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ABSTRACT 
Bigtable is a storage system for structured or semi-structured data 
[1]. Bigtable can be regarded as a distributed, non-relational 
Database from a system point of view (Bigtable is using a 
different data model than relational Databases).   Bigtable scales 
to large data sets and provides a good performance of accessing 
the data. As of January 2008, there are more than sixty Google 
applications using the Bigtable as storage provider, such as 
Google Earth, Web-Indexing and Personalized Search. Bigtable 
fits different demands of those applications. It addresses problems 
which cannot be handled by standard relational databases.   In this 
paper, we give a fundamental overview of Bigtable’s design and 
implementation. We will describe the differences between 
Bigtable and relational database and focus on the different data 
models used by them.  
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1. INTRODUCTION 
The development of the Internet has introduced many new 
Internet based applications.  The web-index and Google earth are 
for example used by millions of users from Internet. To manage 
these terabytes data (Google Earth has more than 70 terabyte 
data) becomes a challenge. To address the demands of those 
applications, Google has started the development of Bigtable in 
2003. The Bigtable is designed to store structured or semi- 
structured data in nodes that are distributed over network. 
The project is steadily growing since then. As of January 2008, 
there are over 600 Bigtable clusters at Google [2] and over sixty 
productive applications based on it.  The design goal of the 
Bigtable mainly focuses on four aspects: high scalability, high 
availability, high performance, and wide applicability. There are 
some database models like “Parallel databases” [3] providing 
speed up and scale up of relational database queries, but Bigtable 
distinguishes itself from those models: it is not a relational 
database.  It provides a different interface as those relational 
database models.  
Bigtable shares many database strategies: Data scan, Data Storage 
and Data access. Unlike a relational database which stores a fixed 
schema in database server, the data logic is embedded in the client 
code: the client code controls dynamically how the data structure 
is.   
Bigtable relies very much on a so called mapreduce job to 
guarantee the design goal of a high performance of the 

distribution. Mapreduce [4] is a framework for processing and 
generating large data sets. Bigtable is used as input or output 
source for Mapreduce jobs. Mapreduce Job provides a very fast 
transformation for the data of Bigtable to hundreds of nodes 
across the network.   
In Section two, we firstly introduce an application example which 
is using Bigtable as storage provider. We are going to see the 
potential requirements of this application and why the standard 
Relational Database Management System (RDBMS) cannot be 
used for this application. We will explain briefly how Bigtable 
solves those demands from a high level design strategic 
perspective. Section three contains information of differences 
between the RDBMS and the Google Bigtable. We will introduce 
the data model used by the two Database models. This will give a 
further explanation why Bigtable is more suitable to store large 
datasets in a distributed way.   Section four will provide an 
overview of the building blocks of Bigtable.  Section five 
introduces the basic implementations.  In section six we describe 
some refinements Bigtable is using to archive the design goals. In 
Section seven we will give a short overview of the client API.  
Section eight presents the entire architecture of Bigtable and our 
conclusions of the design principles. 

2. APPLICATION EXAMPLE: GOOGLE 
EARTH 
Google Earth is one of the productive applications which are 
using Bigtable as storage provider. It offers maps and satellite 
images of varying resolution of the Earth's surface.  Users can 
navigate through the earth surface, calculate a route distance, 
execute complex or pinpointed regional searches or draw their 
own routes. In following section, we introduce some 
fundamentals of the implementations. We will see why Bigtable 
can address the requirements of Google Earth better than a 
standard relational Database. 
Google Earth is using one table to preprocess raw data, and 
several other tables for serving the client data. During 
preprocessing, the raw imagery is cleaned and consolidated into 
serving data (the final data used by the application). The 
preprocessing table stores the raw imagery. It contains up to 70 
terabytes data and therefore cannot be maintained in the main 
memory.  It is served from the disk. The imagery was already be 
consolidated efficiently, for this reason Bigtable compression is 
disabled. The details for Bigtable’s compression methods can be 
found on section 6.1 compression. 
The size of the preprocessing table is the first reason why we 
cannot use RDBMS to store the data, the 70 terabytes data cannot 
be stored as one table hosts in a single machine.   

37



Figure 1. relational Data Model: functionary has 
constrains with Attendee via Support entity.

