
Attacks and exploits targeting BitTorrent and other
P2P file sharing networks

Andreas Hegenberg
Betreuer: Benedikt Elser

Seminar Future Internet WS 09/10
Lehrstuhl Netzarchitekturen und Netzdienste

Fakultät für Informatik
Technische Universität München

Email: andreas.hegenberg@in.tum.de

Abstract— This proceeding deals with various attacks and

exploitations P2P networks have to cope with. In the last few

years BitTorrent became famous for spreading big amounts of

data to many people in a short time. BitTorrent will therefore

be the main focus of this work. This proceeding serves basically

as overview about different types of attacks. It shows attacks

that are able to prevent files from being downloaded or at least

delay the downloading process enormously. For some of the

attacks countermeasures are shown. Furthermore the proceeding

discusses so-called free riding which allows a peer to download

without reciprocating. Understanding how the different attacks

and exploits work is a important step to design more resilient

protocols in the future.

Keywords— P2P, attacks, BitTorrent,free riding

I. INTRODUCTION

The amount of fast Internet connections increases steadily
and so does the need for cheap but yet fast content dis-
tribution. Peer to Peer (P2P) file sharing systems are very
popular for quickly spreading high amounts of data to many
people without much effort or cost. Unfortunately there are
several groups which are interested in attacking or exploiting
those networks for different reasons. For example the music,
film and television industries already (successfully) attacked
various P2P networks because they hoped to stop the illegal
distribution of their assets. But also regular users can cause
problems if they try to download without reciprocating in any
form to the community, this is called free riding and could
cause the entire network to slow down extremely.
This proceeding will deal with the question how resilient
today’s overlay P2P systems are against a variety of possible
attacks and/or exploitations. Therefore I will describe some
potential types of attacks and their impact to harm P2P
systems. Because BitTorrent has evolved to the currently most
used P2P network and because it is available as open source
this work will concentrate on it.
The first chapter will give you a very basic introduction to the
BitTorrent protocol. The second chapter will be about different
types of attacks that prevent files from being downloaded.
The third chapter will then deal with the incentives system
in BitTorrent and how to trick it. Finally followed by a
short discussion about future work and other P2P file sharing
protocols.

II. BITTORRENT

BitTorrent is an open source peer to peer file-sharing
protocol which became very popular during the last few years.
Today BitTorrent is responsible for a huge amount of traffic on
the internet. The ’Internet Study 2008/2009’ released by the
german company Ipoque at the beginning of the year estimated
the traffic produced by BitTorrent users at 27-55% of all
internet traffic, depending on the geographical location. Mean-
while BitTorrent serves as blueprint for many applications, e.g.
for streaming software. Even the media industries checks if
BitTorrent could be used for the commercial distribution of
movies, music, tv-shows etc.. [1]

A. BitTorrent Characterization

In BitTorrent a file is divided into many pieces (usually
each pieces size is 256KB) those pieces are subdivided into
blocks (usually 16KB). The information how a file is split
gets saved in a metafile, which also holds SHA1 hashes for
every piece (but not for the blocks) and the URL of a tracker
server. The tracker is a centralized entity which is responsible
for managing the peers that belong to a specific file and for
assisting their communication. Therefore the tracker maintains
a list of currently active peers and delivers a random subset
of these to clients, upon request. (see figure 4) [2]. Usually
trackers are also the platforms where users can download the
metafiles via standard HTTP. As you see BitTorrent in its
original specification is not pure P2P but has some client-
server attributes too.
Peers (clients) that want to download a single file or already
got that file are grouped into swarms - as long as their client
is running. A swarm usually consists of seeders and leechers
whereby a seeder is an user who already possesses all the
pieces of a file.
A leecher uploads blocks he already got to other leechers that
request those blocks from him. The other leechers are able
to determine which pieces he has based on bit-field messages
they exchange [3]. Peers chose the pieces they request using a
local rarest first policy [4], this means they chose those pieces
which are least replicated among the peers they are connected
to. This shall ensure a balanced piece availability.

43



Fig. 1. Portion of a BitTorrent system, arrows show how users could jump
from one swarm to another or even be in both swarms at the same time. [5]

The decision which other leechers will get one of his n
upload slots (usually there are 4-5 slots) is made using an
incentive mechanism. [4]. The standard mechanism works
periodically, one period typically takes 10 seconds. In a period
the client sorts the list of peers he has currently downloaded
from by the speed they offered to him. In the next period
he unchokes a specific number (n-1) of peers that achieved
highest rates and chokes the other peers. Unchoking means,
that the selected peer gets one of the n upload slots and
choking means he will lose his upload slot (but stay connected)
see figure 2.

