
Chair for Network Architectures and Services
Department of Informatics
TU München – Prof. Carle

Network Security
IN2101

Prof. Dr.-Ing. Georg Carle
Dipl.-Inform. Ali Fessi

Institut für Informatik
Technische Universität München

http://www.net.in.tum.de

Chair for Network Architectures and Services
Department of Informatics
TU München – Prof. Carle

Network Security
Chapter 9

Secure Socket Layer (SSL)/
Transport Layer Security (TLS)

Network Security, WS 2008/09, Chapter 9 3

Classification in the OSI reference model
SSL/TLS history
TLS security services and protocol architecture

Classification in the OSI reference model
SSL/TLS history
TLS security services and protocol architecture

Overview

Network Security, WS 2008/09, Chapter 9 4

Classification in the OSI Reference Model (1)

The transport layer provides communication between application
processes (instead of communication between end-systems)
Its main tasks are:

Isolation of higher protocol layers from the technology, structure and
deficiencies of deployed communications technology
Transparent transmission of user data
Global addressing of application processes, independently of lower layer
addresses (Ethernet addresses, telephone numbers, etc.)
Overall goal: provision of a (if required reliable) end-to-end service.

Network Security, WS 2008/09, Chapter 9 5

Classification in the OSI Reference Model (2)

Transport layer security protocols enhance the transport layer service
by assuring additional security properties.
As they usually require and are built upon a transport service, they
actually represent session layer protocols according to the terminology
of the Open Systems Interconnection (OSI) reference model.
However, based on the Internet terminology where the application
layer is directly on top of the transport layer, we use the term transport
layer security protocols.

Network Security, WS 2008/09, Chapter 9 6

Classification in the OSI reference model

SSL/TLS history
TLS security services and protocol architecture

Classification in the OSI reference model

SSL/TLS history
TLS security services and protocol architecture

Overview

Network Security, WS 2008/09, Chapter 9 7

SSL/TLS History (1)

The Secure Socket Layer (SSL) protocol was originally designed to
primarily protect HTTP sessions.
In the early 1990’s there was a similar protocol called S-HTTP.
However, as S-HTTP capable browsers were not free of charge.
SSL version 2.0 was included in browsers of Netscape
Communications, it quickly became predominant.
SSL v.2 contained some flaws and so Microsoft Corporation
developed a competing protocol called Private Communication
Technology (PCT).
Netscape improved the protocol and SSL v.3 became the de-facto
standard protocol for securing HTTP traffic.

Network Security, WS 2008/09, Chapter 9 8

SSL/TLS History (2)

SSL can be deployed to secure arbitrary applications that run over
TCP.
In 1996 the IETF decided to specify a generic Transport Layer Security
(TLS) protocol that is based on SSL.
The IETF started a working group to define the TLS protocol.
Officially, the protocols SSL, SSH and PCT were announced to be
taken as input.
However, only SSL V.3.0 was really considered.

Network Security, WS 2008/09, Chapter 9 9

SSL/TLS History (3)

TLS V.1.0 was published as an RFC in January 1999 [RFC2246]
Modifications compared to SSL V.3.0 include:

The HMAC construction H(K, p1, H(K, p2, m)) for message integrity was
adopted instead of hashing in prefix and suffix mode H(K, m, K)
The Fortezza based cipher-suites of SSL was removed, as they include an
unpublished technology
A digital signature standard (DSS) based authentication and key exchange
dialogue was included

• DSS uses SHA-1 to compute a fingerprint of a message and El-Gamal as a
signature algorithm.

• The DSS public key gx can be also used for a DH exchange.

Network Security, WS 2008/09, Chapter 9 10

SSL/TLS History (4)

In order to achieve exportability of TLS compliant products, some
cipher-suites specify the use of keys with entropy reduced to 40 bit:

These cipher-suites contain the word “export” in their name
As the government of the USA changed its policy concerning the export of
cryptographic products, this is of less importance today. The use of 40 bits
keys is deprecated

The version presented in this Chapter is TLS V1.1 [RFC4346] ratified
in April 2006.

Network Security, WS 2008/09, Chapter 9 11

SSL/TLS History (5)

TLS V1.2 [RFC5246] was ratified in August 2008.
TLS V1.2 adds more flexibility in the negotiation of the cipher suite.

Provides the ability to negotiate an algorithm for a pseudo-random function
PRF. (PRF in V1.1 was pre-defined and makes use of MD5 and SHA-1).
Adds more algorithms for cryptographic hash values, e.g. SHA-256, SHA-
384, SHA-512.
[RFC5246] combines several documents together, e.g. the definition of the
AES and ECC cipher suites were defined in separate documents for V1.1.

