
High Speed Network Monitoring

Leonhard Uden
Betreuer: Nathan Evans

Seminar Future Internet SS2010
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: uden@in.tum.de

ABSTRACT
Network monitoring is an important activity to ensure a smooth
working of IP networks. Operators of networks utilize it to
measure the traffic, plan new investments or perform intrusion
detection. Since the bandwidth of network links increases much
faster than the processing power, centralized architectures are no
longer capable to capture and monitor the amount of traffic or
depend on high performance hardware.
Distributed architectures which split up the traffic to several
capturing nodes are a promising solution to this problem. They
provide scalability and consist of modified standard PCs. This
paper will present a proposal of such an architecture and compare
its design to other approaches. Different dispatch methods will be
compared and analyzed. The performance of distributed designs
outperforms centralized ones when they use similar hardware.
Issues still exist, since load balancing and comprehensive
monitoring is difficult to achieve at the same time.
For now centralized architectures using high performance
hardware are the better solution for network operators. Web
development and different growth rates of bandwidth and
processing power lead the development of high speed monitoring
towards a distributed solution.

Keywords
Network Monitoring, Distributed Architecture, High Speed
Networks.

1. INTRODUCTION
In recent times the amount of data transferred by IP networks
constantly increased. This has happened by providing new
services which are often free of cost. Older analog technologies
are getting displaced by newer ones using IP networking. Skype
and youtube are the most famous examples of this trend.
In order to guarantee a certain quality of service, detect malicious
traffic and plan new investments, network operators have to
monitor and analyze traffic. They are challenged by this
development, since the growth in amount of data transferred is
much higher than the growth of processing and memory speed. A
forecast of Cisco expects the IP traffic to be five times higher in
2013 than in 2008, which means a yearly growth rate of 40
percent [2]. When it comes to IDS (Intrusion Detection Systems)
the increasing possibilities of malicious traffic extend the process
of scanning a packet. Nowadays it is common to use 10 Gigabits
per second Ethernet links in bigger networks. Such a fully loaded
link transfers a packet in less than 100 nanoseconds, by

decreasing packet-sizes, therefore increasing packet-number, the
processing time for each packet decreases. That means a capturing
device has only nanoseconds to capture a packet. Also the time
needed for analyzing packets has to be considered. There are
different ways to deal with this challenge.
The most obvious one would be to use special high performance
capturing devices which are able to capture at Gigabits per second
Ethernet transfer rates. The dedicated capturing cards of
Endance[4] provide capturing at high transfer rates. These cards
guarantee to capture 100 percent of the packets, are able to
distribute the traffic to different memory buffers, perform time
stamping and reconstruct a replication of traffic. Drawbacks are
higher prices and less flexibility compared to other approaches.
The next option is to lower the capture rate by using sampling.
This method is popular today because it is sometimes already
implemented into routers and does not have a need for high
performance hardware. Here the questions are how high the
sampling rate should be and if one can make founded conclusions
to the rest of the packets which are not captured. Research has
shown that sampling is accurate in computing the total amount of
traffic, since the packet-size does not vary too much. Sampling
has a lack of accuracy when it comes to flow count, smaller flows
could be missed entirely. That often causes anomalies to stay
undetected [1]. Recent research on sampling methods has found
ways to increase the rate of detection, but this won’t be handled in
this paper, overviews are given in [14].
This paper will describe distributed architectures. These
architectures try to split the traffic and allocate it to different
capturing or analyzing devices, in order to achieve a high capture
rate and avoid sampling. There have been several projects on this
topic recently, like the IDS architecture described in [12] or the
DaSahit project (Distributed and Scalable Architecture for High-
Speed IP Traffic Analysis) [3]. Different rules are applied to split
the traffic: to sort the packets by port, IP address, or by using
some sort of algorithm.
DiCAP(Distributed Packet Capturing Architecture for High-Speed
Network Links) [9] will be used as an example for such an
architecture. It is especially designed to capture traffic, not to
analyze the packets, which means it only retrieves the data of a
network link and does not scan the data. The aim is a scalable
architecture that can be flexibly extended. A major advantage of
this method is the possibility to split the traffic into such small
amounts that it can be processed by inexpensive standard PCs
using Linux.

49

The paper is organized as follows. In section 2 DiCAP will be
presented and reviewed. Section 3 compares different approaches
of creating a distributed architecture for monitoring or analyzing
IP traffic. The last section, number 4, concludes the findings of
this paper.