This behaviour is called Óbandwidth firstÓ. Additionally
he selects another random peer for an optimistic unchoke
every third period. [6] This makes finding new, maybe better
peers possible and also allows new clients to gather some data
so they can become uploaders fast. Through this tit-for-tat
system a fair trading shall be ensured. Later in this work we
will see if it works well.
If a leecher has all parts of a file he becomes a seeder.
Seeders can not consider any download speed for unchoking
(because they download anymore) thus the upload speed is
watched. The peers to which a seed can upload fastest are
then chosen in a round robin fashion. [3]

Because BitTorrent is open source, the protocol is
implemented in many slightly different ways from various
clients. A closer look will show that some of those
implementations are considerably more prone to specific
attacks than others.
If you need a more specific description of the BitTorrent
protocol take a closer look on the Bittorrent protocol
specification. If needed we will describe some specific parts

of the protocol in the course of this work.

III. ATTACKS ON BITTORRENT

The authors of [7] [8] [1] [4], describe various attacks on
BitTorrent swarms or parts of a swarm which could make
it impossible to download a file or slow down the whole
process enormously. This chapter addresses various attacks of
this type.

A. Attacks against Seeders
Targeting seeds is a very natural approach because without

a seed it clearly becomes hard to complete the download for
any leecher. However the attack has to take place in an early
stage of distribution, if all the parts are already spread to
leechers it is often too late. [7] [8] In this section we will
discuss different seed attacks. In almost every seed attack
identifying the initial seeders as fast as possible is a necessary
precondition to render the attack successful. Unfortunately
this is not too hard as [7] shows. Because most big torrent
web sites give their files an incrementing index number new
files can easily be watched. Also some trackers offer public
RSS feeds of all new files.

1) Early stage DoS attacks on seeders : Early stage De-
nial of Service attacks which aim on cutting off the initial
seeder from the network seem to be an effective way to
take down a whole swarm. The results of [8] confirm this.
Their measurements show that if a seeder is cut off from the
network due to some sort of DoS attack while the average
download progress is below 20% almost always the leechers
can not complete their download . They also show that it is
hard to predict what happens if the average download ratio is
between 20% and 60%. But it is obvious that the probability of
completing the download increases with the average download
ratio. Above 60% the download could always be completed for
every leecher.

In [8] is not described how the DoS attack is executed.
The simplest approach would be to launch massive requests
at the seeder. However flooding DoS attacks need quite
a lot resources especially if they are directed to many
popular torrent files or if the seeder is a host with a fast
internet connection. So instead of running this simple kind
of DoS attack it could be more efficient to exploit specific
characteristics of the BitTorrent protocol [1] Unfortunately it
is hard to circumvent those attacks. Newer BitTorrent clients
support a feature called super seeding [9] which intends to
spread a file faster. As a sideline this feature hides that the
client is a seeder. Maybe this is a good start for hampering
seeder attacks, but there definitely is much more room for
improvements and further investigations.

2) Bandwidth attacks on seeders: The authors of [7] de-
scribes two attacks against seeders, the first we will discuss
is called bandwidth attack. The approach is quite simple, the
attacker attempts to consume the majority of the seeds upload
bandwidth [7].

44



For understanding how seeders assign their upload slots to
leechers the authors examine two actual client implementations
of seeding algorithms, the one of Azureus version 3.1.1.0
(meanwhile called Vuze) and the one of BitTornado (unknown
version).
According to [7] Azureus uses a variation of the original
bandwidth first seeding algorithm. This algorithm prefers users
who have a high download speed and at the same time
low amount of data downloaded from the seed. The other
client, BitTornado uses a pure bandwidth first algorithm when
seeding [7].
Both implementations perform optimistic unchokes.
Two cases of bandwidth allocation between seeders, leechers
and attackers were considered during the experiments. In the
first case the seeders upload bandwidth per upload slot is
lower than the leechers download bandwidth and this is lower
than the attackers download bandwidth. This means both, the
leechers and the attackers can only download at the same speed
(limited by the seeder) and thus the attackers have no real
advantage by their higher bandwidth.
The second case where seeders achieve higher upload speed
per slot than leechers can download but lower than attackers
can download seems to be more harmful if a bandwidth first
algorithm is used.
As the measurements in [7] show Azureus’ implementation
ensures a high resilience against bandwidth attacks in every
case because even if the attackers download very fast they
will soon have a high amount of data downloaded from the
seed and thus get choked. During their experiments the delay
ratio was always less than 3 compared to the same download
without attackers.
Surprisingly BitTornado performed only slightly worse. This
is because in the second bandwidth allocation case the upload
bandwidth of the seeder is higher. Thus even if the attackers
obtain all regular upload slots, the optimistic unchoke from
time to time makes sure a friendly peer downloads at high
rate.
Unfortunately you will see that the seeding algorithm used by
Azureus has a major disadvantage if you read on.