The serving system of Google Earth is using a single table to store 
the index data. Although the index table is relative small 
(500GB), if we use one machine to host the table we still have to 
move the data to hard disk. For performance considerations, we 
cannot implement it, because the index table must serve tens of 
thousands of queries per second per datacenter with low latency. 
With the data stored on disk, we would have no chance to fulfill 
the requirements with the current hardware technology. We need 
a solution to distribute the data into multiple nodes. 
A major characteristic of Bigtable is its scalability.  Relational 
Database also scales but only in single node. When the hardware 
capacity of the single node is reached, the load needs to be 
distributed to other nodes. Some Databases like Oracle provide 
services like replication jobs to address scale loads out of a single 
machine. For an application like Google Earth which has a 
massive workload, it will require hundreds or thousands of nodes’ 
capacity to store the data. Standard replication jobs cannot be 
used in this kind of situation. RDBMS is more suitable for 
applications which are hosted on one single node but Bigtable is 
designed for data distribution of a large scale into hundreds or 
thousands of machines over network. Mapreduce Job [4] is 
always used for Bigtable applications to distribute and to process 
the data to nodes and within network. 
By speaking of the scalability requirements, another consideration 
is the flexibility. This can also become a problem of managing the 
system if we only have RDBMS located on a single node.  Taking 
the index table used by Google Earth as example, when the server 
load or the size of the index table becomes double and the 
hardware capacity of this single node is reached we cannot 
upgrade the hardware on the single node as fast as the speed of 
the change.   Bigtable allows managing the data in a flexible way 
to add or remove a node from the distribution cluster. More 
details about how Bigtable manages the tablets assignment can be 
found in section 5.3. 

3. DIFFERENT DATA MODEL USED BY 
BIGTABLE AND RDBMS 
The example of Google Earth presents the motivations of using 
Bigtable. We will explain the different Data Models used by 
Bigtable and RDBMS. This will on one hand demonstrate why 
Bigtable is not a relational database system. On the other hand, it 
will give explanations why Bigtable is more suitable for 
applications which require distributed storage. 
A relational database is a collection of tables (entities). Each table 
contains a set of columns and rows.  The tables may have 
constrains to each other and relationships between them.   
Figure 1 shows a typical Data model used by RDBMS. The 
column Id from entity “Functionary” is used as foreign key which 
is referenced to column “idSupport” of entity “Support”.  The 
column “idAttendee” of entity “Attendee” is referenced to column 
“AttendeeId” of Entity “Support”. The relationship (Data logical) 
between “Functionary” and “Attendee” is thus kept in entity 
“Support”. 
 

 
 
 
 
The RDBMS model exists since almost 30 years. When it was 
developed, the RDBMS was not widely used due to hardware 
limitations. Even a simple select statement may contain hundreds 
of potential executing paths which the query optimizer needs to 
calculate at runtime. Today, the hardware can satisfy the demands 
of RDBMS, so the relational Database has become a dominant 
choice for common applications. They are easier to understand 
and to be used - although it still provides less efficiency compared 
to the legacy hierarchically database. Almost all databases we are 
using now are RDBMS; typical examples are Oracle, MS Sql and 
DB2. 
Comparing to RDBM, which stores the data logical within table 
itself, Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row key, 
column key, and a timestamp. It can thus be seen as a 3D table in 
form of row*column*timestamp. Each value in the map is an un-
interpreted array of bytes.  The data model used by Bigtable can 
be concluded as follow formula: 
(row: String, Column: String, time: Int64)  Æ String 
 The row keys are a user-defined string. The data is maintained in 
Bigtable in a lexicographic order by the row key.   
Column key syntax is written in the form of 
“Family:optional_qualifier”. The Column keys are grouped 
together into the Column families. Column families can be 
regarded as categories of its column.  The data belongs to the 
same Column family is compressed together with the column 
information. The Column families are the basic unit of accessing 
the data. They can also have attributes/rules that apply to their 
cells, such as “keep n time entries” or “keep entries less than n 
days old”. 
The timestamp is used to version the data, so we can track the 
changes of the data over the time. The size of the timestamp is a 
64bit integer. Each column family can have different number of 
versions. For example, a data string in Bigtable has two column 
families: content and anchor. Content column family contains the 
page of content, and the anchor column family contains text of 
anchors which references to the page. The two column families 
can have different number of versions based on application’s 
requirement. The content column family can keep the latest 3 
updates while the anchor column family only keeps the latest 
update.   
The timestamp can be used together with the rules added to 
Column to manage the lifecycle of the date. The old timestamps 
could be removed by a garbage-collection.  

