
Google Big Table

Xiao Chen
Betreuer: Marc-Oliver Pahl

Seminar Future Internet SS2010
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik, Technische Universität München
Email: Cx3606@gmx.de

ABSTRACT
Bigtable is a storage system for structured or semi-structured data
[1]. Bigtable can be regarded as a distributed, non-relational
Database from a system point of view (Bigtable is using a
different data model than relational Databases). Bigtable scales
to large data sets and provides a good performance of accessing
the data. As of January 2008, there are more than sixty Google
applications using the Bigtable as storage provider, such as
Google Earth, Web-Indexing and Personalized Search. Bigtable
fits different demands of those applications. It addresses problems
which cannot be handled by standard relational databases. In this
paper, we give a fundamental overview of Bigtable’s design and
implementation. We will describe the differences between
Bigtable and relational database and focus on the different data
models used by them.

Keywords
Bigtable, non-relational database, distribution, performance.

1. INTRODUCTION
The development of the Internet has introduced many new
Internet based applications. The web-index and Google earth are
for example used by millions of users from Internet. To manage
these terabytes data (Google Earth has more than 70 terabyte
data) becomes a challenge. To address the demands of those
applications, Google has started the development of Bigtable in
2003. The Bigtable is designed to store structured or semi-
structured data in nodes that are distributed over network.
The project is steadily growing since then. As of January 2008,
there are over 600 Bigtable clusters at Google [2] and over sixty
productive applications based on it. The design goal of the
Bigtable mainly focuses on four aspects: high scalability, high
availability, high performance, and wide applicability. There are
some database models like “Parallel databases” [3] providing
speed up and scale up of relational database queries, but Bigtable
distinguishes itself from those models: it is not a relational
database. It provides a different interface as those relational
database models.
Bigtable shares many database strategies: Data scan, Data Storage
and Data access. Unlike a relational database which stores a fixed
schema in database server, the data logic is embedded in the client
code: the client code controls dynamically how the data structure
is.
Bigtable relies very much on a so called mapreduce job to
guarantee the design goal of a high performance of the

distribution. Mapreduce [4] is a framework for processing and
generating large data sets. Bigtable is used as input or output
source for Mapreduce jobs. Mapreduce Job provides a very fast
transformation for the data of Bigtable to hundreds of nodes
across the network.
In Section two, we firstly introduce an application example which
is using Bigtable as storage provider. We are going to see the
potential requirements of this application and why the standard
Relational Database Management System (RDBMS) cannot be
used for this application. We will explain briefly how Bigtable
solves those demands from a high level design strategic
perspective. Section three contains information of differences
between the RDBMS and the Google Bigtable. We will introduce
the data model used by the two Database models. This will give a
further explanation why Bigtable is more suitable to store large
datasets in a distributed way. Section four will provide an
overview of the building blocks of Bigtable. Section five
introduces the basic implementations. In section six we describe
some refinements Bigtable is using to archive the design goals. In
Section seven we will give a short overview of the client API.
Section eight presents the entire architecture of Bigtable and our
conclusions of the design principles.

2. APPLICATION EXAMPLE: GOOGLE
EARTH
Google Earth is one of the productive applications which are
using Bigtable as storage provider. It offers maps and satellite
images of varying resolution of the Earth's surface. Users can
navigate through the earth surface, calculate a route distance,
execute complex or pinpointed regional searches or draw their
own routes. In following section, we introduce some
fundamentals of the implementations. We will see why Bigtable
can address the requirements of Google Earth better than a
standard relational Database.
Google Earth is using one table to preprocess raw data, and
several other tables for serving the client data. During
preprocessing, the raw imagery is cleaned and consolidated into
serving data (the final data used by the application). The
preprocessing table stores the raw imagery. It contains up to 70
terabytes data and therefore cannot be maintained in the main
memory. It is served from the disk. The imagery was already be
consolidated efficiently, for this reason Bigtable compression is
disabled. The details for Bigtable’s compression methods can be
found on section 6.1 compression.
The size of the preprocessing table is the first reason why we
cannot use RDBMS to store the data, the 70 terabytes data cannot
be stored as one table hosts in a single machine.

37

Figure 1. relational Data Model: functionary has
constrains with Attendee via Support entity.