For the newest development of the TLS protocol, please refer to the
Working Group (WG) web site at

http://www.ietf.org/html.charters/tls-charter.html

Network Security, WS 2008/09, Chapter 9 12

Classification in the OSI reference model
SSL/TLS history

TLS security services and protocol architecture

Classification in the OSI reference model
SSL/TLS history

TLS security services and protocol architecture

Overview

Network Security, WS 2008/09, Chapter 9 13

TLS Security Services

Peer entity authentication:
Prior to any communications between a client and a server, an authentication
protocol is performed to authenticate the peer entities and establish a shared secret
key

• Either only client performs authentication of the server
• Or additionally, the server performs authentication of the client

Authentication can be performed based on certificates
• Initially specified public key algorithms for the certificates: RSA and DSS
• ECC was added in [RFC4492]

Authentication based on a long term pre-shared key was added in [RFC4279]
Upon successful completion of the authentication dialogue a TLS session is
established between the peer entities

User data confidentiality:
If negotiated upon session establishment, user data is encrypted
Encryption algorithms: IDEA / DES / 3DES / RC2 in CBC, RC4, null
AES cipher suites was added in [RFC3268]

User data integrity:
A MAC based on a cryptographic hash function is appended to user data
Hash algorithms: MD5, SHA, null

Replay protection

Network Security, WS 2008/09, Chapter 9 14

TLS Sessions and TLS Connections

The TLS protocol negotiates a so-called „TLS session“ with a TLS
handshake.
After the TLS handshake, both communication parties have
established a security context.
It would be useful to re-use this security context for several TCP
connections, in order to gain performance.
This is very important for securing HTTP traffic, as for HTTP 1.0, every
item on a web page is transferred in an individual TCP connection.
TLS can negotiate a TLS sessions with different (parallel or
subsequent) TLS connections.
Furthermore, TLS can guarantee that different keying material for
encryption and data integrity is used for different connections.

Network Security, WS 2008/09, Chapter 9 15

TLS Session & Connection State

TLS Session state:
Session identifier: a byte sequence chosen by the server
Peer certificate: X.509 v.3 certificate of the peer (optional)
Compression method: algorithm to compress data prior to encryption
Cipher spec: specifies cryptographic algorithms and parameters
Master secret: a negotiated shared secret of length 48 byte
Is resumable: a flag indicating if the session supports new connections

TLS Connection state:
Server and client random: byte sequences chosen by server and client
Server write MAC secret: used in MAC computations by the server
Client write MAC secret: used in MAC computations by the client
Server write key: used for encryption by server and decryption by client
Client write key: used for encryption by client and decryption by server

Network Security, WS 2008/09, Chapter 9 16

TLS Protocol Architecture

TLS is structured as a layered and modular protocol architecture:
Handshake: authentication of peers, negotiation of cryptographic
parameters and establishment of a shared secret
Change Cipherspec.: signaling of transitions in ciphering strategy
Alert: signaling of error conditions
Application Data: interface for transparent access to the record protocol
Record:

• Fragmentation of user data
• Compression (optional) of plaintext records
• Encryption and integrity protection (both optional)

TLS Record Protocol

TLS Handshake TLS Change
Cipherspec.

TLS Application
Data

TLS Alert

TCP

Network Security, WS 2008/09, Chapter 9 17

TLS Record Protocol

Record protocol format:

Type:
Change Cipherspec. (20)
Alert (21)
Handshake (22)
Application Data (23)

Version: the protocol version of TLS.
For historical reasons and backwards compatibility, it holds:

• for TLS V1.1 the version value is 3.2
• for TLS V1.0 the version value is 3.1,
• for SSL V3.0 the value is 3.0

Length: the length of the data in bytes

Type Ver. (maj.) Ver. (min.) Length

Length Data

0 23157 31

Network Security, WS 2008/09, Chapter 9 18

TLS Record Protocol Processing (1)

Sending side:
The record layer first fragments user data into fragments of a maximum
length of 214 octets. More than one message of the same content type can
be assembled into one record.
After fragmentation the record data is compressed, the default algorithm
for this is null (~ no compression)
A message authentication code is appended to the record data
The record data and the MAC are encrypted using the encryption
algorithm defined in the negotiated cipherspec (may imply prior padding)

Data

Data fragment MAC Data fragment MAC

encrypted encryptedHeaderHeader

Network Security, WS 2008/09, Chapter 9 19

TLS Record Protocol Processing (2)

Receiving side:
The record is decrypted, integrity-checked, decompressed, de-fragmented and
delivered to the application or TLS higher layer protocol

The MAC appended to the record is computed as follow
HMAC_<hash>(MAC_write_secret,
seq_num || record-type || protocol-version || fragment-length || fragment)

• <hash> denotes the hashing algorithm defined in the negotiated cipherspec
• seq_num is the sequence number for this record.

