 3, the
straightforward implementation (SFWD) takes on average
27 milliseconds to perform 1 million routing decisions. The
“faster” RASTER(3) takes 39 ms (with RASTER(3) using
3 additional scaled down resolutions by halving). In the fol-
lowing paragraphs we will look at how both algorithms react
to parameter changes. The fixed parameters for the follow-
ing benchmarks have the values mentioned at the beginning
of this paragraph.

If we add more nodes to the DHT, resulting in more av-
erage overlay neighbors, both SFWD’s and RASTER(a)’s
time slowly increases. SFWD’s time to calculate forward-
ing decisions rises faster and surpasses RASTER(a) at 83
neighbors (see Figure 6).

SFWD
100 RASTER(a)

Y

T T T T T T T T T T
10 20 30 40 50 60 70 80 90 100

average number of neighbors

Figure 6: Performance impact of changing the num-
ber of neighbors.

By decreasing the bitmaps’ resolution, SFWD’s time to make
a lookup decision decreases greatly, increasing the resolution
increments this time. SFWD is thus sensitive to a resolution
change. RASTER(a) is much less sensitive to this change,
it begins to outperform SFWD at a resolution of just over
300 bits (see Figure 7).

Y

T T T T T T T T T T
100 200 300 400 500 600 700 800 900 1000

resolution

Figure 7: Performance impact of changing the reso-
lution.

Altering the radius also results in SFWD’s performance scal-
ing slightly worse than RASTER(a)’s. See Figure 8 for a
visual representation.

SFWD
100 RASTER(a)
8
time [ms]
60
) W‘ﬁ

radius

Figure 8: Performance impact of changing the ra-
dius.

5.2 Results

The result of these inquiries are that the RASTER(a) im-
plementation is not generally faster than the straightforward
one, although the former is of the order of O(logr) and the
latter is in O(r) and the performance of both is impacted
by parameter choices.

59

The more interesting observation, however, is that RASTER(a)
is a rather premature optimization. SFWD takes 27 ms to
make 1 million forwarding decisions, which is approximately
40 million packets per second. Assuming a packet size of 1
kB this corresponds to 40 GB/s. The forwarding decision
algorithm is thus — for moderately large resolutions r —
not the bottleneck of systems implementing the RASTER
protocol. For higher resolutions, the security issues raised
in the following section are likely to be a bigger concern than
performance.

6. RASTER SECURITY

One of RASTER’s concerns, which is ignored in [11], is the
aspect of security. In this section we will survey the impact
of faulty or malicious nodes on RASTER.

6.1 Assumptions

Our inquiries are based upon these basic assumptions: (1)
A malicious node is able to join the DHT network. In a
decentralized DHT it is due to the absence of a central au-
thority inherently difficult to prevent a malicious node from
joining the network. (2) The malicious node is able to ma-
nipulate data (specifically change a bitmap), which resides
on its system and by forwarding it to another node also
modifying this node’s bitmap data. (3) The malicious node
tries not to be detected by other nodes. The malicious node
therefore needs to adhere to the protocol’s specification in-
sofar as other nodes wouldn’t get suspicious and ignore the
malicious node.

6.2 Vulnerabilities

To understand RASTER’s vulnerabilities we need to focus
on its characteristics. One of them is that each node keeps
special routing tables, the so called bitmaps. These bitmaps
do not only contain information about direct neighbors but

of neighbors of degree a. This is the main weakness of
RASTER.

6.2.1 More neighbors

In an attack a malicious node could simply manipulate its
bitmaps, so that it appears that it is able to reach a lot
more neighbors within a radius a than it actually can. As a
consequence more requests than usual will be forwarded to
this node. The malicious node can then perform a series of
attacks such as dropping the request, delaying it, sending a
wrong response or compromise user’s privacy by logging all
activity. Possible attacks are the Sybil attack [2], where an
attacker needs less nodes joining the DHT to get a certain
control over it as nodes using bitmaps have a greater ma-
nipulation capacity. The same applies for the Eclipse attack
[8]. Possible solutions to this attacks are listed in [10] and
are outside the scope of this paper.

To understand how many additional requests a node re-
ceives, we need to discuss how the parameters a and r are
best chosen. To have as much information entropy, i.e. en-
coded information, as possible in a bitmap half of its bits
should be set to 1 and the other half to 0. Then we have to
define a maximum influence factor z, that is the number of
nodes one malicious node can influence. The radius is then
chosen as

a = |log, 2 z]

where k is the average number of neighbors. The number of
nodes a malicious node can influence is therefore bounded
by % As the resolution is chosen such that half of the bits
are set to 1, an attacker can only set the other half to 1 as
well, which corresponds to 50% of the nodes an attacker can
possibly reach at the maximum radius.

The resolution is than chosen as

r=2.k%

to ensure that approximately half of the bits are set to 1.