38



After this short introduction to the datamodel used by Bigtable, 
we can now see that its data model does not equal the Data Model 
used by a relational database. Bigtable characterizes itself as a 
database management system which is commonly called a 
key/value Database [6], the name is not official, and some 
documentation also refer to this kind of database as distributed 
database or distributed hashtable.  

4.  BUILDING BLOCKS  
Bigtable cluster contains one or several tables. Each table consists 
of set of tablets by the range of the row key.  The tablets are 
usually around 100-200MB and can be distributed into different 
nodes across the network. Each node(tablet servers) saves about 
10~1000 tablets wtihin its Google File System(GFS) [7]. Figure 2 
shows a simpfied overview of the structure of the Bigtable 
implementation and the major building blocks are used there:  
Google File System (GFS), SSTable (sorted string table) and 
Chubby.   

 
Figure 2 Building Blocks: Chubby, GFS, SStable 
 
GFS is a File system used by Bigtable to store the logs and files.  
A Bigtable cluster usually runs a shared pool of the distributed 
nodes. Bigtable also requires a cluster management system 
(CMS). The CMS is used to schedule jobs, manage resource on 
shared machines, replicate jobs of failure machines and monitor 
the machine status. 
SSTable stands for “sorted string Table”, this is a immutable file 
format which Google internally used to save the Tablets. The 
paper [5] of the Bigtable provides follow information for 
SSTable:  
“An SSTable provides a persistent, ordered immutable map from 
keys to values, where both keys and values are arbitrary byte 
strings. Operations are provided to look up the value associated 
with a specified and to iterate over all key/value pairs in a 
specified key range.”  
Internally, the SSTable contains a set of blocks which is 64KB. 
This size can be configurable by application requirements.  On the 

end of the SSTable an index will be generated and it will be 
loaded into memory when an SSTable is opened. In this way, a 
lookup can be done using single disk seek:  we just need to find 
block using the index stored in memory and then read the block 
from the disk.  Figure 3 summarize the implementations of the 
SSTable: 

 
Figure 3 SSTable schema: index of each block will be loaded 
in memory. So the lookup to the actual data only needs one 

disk seek. 
 
Alternatively, an SSTable can be completely copied to the main 
memory to avoid read from disk.   
Bigtable depends on a highly-available and persistent distributed 
lock service called Chubby [8]. It is used to keep track of tablet 
servers in Bigtable.  Chubby itself is a cluster service that 
maintains five active replicas, one of which is the master. The 
service is running when majority of the replicas are running and 
can communicate with each other.  As explained in the document 
of Bigtable [5], Chubby provides a namespace that consists of 
directories and small files. Each directory or file can be used as a 
lock, and reads and writes to a file are atomic. The Chubby files 
are cached consistently in the Chubby client library. Chubby 
allows the client to take a local lock, optionally with the metadata 
which is associated with it. When a client session has been 
expired, Chubby will revoke all locks that it has.  The client can 
renew the lock by sending “keep alive” messages to Chubby.  
Chubby can be seen as the global lock repository of Bigtable. 
How Bigtable is using the Chubby can be seen by the section 5.3 
tablet assignment.  
 

5.  IMPLEMENTATION  
5.1  Major Components 
The Bigtable implementation contains three major components: A 
Client library, one Master Server and many Tablet Servers.  
The master server is responsible for assigning tablets to the tablet 
server.  It detects the additional and expiration of the tablet server 
in order to balance the tablet server load. It also does the garbage 
collection of the files on the GFS. Furthermore, when the schema 
of the rows and column families need to be changed, the Master 
Server also manages those changes.  
Tablet server is designed to manage the set of tablets. It handles 
the read and write requests to the tablet.  When a tablet is growing 
too large, the Tablet server also splits it into small tablets for the 
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future processing. Tablet servers can be added or removed from a 
Bigtable cluster based on the current workload. This process is 
managed by master server.  
Although there is a one single master server existing in the 
cluster, since the clients do not rely on master server for the tablet 
location information, the load of the master server is very low. 
The client communicates with the tablet server directly to read or 
write data from a tablet.  