3) Connection/Eclipse attacks on seeders: Every BitTorrent
client has a maximal number of connection slots that can
be filled by other peers (usually about 50). The so-called
connection attack, also known as eclipse attack (the second
attack described in [7]) aims on filling the vast majority of
those slots with malicious peers, so that no friendly peers can
connect anymore. This shall be done using as low bandwidth
as possible.
As the investigations in [7] show Azureus is higly vulnerable
to this attack, in the authors experiments. BitTornado performs
better but also is affected. Their attack environment consists
of a single seed sharing a file, 30 leechers, a single tracker
and a number of attack peers [7]. They try to simulate a flash
crowd effect by starting 5 leechers first, then after those are
connected to the seed all the attackers are launched, and finally
the rest of the leechers.

Fig. 2. State Diagram for Connection Management in Azureus. [7]

For understanding what happens we now have to take a look
at the connection algorithms.
Azureus accepts received connection requests immediately un-
less a specific limit is reached (about 50). As shown in figure 2
the new connected peer will change its state from undiscovered
to connected. Connected peers occupy a connection slot but
do not receive any data until they are unchoked. Furthermore
Azureus maintains a queue called ’Discovered Peers’ which
only contains peers the client discovered by itself using various
methods. [7] If the connection list has free slots the oldest
peers in the discovered list get included into it. This is called
’Optimistic Connect’. When seeding Azureus keeps track of
the last time data was sent to a peer. In order to make room
for new peers, every 30 seconds Azureus checks if one of the
peers has not received data for more than 5 minutes. If this is
the case the peer is disconnected and enters the undiscovered
state.
The connection attack on Azureus causes all regular down-
loads to fail. The reason for this is a combination of the
seeding algorithm and the connection algorithm used. Remem-
ber: a seeding peer prefers leechers who download at high
speed but also have downloaded low amount of data. Because
the attacking clients do not download data at all, the second
criterion allows them to grab some of the seeders upload slots.
As you know the connection algorithm disconnects leechers
that have not got data for more than 5 minutes. Because the
attackers outnumber the leechers, all the leecher disconnect
one after another. Even if attackers get disconnected their
chance of getting connected again is high because in contrast
to friendly leechers they will steadily try to reconnect.
BitTornado is more robust because it uses a pure bandwidth
first algorithm. Therefore the attackers can not get upload slots
and fail. Only if the seeds upload bandwidth per slot is very
low (so that the download speed of leechers and attackers is
limited by the seed) the attack is moderately successful but
then it is more like a bandwidth attack and the only advantage
the attackers have is their quantity .

45



B. Attacks On Leechers Or The Whole Swarm
This section will describe attacks that are not specifically

targeted on seeders. Still they aim on stopping the distribution
of a file completely. This section will start with the sybil attack
which can be combined with some other attacks.

1) The Sybil Attack: Usually you would think a peer exists
exactly once per swarm he maybe a seeder, a leecher or
something else but he only exists once. The Sybil attack [10]
[4] tries to take over a swarm by faking multiple identities.
In BitTorrent this is possible because identities are generated
autonomously by peers, so there usually is no central entity
for controlling them although a tracker could do this. Faking
an identity is not expensive thus the number of multiple
identities could be very high, sybils could even represent the
vast majority of a swarm. However just by creating multiple
identities BitTorrent is not harmed too much,thus the following
attacks described by the authors of [4] try to combine sybils
with other techniques. In Chapter 4 of this work sybils will
be used for achieving higher download rates.