2. DiCAP
Uncoupling packet capturing from its limitations is a major
motivation for distributed architectures. The authors of DiCAP
present a proposal that is able to handle all kinds of protocols, is
not dependent on high performance hardware neither lacks
accuracy like centralized sampling methods. It is an easy scalable
architecture using standard hardware.
Distributing the workload of capturing packets of high speed links
to multiple devices is the main idea of distributed architectures. In
DiCAP those devices are called capture nodes, are based on
regular PCs with a modified NIC driver. They are connected with
a router called mirroring device, a standard PC which coordinates
them and eventually with an external analyzing device which is
not considered in this paper. The distribution of workload is
achieved by forwarding the traffic to each capture node and using
a kind of sampling on each that only allocates a unique selection
of the packets to each node. How this is done will be explained
and analyzed in the next sections, which are all based on the paper
written by Morariu and Stiller [9].

2.1 Architecture
On a network link a mirroring device is installed, its task is to
mirror the passing traffic and to forward the copied packets on to
the capture nodes. A drawback is that if mirroring fails, capturing
and analyzing fails. Security dependent networks might also use
the mirroring device as a “gate” on the main link, so if the device
fails, mirroring is no longer possible, but also no traffic is able to
pass. Via multicast the packets are sent to the capture nodes.
The cluster of capture nodes is organized by a node coordinator. It
tells each capture node how to decide which packets to capture
and which to discard. To avoid a breakdown of the whole system,
because of a malfunction of the node coordinator, other node
coordinators could be installed. They would be synchronized
every n seconds and stay inactive, until the active coordinator fails
and another one is chosen as a replacement.
Every capture node has a unique nodeID that is used for
identification when the topology is set at the node coordinator. A
capture node has two interfaces, a passive one just for retrieving
the mirrored traffic and an active one for communicating with the
current active node coordinator and the packet data analyzer(s).
When a packet arrives at the capture node, the DiCAP module
decides whether to drop the packet or to capture it. The DiCAP
module is a software extension of the NIC driver (see Section
2.1.3). If the packets should be captured is decided by using a
function. The authors propose the use of a hash based selection or
round robin selection. Which one to be used is defined by the
node coordinator.

There are two different solutions existing. The first one is called
distributed capture mode (see Figure 1). In this mode the DiCAP
module stores only the first 54 bytes in a buffer, so only the
packet headers are stored. The payload is dropped, this leads to a
lack of data integrity. If the buffer is full a UDP message is sent to
the packet data analyzer(s).

router router

Capture cluster

Mirroring
device

Node
Coordinato

r

Packet
data

analyzer

Figure 1: Distributed Capture Mode
How the captured packets are distributed may be discussed in later
sections, since this is only a description of the monitoring
architecture.
The other mode is called distribution mode (see Figure 2). Here
the DiCAP module is not capturing the packets, but forwards the
packets it decided to keep to an external capture tool. The
prototype uses libpcap[7] for this task. So DiCAP is only a
distributor in this mode.

router routerMirroring
device

Node
Coordinato

r

Capture cluster

libpcap

Capture
nodes

including

Figure 2: Distribution Mode

2.1.1 Communication
In order to achieve correct traffic distribution without sampling
effects, it is necessary that every capture node is aware which part
of the traffic it should capture. Since the distribution can change
when new nodes enter or leave the cluster, the node coordinator
has to be informed about changes and update the topology
regularly. A node is an active member as long as it regularly sends
heartbeat messages.
This process is handled by sending control messages via the active
interface of the nodes. The generic control messages are specially
defined for this task. They use seven different so called AVPs
(Attribute-Value-Pairs) to exchange information between the
coordinator and the capture nodes. The

 nodeID which identifies the capture node

 Coordinator IP/Port which tells the capture nodes which
IP address/port is used by the coordinator

 Analyzer IP/Port which tells the capture nodes where
they should forward the captured data

 Selection Type which tells the capture nodes how to
select the packets to be captured

50

 Validity Start which specifies when new topologies
should be coming into effect

A selection of these values is sent with the different messages
exchanged. The three message types are called join, accept and
topology update. In a join message a node who wants to join the
cluster sends a message with his nodeID to the coordinator. An
accept message confirms the joining. By sending a topology
update message the coordinator defines the topology of the
cluster.