5.2 Tablet Location  
Bigtable is using a three-level hierarchy to store the tablet 
location analogous to that of a B+ [9] tree:  Root tables, 
metatables and usertables (Figure 4) 
 

 
Figure 4 Table location hierarchies based on Bigtable paper 

[5] 
 
Chubby stores a file which contains location information to a root 
tablet. The root tablet contains location information to other 
metadata tablets in a special Metadata tablet. This Special 
Metadata tablet will never be split – to ensure the location 
hierarchy is never expanded more than three levels.  
Each client library contains a cache to the location information. If 
the cache is empty or if the client detects that the cache 
information is not correct, the client will move up the hierarchy to 
retrieve the location recursively. In worst case, a location look up 
through the three-level hierarchy may require six network round 
trips including a lookup in the Chubby file.  
Bigtable stores secondary information in the metadata table like 
logs (when a server begins serving it), such information is helpful 
for troubleshooting or performance analytics.  

5.3 Tablet Assignment 
A tablet server contains a set of tablets. Each tablet can be 
assigned to one tablet server at one time.  The master server is 
used to keep tracking the set of live tablet servers, managing the 
current assignments of tablets to tablet servers.  When a tablet 
becomes unassigned, the master server will verify firstly if there 
is enough space on the live tablet server, it will then assign the 
unassigned tablet to this tablet server.  
The Chubby service which we mentioned in section 4 is used by 
master server to keep track of tablet servers.  
When a tablet server starts up, it creates, and gets an exclusive 
lock on a unique-named file in the Chubby directory [5]. This 

directory is monitored by the master server, so the master can 
discover the newly arrived tablet servers.  
When the tablet server loses the exclusive lock on the directory, it 
stops serving. The tablet server will reacquire the exclusive lock 
of the file as long as it still exists in the directory. If the file does 
not exist, the tablet server will kill itself.  
When the tablet server terminates itself, the tablets which are 
associated within the tablet server will be unassigned, because the 
tablet server will attempt to release its lock. The Master can then 
reassign those unassigned tablets as soon as possible. 
The master asks the lock status of the tablet server periodically. If 
the tablet server replies with a loss of the lock status, or the 
master does not get a reply from a certain tablet server after 
several attempts, the master server will try to acquire an exclusive 
lock on the file itself. If the file can be locked, it implies that 
Chubby is alive and the tablet server which locked this file died. 
The master will ensure that this tablet server can’t serve any data 
again by deleting the server file.   
Once the server file is deleted, those tablets which are previously 
assigned to this tablet server become unassigned.  
As mentioned in section 4, Google uses the CMS system to 
manage the clustered nodes. When a master server is started by 
the CMS, it needs to be informed of current tablet assignment.  In 
the following step the assignment information is collected:  

1. Initialize a unique master lock in Chubby to prevent 
other concurrent master server from initializing.  

2. Scan the server file directory to recognize the live tablet 
servers.  

3. Tell the master server to connect to each live tablet 
server to scan the tablets which are assigned to the 
tablet server.   

4. The master scans the metadata table to learn the set of 
unassigned tablets. 

5.4 Implementation Memtable 
Memtable is the in-memory representation of the most recent 
updates of a tablet. It contains the recently committed logs which 
are stored in memory in a sorted buffer.   
The memtable will not increase infinitely. When it reaches its 
threshold (depends on the main memory size), the current 
memtable will be converted to an SSTable and moved into the 
GFS, a new memtable will also be created. This process is called 
Compaction. Those SSTables act as snapshots of this server so 
they can be used for recovery after a failure. 
When a write option arrives, the tablet server checks the well-
formedness and the authorization to see if an option is permitted 
and stores it into the commit log. After the write has been 
committed, the content is inserted into the memtable. 
When a read option arrives, the tablet server will also check if the 
option is well formed and if the sender of the option is authorized. 
If it is a valid operation, the operation is executed in a merged 
view of a sequence of the SSTable and the Memtable. Since the 
SSTable is sorted in a lexicographically way it is easy to form the 
merged view. 
When those tablets are splitting or getting merged, it does not 
lock the read/write operations.  
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Figure 5 is made to represent how read and write is done and 
procedure of the Memtable. 