If you have sufficient knowledge about the nodes participat-
ing in the DHT you can choose a threshold of maximum
1s set in order to detect and subsequently ignore malicious
nodes. A malicious node could then always set as many
bits to be just under the threshold and will thus not be de-
tected. Thresholds work especially good if all nodes have
very similar service capacities as the threshold is then just a
fraction above the ideal 50% of 1s. A malicious node could
still undercut this threshold but it can only influence fewer
additional nodes than in a DHT with a diverse service spec-
trum.

6.2.2 Fewer neighbors

The contrary, i.e. manipulating its own bitmap so that it ap-
pears that the malicious node can reach fewer nodes within
a radius a, is also a problem. By pretending that a node
cannot reach any or very few neighbors, it avoids being se-
lected to forward queries. A node therefore has to forward
almost no routing decisions for other neighbors but its re-
quests are granted without any objection. This phenomenon
is called free riding or leeching and is discussed in detail in
Free Riding on Gnutella [1]. This not only leads to inequal-
ity among nodes but it also compromises a DHT’s security
by diminishing the availability.

6.3 RASTER vs. greedy security

The difference between RASTER’s bitmaps and greedy’s
normal routing tables is that in the former one node has
a much larger manipulation influence radius than the latter.
Specifically one node in a DHT with greedy routing can only
influence its direct neighbors by manipulating its routing ta-
ble. Thus the number of possibly manipulated nodes in a
greedy routed DHT with n participants is O(logn). Con-
trary to that a node in a DHT implementing RASTER’s
bitmaps, depending on the radius a, is theoretically able to
manipulate a lot more nodes: O(log®n). The number of
nodes a malicious node can manipulate, grows exponentially
with the radius a.

To make this contrast more obvious let us look at the fol-
lowing example. Suppose we have a DHT with n = 1000
nodes and an out degree of k = 5. If using greedy rout-
ing, one node can manipulate just 5 nodes’, i.e. its direct
neighbors, routing decisions which corresponds to 0.5% of

60

all the nodes. However, if the DHT uses RASTER(4), one
malicious node could potentially influence the forwarding
behavior of 5* = 625 nodes which corresponds to 62.5% of
all nodes in the DHT. One single node is able to regulate
more than half of the DHT.

The security impact can be bound by restricting a as sug-
gested in Section 6.2.1 or by comparing the number of set
bits to network topology statistics.

7. CONCLUSION

We discussed the benefits of using adaptive DHT networks
in contrast to deterministic DHTs. It is however subopti-
mal to use algorithms, which were designed for deterministic
DHTs, for adaptive networks. As an example we explained
the Chord algorithm and we described that the RASTER al-
gorithm, which was specifically devised for adaptive DHTs,
has many advantages over greedy based strategies. We then
compared the performance of both RASTER implementa-
tions and concluded that the choice of forwarding algorithm
does not really matter. Regarding security, algorithms, in
which one node has a lot of information about its neigh-
boring topology and exchanges this information with them
like RASTER, are inherently more susceptible to malicious
or faulty nodes. We have seen, that one malicious node in
RASTER can manipulate up to O(log® n) additional neigh-
bors’ routing decisions. By selecting the parameters care-
fully it can be reduced to %

8. REFERENCES
[1] E. Adar and B.A. Huberman: Free riding on gnutella,
In First Monday, pages 2-13, Citeseer, 2000
[2] J. Douceur: The sybil attack, In Peer-to-Peer Systems,
pages 251-260, Springer, 2002
[3] O. Gasser: Source code used to compare performance
of straightforward implementation and RASTER(a),

http://projects.net.in.tum.de/downloads/raster.tgz

[4] J. Kleinberg: The small-world phenomenon: an
algorithm perspective, In Proceedings of the
thirty-second annual ACM symposium on Theory of
computing, pages 163-170, ACM New York, NY,
USA, 2000

[5] G.S. Manku and M. Naor and U. Wieder: Know thy
neighbor’s neighbor: the power of lookahead in
randomized P2P networks, In Proceedings of the
thirty-sixth annual ACM symposium on Theory of
computing, pages 54—63, ACM New York, NY, USA,
2004

[6] P. Maymounkov and D. Mazieres: Kademlia: A
peer-to-peer information system based on the zor
metric, In Peer-to-Peer Systems, pages 5365,
Springer, 2002

[7] A. Rowstron and P. Druschel: Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems, In IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware), pages 329-350, Citeseer, 2001

[8] E. Sit and R. Morris: Security considerations for
peer-to-peer distributed hash tables, In Peer-to-Peer
Systems, pages 261-269, Springer

[9] I. Stoica and R. Morris and D. Karger and M.F.
Kaashoek and H. Balakrishnan: Chord: A scalable

peer-to-peer lookup service for internet applications, In
Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 160, ACM, 2001

G. Urdaneta and G. Pierre and M. van Steen: A
Survey of DHT Security Techniques, Citeseer, 2008
C.C. Wang and K. Harfoush: RASTER: a light-weight
routing protocol to discover shortest overlay routes in
randomized DHT systems, In Proceedings of the 12th
International Conference on Parallel and Distributed
Systems, pages 553-560, 2006

61