Notes on the sequence number:
seq_num is not explicitly transmitted, as the underlying TCP offers reliable transport
seq_num is used by TLS for the records and has no correlation with the TCP
sequence number
seq_num is set to zero when a TLS connection is initiated
seq_num is incremented after each record
If seq_num overflows, key re-negotiation is required
However, since seq_num has 64 bits length, it should never overflow

Network Security, WS 2008/09, Chapter 9 20

TLS Handshake Protocol: Introduction

TLS supports different methods for authentication and key establishment.
The highest key in the key hierarchy, from which further keying material can
be derived, is called the pre-master-secret:

RSA:
• The pre-master-secret is randomly generated by the client and sent to the

server encrypted with the servers public key
• ClientKeyExchange is the encrypted pre-master key
• The server does not send a ServerKeyExchange message to the client

Diffie-Hellman:
• a standard Diffie-Hellman exchange is performed
• the established shared secret is taken as pre-master-secret
• ClientKeyExchange and ServerKeyExchange are respectively the (signed) DH

values gx and gy

Ephemeral (temporary) vs. static DH values
The DH secrets may be deleted after the session is over
In this case, the handshake provides perfect forward secrecy.
Alternatively, the DH secrets may be static
This is the case if the server’s (client’s) certificate key algorithm is DH

Network Security, WS 2008/09, Chapter 9 21

Overview of the TLS Handshake Protocol with RSA

Overview:

1. random number,
set of cryptographic suites

2. random number,
Chosen cryptographic suite,
Certificate

3. Key exchange (Pre-master secret)

Generation of the master-secret

4. MAC on all previous messages
5. MAC on all previous messages

Note: 3 and 4 are actually sent together to reduce latency
the TLS handshake requires two round trips

Client Server

1

2

3

Key Generation Key Generation

4

5

Network Security, WS 2008/09, Chapter 9 22

Overview of the TLS Handshake Protocol with DH

Overview:

1. random number,
set of cryptographic suites

2. random number,
Chosen cryptographic suite,
Certificate
Key exchange (DH value)

3. Key exchange (DH value)

Generation of the master-secret

4. MAC on all previous messages
5. MAC on all previous messages

Note: In TLS message 2, “Key exchange” is sent only if the protocol is used
with DH.

Client Server

1

2

3

Key Generation Key Generation

4

5

Network Security, WS 2008/09, Chapter 9 23

ClientHello(Ver,Random,
CipherSuite,Compr)

TLS Handshake Protocol – Details (1)

Client Server

ServerHello(Ver,Random,
SessionID,CipherSuite,Compr)

[ServerCertificate]
[CertificateRequest]

[ServerKeyExchange]
ServerHelloDone

[ClientCertificate]
ClientKeyExchange
[CertificateVerify]

ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

[...] denotes optional messages

1

2

3

4

5

Network Security, WS 2008/09, Chapter 9 24

TLS Handshake Protocol – Details (2)

The initial handshake is not protected, since the client and server do not share
a secret, nor have they negotiated a cipher spec
The ServerCertificate message is sent by the server in all cases where the
server needs to be authenticated

which is always the case except for anonymous key establishment
The CertificateRequest message is sent by the server in case the client is also
authenticated using a certificate
The ServerKeyExchange message is sent by the server

only in case of a Diffie-Hellman key exchange
and only if the server’s certificate does not contain sufficient information about the
Diffie-Hellman public key

The ChangeCipherSpec messages sent respectively by the client and the
server in the the initial handshake indicate that from now on the rest of the
communication is protected
The “Finished” message is the first protected message with the just negotiated
algorithms and keys
The “Finished” messages enable both the client and the server to verify that
the key exchange and authentication processes were successful

Network Security, WS 2008/09, Chapter 9 25

TLS Handshake Protocol: Key Exchange

Possible combinations for key exchange algorithm and server’s
certificate key algorithm

Diffie-Hellman key. No certificate. No authentication is performed.
In this case man-in-the-middle attacks can not be defended