2.1.2 Dispatch Method
As mentioned before the authors chose two different distribution
solutions. One of them is a round robin selection mode, in this
mode every capture node has a definite position (Pₐ) in the total
amount of active capture nodes (N). Each node has a packet
counter C, which is always set to zero when a topology update
happens. A node captures a packet if:

C mod N = Pₐ
else the packets are dropped. This selection mode allocates every
capture node a data amount of 1/N of the total data, which means
a perfectly balanced workload. This way each capture node
processes sampling but all together they capture the whole traffic.
The mode only works, if a perfect synchronization of the
individual nodes is given. The different counters always have to
be equal and the traffic received always in the same order, else
traffic will be missed or captured twice. All nodes have to get all
update messages and work always properly to ensure an
exhaustive capturing process.
Another method utilizes a hash function. The challenge is to find
an appropriate hash function which is easy to calculate and has
well balanced outcomes. Also a well distributed value as base for
input for the hash function is needed. With the position of the
capture node (Pₐ), the total number of active nodes (N) and an
input value (I) given, packets are captured if:

hash (I) mod N = Pₐ
else the packets are dropped. The authors discovered that the
identification field in the IP header could meet the expectations of
a well balanced input value. A header field that identifies the
fragments of a packet and is used for reassembling does not
include information about flow membership, additionally in IPv6
the field is only existent in an extension header. To use a header
field in combination with a hash function might be a good
solution, but it is hard to find an appropriate header field and a
hash function which meets the criteria of load balancing and flow
preserving.
If the main criteria for monitoring, is just to measure the total
amount of packets and perfect load balancing, the round robin
selection mode should be preferred. It provides a perfectly
balanced distribution of traffic and incrementing a counter is a
cheap operation. It should not be a problem to keep the traffic in
order since only short Ethernet links are used. A concern of the
round robin selection mode is the synchronization of the
individual counters. If it is possible to synchronize the individual
capture nodes when a topology update occurs is uncertain. If a
node captures packets of a 10 Gbps network link, it might has to
capture a packet every 40 ns, therefore the counter of the nodes
have to be accurate to nanoseconds. If the counters are not
synchronous, different nodes capture the same packets and

therefore some packets will not be captured because they are not
in the scope of any node. A solution to this problem might be to
interrupt the traffic forwarded by the router for a short period of
time, in order that the capture nodes have more time to reset their
counters. Only if the synchronization is ensured, the total amount
of packets is captured. Topology updates will not happen very
often once the architecture is established, therefore the
interruptions of the mirrored traffic are negligible.
For comprehensive monitoring it is necessary that flows are
detected and captured at the same device. This is important for
flow path analysis and IDSs. It is not reasonable to split flows and
try to reassemble them later on. That would cause an expensive
processes and very good communication between the different
nodes is necessary. A large distribution process to exchange
packets between the capturing devices and analysis devices would
be the outcome. A method which sorts the packets by their
attributes in the header, eventually combined with a hash
function, is necessary for an effective comprehensive monitoring.

2.1.3 Capture Node
Every capture node could be a standard PC, the only specification
is that it has two network interfaces. Capturing is organized by a
so called DiCAP module that is also implemented in the
coordinator nodes and the packet data analyzer (if they exist).
This module is a configuration of the driver of the NIC (Network
Interface Card). Its task is to decide whether to capture a packet,
forward it or drop it, before the kernel allocates memory to the
packet. The DiCAP module consists of a management unit, a
packet processor and a packet data forwarder (see Figure 3).

Linux kernel

NIC driver

NIC

DiCAP Module

Management Unit

Packet processor Packet data
forwarder

Figure 3: DiCAP Module

Communication with the node coordinator and determining the
behavior of the module is the task of the management unit. It has
information about the addresses and which network topology is
used. The packet processor only handles packets received in the
passive interface, the others are sent to the kernel. It has a
different behavior for each mode. In distributed capture mode the
packets received on the passive interface are sent to the packet
forwarder if they are in the responsibility of the capture node, if
not they are just dropped. The monitored packets are never
processed by the kernel in this mode and always dropped by the
NIC driver. Packets to be monitored are delivered to the packet
forwarder, which stores the headers in a buffer that it sends to a
packet analyzer via UDP when the buffer is full.
While using the distribution mode, the packet forwarder is
deactivated, since the captured packets are locally processed by
libpcap. Here the packets that should be captured are forwarded to

51

http://www.dict.cc/englisch-deutsch/negligible.html

the kernel and other packets are dropped by the NIC driver. In this
mode the task of the DiCAP module is not to capture the packets
but to determine which ones to analyze at which analyzing device.