The serving system of Google Earth is using a single table to store
the index data. Although the index table is relative small
(500GB), if we use one machine to host the table we still have to
move the data to hard disk. For performance considerations, we
cannot implement it, because the index table must serve tens of
thousands of queries per second per datacenter with low latency.
With the data stored on disk, we would have no chance to fulfill
the requirements with the current hardware technology. We need
a solution to distribute the data into multiple nodes.
A major characteristic of Bigtable is its scalability. Relational
Database also scales but only in single node. When the hardware
capacity of the single node is reached, the load needs to be
distributed to other nodes. Some Databases like Oracle provide
services like replication jobs to address scale loads out of a single
machine. For an application like Google Earth which has a
massive workload, it will require hundreds or thousands of nodes’
capacity to store the data. Standard replication jobs cannot be
used in this kind of situation. RDBMS is more suitable for
applications which are hosted on one single node but Bigtable is
designed for data distribution of a large scale into hundreds or
thousands of machines over network. Mapreduce Job [4] is
always used for Bigtable applications to distribute and to process
the data to nodes and within network.
By speaking of the scalability requirements, another consideration
is the flexibility. This can also become a problem of managing the
system if we only have RDBMS located on a single node. Taking
the index table used by Google Earth as example, when the server
load or the size of the index table becomes double and the
hardware capacity of this single node is reached we cannot
upgrade the hardware on the single node as fast as the speed of
the change. Bigtable allows managing the data in a flexible way
to add or remove a node from the distribution cluster. More
details about how Bigtable manages the tablets assignment can be
found in section 5.3.

3. DIFFERENT DATA MODEL USED BY
BIGTABLE AND RDBMS
The example of Google Earth presents the motivations of using
Bigtable. We will explain the different Data Models used by
Bigtable and RDBMS. This will on one hand demonstrate why
Bigtable is not a relational database system. On the other hand, it
will give explanations why Bigtable is more suitable for
applications which require distributed storage.
A relational database is a collection of tables (entities). Each table
contains a set of columns and rows. The tables may have
constrains to each other and relationships between them.
Figure 1 shows a typical Data model used by RDBMS. The
column Id from entity “Functionary” is used as foreign key which
is referenced to column “idSupport” of entity “Support”. The
column “idAttendee” of entity “Attendee” is referenced to column
“AttendeeId” of Entity “Support”. The relationship (Data logical)
between “Functionary” and “Attendee” is thus kept in entity
“Support”.

The RDBMS model exists since almost 30 years. When it was
developed, the RDBMS was not widely used due to hardware
limitations. Even a simple select statement may contain hundreds
of potential executing paths which the query optimizer needs to
calculate at runtime. Today, the hardware can satisfy the demands
of RDBMS, so the relational Database has become a dominant
choice for common applications. They are easier to understand
and to be used - although it still provides less efficiency compared
to the legacy hierarchically database. Almost all databases we are
using now are RDBMS; typical examples are Oracle, MS Sql and
DB2.
Comparing to RDBM, which stores the data logical within table
itself, Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row key,
column key, and a timestamp. It can thus be seen as a 3D table in
form of row*column*timestamp. Each value in the map is an un-
interpreted array of bytes. The data model used by Bigtable can
be concluded as follow formula:
(row: String, Column: String, time: Int64) Æ String
 The row keys are a user-defined string. The data is maintained in
Bigtable in a lexicographic order by the row key.
Column key syntax is written in the form of
“Family:optional_qualifier”. The Column keys are grouped
together into the Column families. Column families can be
regarded as categories of its column. The data belongs to the
same Column family is compressed together with the column
information. The Column families are the basic unit of accessing
the data. They can also have attributes/rules that apply to their
cells, such as “keep n time entries” or “keep entries less than n
days old”.
The timestamp is used to version the data, so we can track the
changes of the data over the time. The size of the timestamp is a
64bit integer. Each column family can have different number of
versions. For example, a data string in Bigtable has two column
families: content and anchor. Content column family contains the
page of content, and the anchor column family contains text of
anchors which references to the page. The two column families
can have different number of versions based on application’s
requirement. The content column family can keep the latest 3
updates while the anchor column family only keeps the latest
update.
The timestamp can be used together with the rules added to
Column to manage the lifecycle of the date. The old timestamps
could be removed by a garbage-collection.

38

After this short introduction to the datamodel used by Bigtable,
we can now see that its data model does not equal the Data Model
used by a relational database. Bigtable characterizes itself as a
database management system which is commonly called a
key/value Database [6], the name is not official, and some
documentation also refer to this kind of database as distributed
database or distributed hashtable.

4. BUILDING BLOCKS
Bigtable cluster contains one or several tables. Each table consists
of set of tablets by the range of the row key. The tablets are
usually around 100-200MB and can be distributed into different
nodes across the network. Each node(tablet servers) saves about
10~1000 tablets wtihin its Google File System(GFS) [7]. Figure 2
shows a simpfied overview of the structure of the Bigtable
implementation and the major building blocks are used there:
Google File System (GFS), SSTable (sorted string table) and
Chubby.