DH_anon

a static Diffie-Hellman value signed by a RSA keyDH_RSA

a static Diffie-Hellman value signed by a DSS keyDH_DSS

Ephemeral DH values signed using a RSA keyDHE_RSA

Ephemeral DH values signed using a DSS keyDHE_DSS

•The client generates the pre-master-secret and encrypts it with the
server‘s RSA public key
•The RSA key included in the server’s certificate is used for
encrypting the pre-master secret

RSA
Key Exchange Notation

Network Security, WS 2008/09, Chapter 9 26

TLS Handshake Protocol: Generation of The Master-Secret

The pre-master-secret and the random numbers provided by the client
and the server in their hello-messages are used to generate the
master- secret of length 48 byte
Computation of the master secret:

master_secret =
PRF(pre_master_secret, "master secret", ClientHello.random +
ServerHello.random)

where:
• PRF is a pseudo-random function that generates an output of arbitrary length,
• “master secret” is the string “master secret”

PRF is defined in [RFC4346] Section 5
PRF makes use of HMAC with MD5 as well as HMAC with SHA-1 as hash
functions
The use of both MD5 and SHA-1 is considered to provide security even in
case that one of the cryptographic hash functions is “broken”

Network Security, WS 2008/09, Chapter 9 27

TLS Handshake Protocol: Authentication with RSA-based Exchange

Server authentication:
The client verifies the server’s certificate and encrypts the pre-master-secret with the
server’s public key provided with the certificate
The client knows that only the server can decrypt the pre-master-secret
The pre-master-secret is required to compute the master-secret
The master-secret is used to compute a verify_data value included in the ”Finished”
message

• verify_data = PRF(master_secret, finished_label, MD5(handshake_messages)
+ SHA-1(handshake_messages))

• finished_label is the string “client finished” for the Client’s Finished messages
and “server finished” for the Servers’ Finished messages

Thus, when the server sends the correct Finished message to the client, the client
can deduce server-authenticity

Client authentication
The server can not deduce any client authenticity from the received pre-master-
secret
If client authenticity is required, the client additionally sends its certificate and a
CertificateVerify message that contains a signature over a hash (MD5 or SHA) of the
master-secret and all handshake messages exchanged before the CertificateVerify
message

Network Security, WS 2008/09, Chapter 9 28

TLS Handshake Protocol: Authentication with DH-based Exchange

Server authentication
The server can

1) either supply a certificate containing fixed Diffie-Hellman parameters
2) or use the “server key exchange” message to send a set of temporary

(ephemeral) Diffie-Hellman parameters signed with a DSS or RSA certificate.
In this case, temporary parameters are hashed with the hello.random values
before signing to ensure that attackers do not replay old parameters.

In either case, the client can verify the certificate (1) or signature (2) to
ensure that the parameters belong to the server.

Client authentication
If the client has a certificate containing fixed Diffie-Hellman parameters, its
certificate contains the information required to complete the key exchange
and client authentication.
Note that in this case the client and server will generate the same Diffie-
Hellman result (i.e., pre-master-secret) every time they communicate.
However, the master-key will be different, since the hello.random value are
used to compute the master-key.

Network Security, WS 2008/09, Chapter 9 29

TLS Handshake Protocol: Generation of Session Keys

TLS requires several sessions keys for the encryption and data integrity
of the application data (and TLS higher layer protocols) in both
directions
To compute the session keys, a sufficient amount of keying material is
generated from the master-secret and the client’s and server’s random
numbers in a first step:

key_block = PRF(master_secret, "key expansion", server_random + client_random);

Then, the session keying material is truncated consecutively from the
key_block:

client_write_MAC_secret
server_write_MAC_secret
client_write_key
server_write_key

Network Security, WS 2008/09, Chapter 9 30

TLS Handshake Protocol: Abbreviated Handshake (1)

A TLS session can be negotiated to be “resumable”:
Resuming and duplicating TLS sessions allows to re-use established
security context for several TCP connections
As mentioned above, this is very important for securing HTTP traffic, as for
HTTP 1.0, every item on a web page is transferred in an individual TCP
connection.
When resuming / duplicating an existing session, an abbreviated
handshake is performed

Network Security, WS 2008/09, Chapter 9 31

TLS Handshake Protocol: Abbreviated Handshake (2)

Client Server

ClientHello
(Random,SessionID)

ServerHello(Random,
SessionID)

ChangeCipherSpec
Finished(MAC)ChangeCipherSpec

Finished(MAC)

If the server finds the sessionID and decides to resume the session, it answers
immediately with the „ChangeCipherSpec” and “Finished” messages
If the server can not resume / decides not to resume the session it answers with
the full handshake
If the server decides to resume, new keying material is generated using the new
random values

key_block = PRF(master_secret, "key expansion", server_random + client_random);
The Finished messages are protected with the freshly generated keying
material and include a MAC of all the previous abbreviated handshake
messages