2.2 Review
As seen for the purpose of just capturing packets at high rates
DiCAP is a well balanced architecture. But if the project should
ever be used further there are some criteria that hinder use in a
more complicated environment.
The implementation of the design is good when it comes to
scalability. To extend the capture cluster a pretty automatic
procedure was created. With the creation of a new protocol to
communicate between the coordinator and the capture nodes it is
easy handled for a node to join the cluster. One join message, one
accept message and a topology update suffices to extend the
cluster. Another quality is the opportunity of combining the
system with other software, as is done with libpcap in the
distribution mode.
Fault tolerance is achieved by the system of multiple coordinator
nodes and heartbeat-messaging of the capture nodes. If a capture
node does not send its heartbeat message for a determined time,
the node coordinator erases it from the list of active nodes and
performs a topology update automatically. If a node coordinator
breaks down it is replaced by another one which was
synchronized before. The weakness is the mirroring device. It
cannot be easily replaced and only exists once in the prototype.
Performance tests by the authors have shown that a single DiCAP
device, used on a single node in distributed capture mode where
only the first 54 bytes of each packet are captured, outperforms
other devices using libpcap or libpcap-PFRING [11]. At high
packet rates of 620Kpps(thousand packets per second) where the
libpcap and libpcap-PFRING devices have a loss rate of 93
percent and 96 percent, the DiCAP device still has a packet loss
rate of 0 percent. When used in distribution mode in combination
with libpcap a performance increase by increasing number of
nodes is remarkable. It is also reasonable to use two different
devices for communication and monitoring, since communication
packets always have to be processed and some monitoring packets
are dropped.
The implementation of the DiCAP module prevents the kernel
from allocating memory to packets which are not captured. Since
first the module decides whether to drop a packet or not and
second memory is allocated to packets which should be processed
by the kernel.
Round Robin distribution results in a perfect load balance, but
when the packets are further processed it might be useful to
capture comprehensive flows. If round robin is used like this, the
packets are captured with no relation to each other. Using the
identification field of the IP header as an input for a hash function
might also result in a balanced load, but to find a function that
allocates all packets of a flow to one node and balances the load
on all nodes might be very hard to find.
Altogether DiCAP is a well designed architecture, where the
authors spent time on thinking about good solutions for
scalability, fault tolerance and performance. But to be useful for
network operators who want to monitor packets in order to
analyze them, another distribution method has to be found.

3. Comparison of different architectures
In order to get an overview of the different forms of distributed
architectures, recent proposals of other scientists are presented
and compared in the way they handle the upcoming problems of
such a solution. It has to be said that comparison is somehow
difficult because technology made such big steps over the years.
Some implementations handle 100 Mbit network links, others 10
Gbit links. Also the different architectures are often designed for
different purposes. The next sections will compare the design, the
way packets are distributed and how the capture nodes work.

3.1 Architecture
All studied architectures have in common that they are designed
for high speed network links. Normally the packets are copied by
a mirroring device or an Ethernet switch. An anomaly of DiCAP
is the lack of an active distribution device. Most other designs
include an active distributer. For this task a router or an Ethernet
switch is neccessary. The mirroring device of DiCAP has a similar
task, but it does not decide which capture node gets which packet,
the traffic is just forwarded to all capture nodes. To spread the
selection process to the single capturing nodes which execute the
given rules, like DiCAP does, might help to avoid a bottleneck at
the distribution device.
DiCAP uses a coordinator node to organize the capture cluster,
other approaches mainly miss a coordinating device. In [6] a
manager device is used to advertise definitions for analyzing
packets, collect reports and add or remove capturing devices.
Flexibly adding and removing capture nodes, like it is possible in
DiCAP is not possible in other architectures like [12]. Since they
mostly use capturing devices explicitly defined for a special
scope.
With the exception of DiCAP, almost all examined approaches
combine the capture device and the analyzing device. This leads
to a higher processor load of the individual nodes but avoids the
need of transferring captured data to an analyzing device and an
eventually required distribution process. This design decision is a
question of processing power and the number of analyzing nodes,
thus a question of traffic per node. An external storage center as
proposed in [8] will be necessary when capturing traffic on high
speed links for longer periods of time.