Figure 2 Building Blocks: Chubby, GFS, SStable

GFS is a File system used by Bigtable to store the logs and files.
A Bigtable cluster usually runs a shared pool of the distributed
nodes. Bigtable also requires a cluster management system
(CMS). The CMS is used to schedule jobs, manage resource on
shared machines, replicate jobs of failure machines and monitor
the machine status.
SSTable stands for “sorted string Table”, this is a immutable file
format which Google internally used to save the Tablets. The
paper [5] of the Bigtable provides follow information for
SSTable:
“An SSTable provides a persistent, ordered immutable map from
keys to values, where both keys and values are arbitrary byte
strings. Operations are provided to look up the value associated
with a specified and to iterate over all key/value pairs in a
specified key range.”
Internally, the SSTable contains a set of blocks which is 64KB.
This size can be configurable by application requirements. On the

end of the SSTable an index will be generated and it will be
loaded into memory when an SSTable is opened. In this way, a
lookup can be done using single disk seek: we just need to find
block using the index stored in memory and then read the block
from the disk. Figure 3 summarize the implementations of the
SSTable:

Figure 3 SSTable schema: index of each block will be loaded
in memory. So the lookup to the actual data only needs one

disk seek.

Alternatively, an SSTable can be completely copied to the main
memory to avoid read from disk.
Bigtable depends on a highly-available and persistent distributed
lock service called Chubby [8]. It is used to keep track of tablet
servers in Bigtable. Chubby itself is a cluster service that
maintains five active replicas, one of which is the master. The
service is running when majority of the replicas are running and
can communicate with each other. As explained in the document
of Bigtable [5], Chubby provides a namespace that consists of
directories and small files. Each directory or file can be used as a
lock, and reads and writes to a file are atomic. The Chubby files
are cached consistently in the Chubby client library. Chubby
allows the client to take a local lock, optionally with the metadata
which is associated with it. When a client session has been
expired, Chubby will revoke all locks that it has. The client can
renew the lock by sending “keep alive” messages to Chubby.
Chubby can be seen as the global lock repository of Bigtable.
How Bigtable is using the Chubby can be seen by the section 5.3
tablet assignment.

5. IMPLEMENTATION
5.1 Major Components
The Bigtable implementation contains three major components: A
Client library, one Master Server and many Tablet Servers.
The master server is responsible for assigning tablets to the tablet
server. It detects the additional and expiration of the tablet server
in order to balance the tablet server load. It also does the garbage
collection of the files on the GFS. Furthermore, when the schema
of the rows and column families need to be changed, the Master
Server also manages those changes.
Tablet server is designed to manage the set of tablets. It handles
the read and write requests to the tablet. When a tablet is growing
too large, the Tablet server also splits it into small tablets for the

39

future processing. Tablet servers can be added or removed from a
Bigtable cluster based on the current workload. This process is
managed by master server.
Although there is a one single master server existing in the
cluster, since the clients do not rely on master server for the tablet
location information, the load of the master server is very low.
The client communicates with the tablet server directly to read or
write data from a tablet.

5.2 Tablet Location
Bigtable is using a three-level hierarchy to store the tablet
location analogous to that of a B+ [9] tree: Root tables,
metatables and usertables (Figure 4)

Figure 4 Table location hierarchies based on Bigtable paper

[5]

Chubby stores a file which contains location information to a root
tablet. The root tablet contains location information to other
metadata tablets in a special Metadata tablet. This Special
Metadata tablet will never be split – to ensure the location
hierarchy is never expanded more than three levels.
Each client library contains a cache to the location information. If
the cache is empty or if the client detects that the cache
information is not correct, the client will move up the hierarchy to
retrieve the location recursively. In worst case, a location look up
through the three-level hierarchy may require six network round
trips including a lookup in the Chubby file.
Bigtable stores secondary information in the metadata table like
logs (when a server begins serving it), such information is helpful
for troubleshooting or performance analytics.