2) Lying Piece Possession Attack: This attack described in
[4] tries to spread false information about piece availability.
The goal is to exploit the local rarest first policy used in
BitTorrent. Therefore malicious peers announce they have
pieces they do not really have. If there are many of those
malicious peers all other peers will delay downloading the
pieces because they think it is not very rare. The funny
thing about this is that in contrast to the peers belief the
pieces become increasingly rare and possibly even disappear
completely. To make this attack efficient it should be combined
with the sybil attack as described above. The effect of this
approach is affected by various parameters e.g. the number
and real dissemination of pieces lied about, the number of
malicious peers and the file size. [4]. The impact evaluation
discussed in [4] shows an increasing effectiveness of the attack
the higher the number of malicious peers is. Although they
note that they could not tell if this is caused by the piece
lying or the peer eclipsing effect (as described below). As a
matter of fact the lying piece possession attack can be very
harmful and may be able causing BitTorrent swarms to fail.
The authors of [11] show a possible countermeasure with
low overhead. They therefore introduce an algorithm called
’PeerRotation’ which tries to determine malicious peers that
seem to be uninterested in exchanging data and replace them
with other peers.

3) Eclipse Attack: In A we already discussed the connec-
tion attack on seeders, in [4] a similar approach is used to
attack a whole swarm using sybils which try to snatch as many
connection slots of a peer as possible. As a result of this the
friendly peer is eclipsed, he can not connect to other friendly
peers anymore because the attackers can mediate most or all
communication [4] and so he starves. Figure 3 shows this in
a very simplified way. Remember that peers usually have a
connection limit of about 50. Attacking peers in contrast can
open as many connections as their resources allow them. This
means, that with a relatively low number of malicious peers
a nearly unlimited number of friendly peers can be eclipsed.

Fig. 3. Eclipse Attack: Friendly peers eclipsed by many malicious sybils

The measured results in [4] show that this attack is highly
efficient.

4) Piece attack: The piece attack described in [1] is similar
to the Lying Piece Possession attack discussed before. The
goal of the piece attack is to slow down the download process.
As you know a BitTorrent metafile contains SHA1 hashes for
every piece. Those are used for integrity checking. So if a
malicious peer would attempt to send fake data the integrity
check would fail and the piece would be downloaded again
from another peer. The problem in doing so is, that pieces
in BitTorrent are split into blocks and blocks from one piece
can be received from various peers. As you may remember
single blocks can not be integrity checked because hashes
are only available for the whole piece (everything else would
make the metafiles way too big). So if a malicious peer sends
fake blocks the integrity check will not fail until the peer
gathered all blocks of that piece. A blacklist of malicious peers
could solve this problem, unfortunately detecting who sent the
fake block is not possible. P.Dhungel et al. [1] calculate the
probability of downloading a clean piece. According to them if
n is the number of neighbors that claim to have the piece and
m denotes the number of attackers and k denotes the subset
of n which is selected by the peer for downloading the blocks,
the probability of downloading a clean file is approximately
(1� m

n )k. Thus for a successful attack the fraction m
n has to

be high. Naturally this value will be higher when peers try to
download a rare file. They also show that in the endgame of
a torrent the piece attack is most efficient because there only
rare pieces are requested.
Countermeasures against this attack are introduced in [1] and
[11]. Thereby in [11] a reputation system is suggested which
raises a peers reputation if he contributed to correct pieces and
lowers his reputation if he contributed to corrupted pieces. If
a threshold is undershot the peer will be moved to quarantine.
Their results show, that this approach is efficient because it
does not introduce any overhead if there is no attack.
The countermeasures suggested in [1] are based on three
heuristics. The first heuristic only measures the amount of bad
pieces which an IP has contributed to. The second heuristic
measures the ratio between good pieces and bad pieces and

46



the third heuristic measures the ratio of bad pieces a peer
participated in and the total number of blocks he contributed.
Attackers will try to minimize their bandwidth cost and thus
may only send one corrupted block per piece to a peer.
Therefore a high ratio in heuristic three could convict them.
Measurements in [1] show, that heuristic three is best suited
for practical use but it could be combined with heuristic two.

IV. SELFISH BEHAVIOR IN BITTORRENT

So far we only discussed attacks with the target to harm the
BitTorrent network and prevent files from being downloaded
or slow down the downloading process. Now let us shift
attention to seemingly contrary topics, namely free riding and
selfish peers. As described before BitTorrent uses a tit-for-tat
incentive mechanism to ensure fair sharing. Free riding tries to
trick that mechanism, so downloading can be achieved without
contributing. There are different reasons why one would aspire
this. E.g. in some countries downloading copyrighted stuff
is not chargeable but uploading is. Slow internet connections
with low upload speed could be another reason. [12]
Unfortunately free riding can be very harmful for a P2P system
because like the attacks in the last chapter it slows down the
whole network. Also users are selfish or just rational, so they
want to download at highest possible speed. This chapter is
going to show you some attempts to achieve free riding or
cheat to achieve higher download rates than usual. Different
types of selfish behavior or free riding are described in [2] [12]
[6] [5] [3] [13]. this work will refer to some of them. Peers
that try to achieve free riding will be called selfish peers.