 
Figure 5 read write process, the read process is performed on 
a merged view of the SSTable. The write operation is written 
into the Tablet Log. When Memtable increases its size, it will 

be converted to SSTables and moved to GFS 
 

6.  REFINEMENT USED BY BIGTABLE  
6.1 Locality groups 
Locality Groups are user to group parts of data together which 
have similar user criteria. For example, the metadata of a 
webpage can be grouped together as one locality group, while the 
content of the webpage is grouped as another locality group  

6.2 Compression 
The Bigtable implementation relies on a heavy use of the 
compression. Clients can specify whether or not SSTables for a 
locality group are compressed or not. Client also specifies which 
compression schema is to be used. 
A typical two-pass compression schema is used by many clients.  
The first pass uses Bentley and McIlroy's scheme [10], which is 
designed for compressing very long strings. The second pass 
looks into the small 16kb window for repetitions of the data. The 
first and second pass is done in a very quick way, the encoding 
cost is 100-200MB/s and the decoding cost 400-1000MB/s. Even 
those two schemata are chosen for a quick decoding and encoding 
process. In t practice they provide a high rate as 10 to 1 of the 
compression.  

6.3 Merging unbounded SSTables 
One optimization used in Bigtable is merging of unbounded 
SSTables. A single SSTable is merged from SSTables for a given 
tablet periodically.  This single SSTable contains also a new set of 
updates and index. This will prevent that the read option loading 
every data from this small piece of SSTable and access the GFS 
many times. 

6.4 Caching 
The caching is mainly used to improve the read performance.  
There are two levels of caching used by Bigtable: scan cache and 

block cache.  Scan cache is a high level cache which caches the 
key-value pairs returned by SSTables. It is most useful for 
applications which are reading data repeatedly. The Block Cache 
is a low level cache. It is useful for applications which read Data 
close to data they recently read. 

6.5 Bloom filter 
A very important problem by using Bigtable is the access of the 
SSTable files. As mentioned in section 5, the SSTable is not 
always kept in  memory, the user read operation may need many 
accesses in the GFS (located in the hardware layer) to load the 
state of the SSTable files. The paper of Bigtable [5] explains that 
they reduce the number of accesses by allowing clients to specify 
that Bloom filters [11] should be created for SSTables in a 
particular locality group. Bloom filter is an algorithm which is 
used to verify if a data is in the membership of the set.   In the 
implementations of Bigtable, the bloom filter is kept in memory 
in order to probabilistic if a data exists in a given row/column 
pair.  The memory usage to store the bloom filter is very small, 
but this technique drastically reduces the access of the data in 
disk.  

7. API 
In the relational database, the data will be updated, inserted, 
deleted using SQL Statements. Bigtable does not support SQL (it 
supports a Google designed language called Sawzall [12] to filter 
the data).  Client applications can write or delete data, lookup 
values from rows and column families within Bigtable using API 
Method calls.  The application and data integrity logic is thus 
contained in the application code (not like the relational data, the 
embedded logic is stored in the Data model with triggers, stored 
procedure, etc.).  
As mentioned in section 2, Bigtable is storing the data in form of 
row*column*timestamp, the column family is the category of the 
column. Figure 6 shows a simple API code written in C++ to 
modify the data stores in Bigtable.  
 

 
Figure 6 Open a table and write a new anchor, which is a 

column family, and then delete the old anchor. [5] 
 

8. CONCLUSION 
Taking account of the above, Figure 7 shows a simplified 
overview of the Bigtable’s Architecture.  
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Figure 7 An overview of the Bigtable Architecture 
 
Bigtable varies from traditional relational database on its data 
model.  Bigtable tends to be used by applications like Google 
Earth, which require a large storage volume.  Legacy network 
database or relational database can not address the requirements 
by those kinds of applications to distribute data over thousands of 
hosts. A relational database system is more powerful and is still a 
dominant choice for those applications which require a storage 
that is hosted by several hosts.  
On the other hand, large distributed systems are more vulnerable 
to many types of failures:   memory and network corruptions, 
large clock skew and Chubby service failures. All those problems 
could cause Bigtable implementations to fail.  Some of those 
problems are addressed by changing various protocols used by 
Bigtable, but the implementations still need further refinements. 
Here are some design principles which can be extracted from the 
Bigtable implementation: 

x Use single master server for a quick, simple 
management of distribution.  

x Use refinements technique to avoid accessing the disk 
directly.  The latencies caused by read operations will 
be more expensive as the network round trips. 

x Replicate the storage to handle the failure of cluster 
node. 

x Avoid replicating the functionalities: it is more 
expensive to keep the server in sync as to replace a 
failed server. So we should not replicate the 
functionalities in different server.  

x Make a high available rate of the communication/lock 
service. Chubby is an example: If this service fails, 
most Bigtable operations will stop working. 
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