5.3 Tablet Assignment
A tablet server contains a set of tablets. Each tablet can be
assigned to one tablet server at one time. The master server is
used to keep tracking the set of live tablet servers, managing the
current assignments of tablets to tablet servers. When a tablet
becomes unassigned, the master server will verify firstly if there
is enough space on the live tablet server, it will then assign the
unassigned tablet to this tablet server.
The Chubby service which we mentioned in section 4 is used by
master server to keep track of tablet servers.
When a tablet server starts up, it creates, and gets an exclusive
lock on a unique-named file in the Chubby directory [5]. This

directory is monitored by the master server, so the master can
discover the newly arrived tablet servers.
When the tablet server loses the exclusive lock on the directory, it
stops serving. The tablet server will reacquire the exclusive lock
of the file as long as it still exists in the directory. If the file does
not exist, the tablet server will kill itself.
When the tablet server terminates itself, the tablets which are
associated within the tablet server will be unassigned, because the
tablet server will attempt to release its lock. The Master can then
reassign those unassigned tablets as soon as possible.
The master asks the lock status of the tablet server periodically. If
the tablet server replies with a loss of the lock status, or the
master does not get a reply from a certain tablet server after
several attempts, the master server will try to acquire an exclusive
lock on the file itself. If the file can be locked, it implies that
Chubby is alive and the tablet server which locked this file died.
The master will ensure that this tablet server can’t serve any data
again by deleting the server file.
Once the server file is deleted, those tablets which are previously
assigned to this tablet server become unassigned.
As mentioned in section 4, Google uses the CMS system to
manage the clustered nodes. When a master server is started by
the CMS, it needs to be informed of current tablet assignment. In
the following step the assignment information is collected:

1. Initialize a unique master lock in Chubby to prevent
other concurrent master server from initializing.

2. Scan the server file directory to recognize the live tablet
servers.

3. Tell the master server to connect to each live tablet
server to scan the tablets which are assigned to the
tablet server.

4. The master scans the metadata table to learn the set of
unassigned tablets.

5.4 Implementation Memtable
Memtable is the in-memory representation of the most recent
updates of a tablet. It contains the recently committed logs which
are stored in memory in a sorted buffer.
The memtable will not increase infinitely. When it reaches its
threshold (depends on the main memory size), the current
memtable will be converted to an SSTable and moved into the
GFS, a new memtable will also be created. This process is called
Compaction. Those SSTables act as snapshots of this server so
they can be used for recovery after a failure.
When a write option arrives, the tablet server checks the well-
formedness and the authorization to see if an option is permitted
and stores it into the commit log. After the write has been
committed, the content is inserted into the memtable.
When a read option arrives, the tablet server will also check if the
option is well formed and if the sender of the option is authorized.
If it is a valid operation, the operation is executed in a merged
view of a sequence of the SSTable and the Memtable. Since the
SSTable is sorted in a lexicographically way it is easy to form the
merged view.
When those tablets are splitting or getting merged, it does not
lock the read/write operations.

40

Figure 5 is made to represent how read and write is done and
procedure of the Memtable.

Figure 5 read write process, the read process is performed on
a merged view of the SSTable. The write operation is written
into the Tablet Log. When Memtable increases its size, it will

be converted to SSTables and moved to GFS

6. REFINEMENT USED BY BIGTABLE
6.1 Locality groups
Locality Groups are user to group parts of data together which
have similar user criteria. For example, the metadata of a
webpage can be grouped together as one locality group, while the
content of the webpage is grouped as another locality group

6.2 Compression
The Bigtable implementation relies on a heavy use of the
compression. Clients can specify whether or not SSTables for a
locality group are compressed or not. Client also specifies which
compression schema is to be used.
A typical two-pass compression schema is used by many clients.
The first pass uses Bentley and McIlroy's scheme [10], which is
designed for compressing very long strings. The second pass
looks into the small 16kb window for repetitions of the data. The
first and second pass is done in a very quick way, the encoding
cost is 100-200MB/s and the decoding cost 400-1000MB/s. Even
those two schemata are chosen for a quick decoding and encoding
process. In t practice they provide a high rate as 10 to 1 of the
compression.

6.3 Merging unbounded SSTables
One optimization used in Bigtable is merging of unbounded
SSTables. A single SSTable is merged from SSTables for a given
tablet periodically. This single SSTable contains also a new set of
updates and index. This will prevent that the read option loading
every data from this small piece of SSTable and access the GFS
many times.

6.4 Caching
The caching is mainly used to improve the read performance.
There are two levels of caching used by Bigtable: scan cache and

block cache. Scan cache is a high level cache which caches the
key-value pairs returned by SSTables. It is most useful for
applications which are reading data repeatedly. The Block Cache
is a low level cache. It is useful for applications which read Data
close to data they recently read.

6.5 Bloom filter
A very important problem by using Bigtable is the access of the
SSTable files. As mentioned in section 5, the SSTable is not
always kept in memory, the user read operation may need many
accesses in the GFS (located in the hardware layer) to load the
state of the SSTable files. The paper of Bigtable [5] explains that
they reduce the number of accesses by allowing clients to specify
that Bloom filters [11] should be created for SSTables in a
particular locality group. Bloom filter is an algorithm which is
used to verify if a data is in the membership of the set. In the
implementations of Bigtable, the bloom filter is kept in memory
in order to probabilistic if a data exists in a given row/column
pair. The memory usage to store the bloom filter is very small,
but this technique drastically reduces the access of the data in
disk.