A. The Large View Exploit

Remember, that if a BitTorrent client connects to a tracker
and requests peers the tracker delivers a random subset of
peers known to him. Also a peer only holds connections
to a maximum of about 50 other peers. Further recall the
optimistic unchoking BitTorrent implements and the round
robin uploading seeders do.
The large view exploit as described in [12] and used in the
BitThief implementation of Locher et al. [13] mainly tries
to exploit these points. Therefore the authors of [13] make
modifications to an existing BitTorrent client. E.g. their client
never uploads, it mimics the behavior of a new client and
it requests new peer lists from the tracker every 15 seconds.
Also it has an unlimited number of connection slots and thus
connects to as many peers as possible. Figure 4 demonstrates
the amount of peers known to the tracker and the peers known
to a regular client. The large view exploit tries to gather as
many of the tracker known peers as possible. The goal is
to get often optimistically unchoked and so download at fast
rates. If the client is connected to more seeders he also has a
higher chance in benefiting from their round robin unchoking.
The results of [13] show that with this approach even higher
download rates than with a honest client can be reached if the
swarm is large enough.

Fig. 4. Peers known to a specific peer vs peers known to tracker

B. Other Optimizations For Achieving Higher Speed
This section will describe a few possibilities to achieve

higher download speeds than with regular clients. Some of
those approaches could even be combined with the large view
exploit to achieve better free riding.

1) Do not download rarest first: The developers of Bit-
Thief, a free riding BitTorrent client described in [13] im-
plemented piece selection algorithm that does not apply the
rarest first policy but fetches whatever pieces he can get. So it
never leaves an unchoke period unused. [13]. This could help
to download slighty faster.

2) Only Interact With The Fastest Peers: The authors of
[3] describe three exploits for achieving higher download
speeds, one of them is to identify the fastest peers and
only communicate with them. This also includes to do no
optimistic unchoking thus slow peers can not interact with us
in any way. The BitTorrent protocol specifies that, every peer
should send an advertisement when he finished downloading a
piece. Through observing those advertisements it is possible to
approximately find the fastest downloading peers of a swarm.
In most cases high download speed comes with relatively high
upload speed, so those peers are selected. Seeders do not finish
any pieces so they do not send advertisements, and thus every
pieces from seeds are requested not regarding their speed.

3) Use Sybils: Another good-sounding approach is the use
of multiple identities aka sybils. If a single client is connected
to a tracker with multiple identities and the tracker delivers
those sybils to other peers. The chance of being unchoked
could raise. Unfortunately the examinations of [14] show, that
this does not result in a higher download speed.

4) Upload Garbage: Because of the tit-for-tat incentives
system uploading is rewarded by other peers. Unfortunately
we can only upload pieces we already got thus we can
not upload to all other peers because they may have those
pieces already. To exploit this we could attempt advertising

47



rare pieces we do not really have (and if requested upload
random garbage). This is very similar to the piece attack
described in chapter 3. Because the integrity check fails not
until all blocks of a piece are gathered by the downloading
peer, we could try to upload only some blocks per piece.
Additionally in [3] is suggested to not advertise all pieces
because then other peers would think we are a seeder and
thus not letting us download from them. In theory the peers
should not recognize us as malicious peer and so reward us
for uploading to them. As the evaluation in [3] and [13] shows
this really works for the official implementation. Unfortunately
the official implementation is not used much and clients like
Azureus are not as easy to fool. E.g. Azureus uses a pretty nice
mechanism for preventing this attacks: if an integrity check
fails, it looks who contributed with the most blocks to it. Then
Azureus requests the missing blocks from that peer. If the peer
refuses to answer or sends garbage his IP gets banned.