3.1.1 Dispatch Method
The critical concern of the distributed designs is the question of
how to dispatch the traffic. There are some major principles the
method should fulfill:

 In order to minimize packet loss and regarding the
processing power limitations, load balancing has to be
achieved.

 To draw comprehensive conclusions of the captured
packets, the dispatch process has to consider the logical
memberships of the packets, such as flows, source or
protocols used.

As already presented above, one method is to use a round robin
distribution method that simply spreads the traffic into even parts
by allocating every n-th node the mod n-th packet. It is a cheap
process and may be sufficient for the first criteria mentioned. But
it is not suitable for the second one. A solution might be to add an
analyzing device that creates a kind of reassembly list which

52

enables reconstruction of sessions for example [12]. Since every
packet has to be identified, a big overhead would be the result.
Most other approaches categorize the packets by one of their
attributes and not by the order they are sent. Splitting the traffic
by their destination port is an often realized suggestion, since it
fulfills the second criteria. When packets are dispatched like this,
it is for example possible to reconstruct TCP sessions or to
analyze a flow path. Load balancing is hardly given. Since there
are far more HTTP packets than FTP packets transmitted there is
likely to be an imbalance between the workload of the different
capturing devices. A solution is to allocate different numbers of
ports to each node, so that the estimated load is equal for every
capturing node. Even one port could be divided between two
nodes to capture. The authors of [8] developed a system that sorts
the packets by their IP source addresses and allocates them to
different nodes by using a greedy algorithm. Estimated traffic for
each IP source address segment is appraised and every node gets a
similar amount of estimated traffic allocated. If the traffic is
monitored longer the load balance is almost existent. A promising
way to reduce load per node is to use different stages of
processing, so two packet attributes could be used to dispatch the
traffic. First the packets could be split by their port destination
and in a second layer packets could be dispatched by their source
IP address (see Figure 4). This method ensures the second criteria,
since a flow is identified by its IP source\destination address, the
source\destination port and a layer four protocol. So packets
within the same flow will be captured at the same node. Also great
potential for load balancing exists because the traffic can be
divided and load balanced on two layers. The authors of [5] are
using this method to analyze packets.
Another suggestion is to assign an identifier to every flow and
every node a field of responsibility which flows to capture [10].
This way the captured packets could be distributed evenly by
using a round robin algorithm and the packets of one flow could
be all captured at the same node.

router router

FTP

Mirroring device

IP 210.0.0.0-
220.255.255.255

IP 221.0.0.0-
230.255.255.255

HTTP

Figure 4: two layer distribution

A problem with attribute dependent dispatch methods is the
susceptibility to denial of service attacks. For example, if the
network is flooded with packets using just one port. In contrast to
round robin methods the attribute filtering is inflexible towards
increasing traffic. Round robin methods, like the one used in

DiCAP, distribute additional packets always evenly between the
different nodes. Another drawback of the attribute filtering
methods is the low expandability compared with round robin.
New capturing nodes cannot be just added, since every new node
has to be assigned to a special attribute. Only the existing nodes
which use the same attribute as the new node will be relieved. In
round robin every capture node is relieved, when a new node is
added.

3.1.2 Capturing Device
In order to achieve scalability, the capture devices are normally
standard PCs providing several interfaces. In some proposals the
capture nodes also serve as an analyzing device, others forward
the captured data to an external analyzer. The module to decide
whether to capture a packet or not should be implemented as low
as possible in the capturing device [9] in order to avoid wasting
processing power on useless packets. Most drafts are based on
Linux kernels and use a software tool like libpcap[7] to capture
packets.

3.2 Performance
As mentioned before a comparison of the different proposals is
hard because of different hardware and software used and
different composition and amount of traffic monitored. No
independent evaluation was possible, so all numbers are based on
the data of the different authors. This paper mainly presents the
evaluation results of several architectures presented.
The authors of [8] show that their implementation of a distributed
architecture, using a round robin method to dispatch the traffic,
experiences no packet loss using four capture nodes, where a
single centralized capture device loses 90 percent of the packets.
An IDS architecture [12] using seven nodes, a dispatch method
dependent on the destination ports of the packets and an
optimized number of Snort [13] rules for each capture/analyzing
node. This method reduces the number of snort rules on each
node, by checking only the Snort rules which are relevant for each
port. This method performs up to ten times faster than a single
centralized device. The authors of [6] show that a division of flow
comparison patterns increases the packet capture rate. Evaluation
of DiCAP has shown that libpcap on one node is not able to
capture every packet. By using the distribution mode of DiCAP
and round robin selection, the packet capture rate increases by the
number of nodes. Figure 5 shows the packet capture rates for
different numbers of nodes at different rates of packets per
second. At some rates four nodes capture ten times more packets
than one node.