7. API
In the relational database, the data will be updated, inserted,
deleted using SQL Statements. Bigtable does not support SQL (it
supports a Google designed language called Sawzall [12] to filter
the data). Client applications can write or delete data, lookup
values from rows and column families within Bigtable using API
Method calls. The application and data integrity logic is thus
contained in the application code (not like the relational data, the
embedded logic is stored in the Data model with triggers, stored
procedure, etc.).
As mentioned in section 2, Bigtable is storing the data in form of
row*column*timestamp, the column family is the category of the
column. Figure 6 shows a simple API code written in C++ to
modify the data stores in Bigtable.

Figure 6 Open a table and write a new anchor, which is a

column family, and then delete the old anchor. [5]

8. CONCLUSION
Taking account of the above, Figure 7 shows a simplified
overview of the Bigtable’s Architecture.

41

Figure 7 An overview of the Bigtable Architecture

Bigtable varies from traditional relational database on its data
model. Bigtable tends to be used by applications like Google
Earth, which require a large storage volume. Legacy network
database or relational database can not address the requirements
by those kinds of applications to distribute data over thousands of
hosts. A relational database system is more powerful and is still a
dominant choice for those applications which require a storage
that is hosted by several hosts.
On the other hand, large distributed systems are more vulnerable
to many types of failures: memory and network corruptions,
large clock skew and Chubby service failures. All those problems
could cause Bigtable implementations to fail. Some of those
problems are addressed by changing various protocols used by
Bigtable, but the implementations still need further refinements.
Here are some design principles which can be extracted from the
Bigtable implementation:

x Use single master server for a quick, simple
management of distribution.

x Use refinements technique to avoid accessing the disk
directly. The latencies caused by read operations will
be more expensive as the network round trips.

x Replicate the storage to handle the failure of cluster
node.

x Avoid replicating the functionalities: it is more
expensive to keep the server in sync as to replace a
failed server. So we should not replicate the
functionalities in different server.

x Make a high available rate of the communication/lock
service. Chubby is an example: If this service fails,
most Bigtable operations will stop working.

9. REFERENCES
[1] Buneman, Peter. " Tutorial on semi-structured data. ", 1997.

[2] Wilson Hsieh, Jayant Madhavan,Rob Pike. " Data
management projects at Google. ", Chicago, IL, USA : ISBN:1-
59593-434-0 , 2006 . ACM SIGMOD international conference on
Management of data. S. 36.

[3] David Dewitt, Jim Gary. " Parallel database systems: the
future of high performance database systems. ", 6, New York,
NY, USA : ACM, 1992, Bd. 35. ISSN:0001-0782 .

[4] Jeffrey Dean, Sanjay Ghemawat. " MapReduce: Simplified
Data Processing on Large Clusters. ", 2004. OSDI '04 Technical
Program. S. 1.

[5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra,
Andrew Fikes, and Robert E. Gruber. " Bigtable: A Distributed
Storage System for Structured Data. ", WA : s.n., 2006. OSDI'06:
Seventh Symposium on Operating System Design and
Implementation. S. 1.

[6] Bain, Tony. "
http://www.readwriteweb.com/enterprise/2009/02/is-the-
relational-database-doomed.php. ", " ReadWrite. ", [Online] 12.
February 2009.

[7] Sanjay Ghemawat, Howard Gobioff,Shun-Tak Leung. "
The Google file system. ", New York,USA : ACM, 2003 .

[8] Burrows, Mike. " The Chubby lock service for loosely-
coupled distributed systems. ", Berkeley, CA, USA : USENIX
Association, 2006. ISBN:1-931971-47-1.

[9] COMER, Douglas. " Ubiquitous B-tree. ", 2, New York :
ACM Computing Surveys, 1979, Bd. 11. ISSN:0360-0300.

[10] BENTLEY, J. L., AND MCILROY. " Data Compression
Using Long Common Strings. ", 1999, In Data Compression, S.
287-295.

[11] Bloom, Burton H. " Space/time trade-offs in hash coding
with allowable errors. ", 1970, Commun. ACM, S. 422-426.

[12] Rob Pike, Sean Dorward, Robert Griesemer, Sean
Quinlan. " Interpreting the data: Parallel analysis with Sawzall .
", 2005, Scientific Programming, S. 227–298.

42