V. COMPARISON AND FUTURE WORK

This work was based entirely on BitTorrent and some of the
described problems are very specific. You might be surprised
but still BitTorrent is one of the most resilient P2P overlay
networks today.
Former networks like FastTrack (used by KaZaA) which was
very popular have suffered massive attacks or law suits and
thus became nearly unusable or totally disappeared. All of
the P2P file sharing networks left today are prone to many
different kinds of attacks and selfish peer behavior.
Future protocols have to learn from the mistakes of previous
ones. Today there is much scientific research done on the
development of robust, yet scalable P2P networks and many
of the discussed attacks could be prevented.
During the last years BitTorrent got quite some additions to
the original protocol, e.g. distributed hash tables (DHT) were
introduced for trackerless communication.
Self-organizing, scalable and robust DHT may play a big role
in P2P systems of the future because through their use P2P
networks can be freed of trackers or other central servers which
are always prone to attacks or law suits. Although DHTs bring
many new problems, e.g. how can sybil attacks be prevented if
there is no central entity that can assign identities? In papers
like [15] fundamental design principle for such DHT based
networks are discussed, they will help in further development.

VI. CONCLUSION

The contribution of this work mainly was to summarize and
describe different types of attacks and exploitations that could
harm BitTorrent and other P2P file-sharing overlay networks.
Some of them are already used massively by attackers. It has
been found that BitTorrent is vulnerable and exploitable in
many different ways. Still today BitTorrent is one of the most
robust public used P2P networks (if not the most robust) and
has the potential power to stay alive for a long time. Therefore
it is important to reveal and understand possible attacks.
Protocol additions like DHT and different implementations
of the BitTorrent protocol already exist. To become more

robust the official protocol should include workarounds for
known attacks, some possible countermeasures were broached
in the course of this work. The designers of new P2P overlay
protocols (at least those intended for file sharing) should
consider all shown problems and learn from them.

LITERATUR

[1] P. Dhungel, D. Wu, and K. W. Ross, “Measurement and mitigation
of bittorrent leecher attacks,” Computer Communications, July 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.comcom.2009.07.006

[2] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy,
and A. Venkataramani, “Do incentives build robustness
in bittorrent,” in In NSDI’07, 2007. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.6384

[3] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang, “Exploiting bittorrent
for fun (but not profit),” 2006.

[4] M. A. Konrath, M. P. Barcellos, and R. B. Mansilha, “Attacking a swarm
with a band of liars: evaluating the impact of attacks on bittorrent,”
Peer-to-Peer Computing, IEEE International Conference on, vol. 0, pp.
37–44, 2007.

[5] D. Hales and S. Patarin, “How to cheat bittorrent and why nobody does,”
in European Conference on Complex Systems, 2006.

[6] B. Cohen, “Incentives build robustness
in bittorrent,” 2003. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.1911

[7] P. Dhungel, X. Heiz, D. Wu, and K. W. Ross, “The seed attack: Can
bittorrent be nipped in the bud?” Tech. Rep., 2009.

[8] S. Rouibia, J. Vayn, O. Beauvais, and G. Urvoy-Keller, “Early stage
denial of service attacks in bittorrent: An experimental study,” in
WETICE ’08: Proceedings of the 2008 IEEE 17th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 141–142.

[9] Z. CHEN, C. LIN, Y. CHEN, V. NIVARGI, and P. CAO,
“An Analytical and Experimental Study of Super-Seeding in
BitTorrent-Like P2P Networks,” IEICE Trans Commun, vol.
E91-B, no. 12, pp. 3842–3850, 2008. [Online]. Available:
http://ietcom.oxfordjournals.org/cgi/content/abstract/E91-B/12/3842

[10] F. Pontes, F. Brasileiro, and N. Andrade, “Bittorrent needs psychiatric
guarantees: Quantifying how vulnerable bittorrent swarms are to sybil
attacks,” Dependable Computing, Latin-American Symposium on, vol. 0,
pp. 65–72, 2009.

[11] M. P. Barcellos, D. Bauermann, H. Sant’anna, M. Lehmann, and
R. Mansilha, “Protecting bittorrent: design and evaluation of effective
countermeasures against dos attacks,” in 27th International Symposium
on Reliable Distributed Systems (IEEE SRDS 2008), October 2008.

[12] M. Sirivianos, J. H. Park, R. Chen, and X. Yang, “Free-riding in
bittorrent networks with the large view exploit,” in IPTPS, 2007.

[13] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer, “Free riding in
bittorrent is cheap,” in In HotNets, 2006.

[14] J. Sun, A. Banerjee, and M. Faloutsos, “Multiple iden-
tities in bittorrent networks,” 2008. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.9160

[15] B. Awerbuch and C. Scheideler, “Towards a scalable and robust dht,”
2006.

48