Figure 5: Packet capture rate of libpcap[9]

53

The results demonstrate that packet loss rates or time for
analyzing packets is decreased by taking advantage of multiple
capture devices and splitting up the rules to analyze packets.
Distributed architectures always outperform centralized ones,
when the same hardware is used. It has to be considered that
distributed architectures consist of several capture or analyzing
devices. Several devices provide more processing power than a
single device. The weakness of many evaluations studied is that
they only compare their architectures to single devices. A real
boost in performance is only existent if the architecture does not
only distribute the workload, but also optimize the processing of
the workload. An example for such architecture is presented in
[12].

4. CONCLUSION
The reviews of the different proposals made on distributed
architectures designed for high speed networking monitoring and
analyzing have shown that they outperform centralized
architectures using comparable hardware. They are scalable,
flexible, use standard hardware and open source software. Defects
in distribution methods cause an inaccurate analysis or an unequal
load balance, therefore high performance hardware is currently
preferred by potential customers. Yet the fast development of the
web and bandwidth causes a growing gap between network speed
and computing speed. I think this gap can only be closed by
introducing distributed architectures, if needed combined with
high performance hardware.
Future work has to concentrate on improving dispatch methods,
since this is a bottleneck. Recent approaches are not sufficient in
meeting the criteria for network monitoring and analyzing. New
ideas have to be tested, like this peer to peer method [10], to fully
utilize given resources.

5. REFERENCES
[1] Brauckhoff, D., Tellenbach, B., Wagner, A., May, M.,

Lakhina, A., 2006, Impact of Packet Sampling on Anomaly
Detection Metrics, 6th ACM SIGCOMM Conference on
Internet Measurement, Rio de Janeiro, Brazil, October 25-17,
2006, pp 159-164.

[2] Cisco Systems inc., 2009, Cisco Visual Networking Index
Forecast, White Paper

[3] DaSAHIT Project Homepage, http://www.csg.uzh.ch/
research/dasahit, March 2010

[4] Endance Homepage DAG Cards, http://www.endace.com
/endace-dag-high-speed-packet-capture-cards.html, March
2010

[5] Han, S., Kim, S., Ju, H. T., Hong, J. W. K., 2002, The
Architecture of NG-MON: A Passive Network Monitoring
System for High-Speed IP Networks, 13th IFIP/IEEE
International Workshop on Distributed Systems: Operations
and Management, Montreal, Canada, October21-23, 2002,
pp 16-27.

[6] Kitatsuji, Y., Yamazaki, K., 2004, A Distributed Real-time
Tool for IP-flow Measurement, International Symposium on
Applications and the Internet, Tokyo, Japan, January 26-30,
2004, pp 91-98.

[7] Libpcap/tcpdump homepage, http://www.tcpdump.org/,
march 2010.

[8] Mao, Y., Chen, K., Wang, D., Zheng, W, 2001, Cluster-
based Online Monitoring System of Web Traffic, 3rd
International Workshop on Web Information and Data
Management, Atlanta, Georgia, U.S.A., November 9-10,
2001, pp. 47-53.

[9] Morariu, C., Stiller, B., 2008, DiCAP: Distributed Packet
Capturing Architecture for High-Speed Network Links.

[10] Morariu, C., Stiller, B., 2007, A Distributed Architecture for
IP Traffic Analysis, Lecture Notes in Computer Science.

[11] Pf_ring homepage, http://www.ntop.org/PF_RING.html.
march 2010.

[12] Sallay, H., AlShalfan, K., Fredj, O. B., 2009, A scalable
distributed IDS Architecture for High speed Networks,
IJCSNS VOL.9 No.8, August 2009.

[13] Snort homepage, http://www.snort.org/, march 2010.
[14] Szeby, T., 2005, Statistical Sampling for Non-Intrusive

Measurements in IP Networks, Ph. D. Thesis, Technische
Universität Berlin, Universitätsbibliothek ,Fakultät IV
Elektrotechnik und Informatik.

54

http://www.csg.uzh.ch/research
http://www.csg.uzh.ch/research