Network Security, WS 2008/09, Chapter 9 32

SSL/TLS Alert Protocol

Used to transmit errors and exceptions
Here is an non-extensive list of exceptions and error cases
(please refer to [RFC4346] Section 7.2 for the complete list)

closed_notify: used to initiate the closure of the TLS session
• This is needed to avoid truncation attacks

unexpected_message
bad_record_mac
decryption_failed
record_overflow
bad_certificate
unknown_ca
…

Network Security, WS 2008/09, Chapter 9 33

SSL/TLS Change Cipherspec Protocol

The change cipher spec protocol is used to signal transitions in
ciphering strategies.
The protocol consists of a single message “ChangeCipherSpec”,
which is encrypted and compressed under the current (not the
pending) connection state

Network Security, WS 2008/09, Chapter 9 34

TLS Cipher-Suites (1)

Cipher suites: a set of pre-defined cryptographic algorithms
More than 50 different cipher suites are defined for TLS V1.1
Notation

Prefix: “TLS_”
Consists of 2 selectors

• Key exchange algorithm
• Algorithms for protection with the Record protocol

separated by „_WITH_“
Example: TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA

DHE_RSA:
• Key exchange with Ephemeral Diffie-Hellman,
• Authentication with RSA certificate

(i.e. the RSA public key is used to sign the DH value)
3DES_EDE_CBC: Encryption with 3DES in CBC mode
(EDE means „Encryption Decryption Encryption“, which is the usual
operation for 3DES that we have seen)
Message integrity is provided by SHA-1

Network Security, WS 2008/09, Chapter 9 35

TLS Cipher-Suites (2)

Note:
this list is not extensive. For more cipher specs, please refer to [RFC4346]
and other related documents on
http://www.ietf.org/html.charters/tls-charter.html
These cipher-suites, of course, do not need to be memorized and are
listed here only to illustrate the flexibility of the TLS protocol

No protection (initial suite):
CipherSuite TLS_NULL_WITH_NULL_NULL = { 0x00,0x00 }

Server provides an RSA key suitable for encryption:
TLS_RSA_WITH_NULL_MD5 = { 0x00,0x01 }
TLS_RSA_WITH_NULL_SHA = { 0x00,0x02 }
TLS_RSA_EXPORT_WITH_RC4_40_MD5 = { 0x00,0x03 }

• deprecated
TLS_RSA_WITH_RC4_128_MD5 = { 0x00,0x04 }
TLS_RSA_WITH_RC4_128_SHA = { 0x00,0x05 }
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 = { 0x00,0x06 }
TLS_RSA_WITH_IDEA_CBC_SHA = { 0x00,0x07 }
TLS_RSA_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x08 }
TLS_RSA_WITH_DES_CBC_SHA = { 0x00,0x09 }
TLS_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x0A }

Network Security, WS 2008/09, Chapter 9 36

TLS Cipher-Suites (3)

Cipher-Suites with an authenticated DH-Key-Exchange
TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x0B }

• deprecated
TLS_DH_DSS_WITH_DES_CBC_SHA = { 0x00,0x0C }
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA = { 0x00,0x0D }
TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x0E }

• deprecated
TLS_DH_RSA_WITH_DES_CBC_SHA = { 0x00,0x0F }
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x10 }
TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x11 }
TLS_DHE_DSS_WITH_DES_CBC_SHA = { 0x00,0x12 }
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA = { 0x00,0x13 }
TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x14 }

• deprecated
TLS_DHE_RSA_WITH_DES_CBC_SHA = { 0x00,0x15 }
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x16 }

Network Security, WS 2008/09, Chapter 9 37

TLS Cipher-Suites (4)

The use of the following cipher-suites without any entity authentication is
discouraged, as they are vulnerable to man-in-the-middle attacks:

TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA = { 0x00,0x19 }
TLS_DH_anon_WITH_DES_CBC_SHA = { 0x00,0x1A }
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA = { 0x00,0x1B }

AES cipher suites with 128 bit key length
TLS_RSA_WITH_AES_128_CBC_SHA = { 0x00, 0x2F }
TLS_DH_DSS_WITH_AES_128_CBC_SHA = { 0x00, 0x30 }
TLS_DH_RSA_WITH_AES_128_CBC_SHA = { 0x00, 0x31 }
TLS_DHE_DSS_WITH_AES_128_CBC_SHA = { 0x00, 0x32 }
TLS_DHE_RSA_WITH_AES_128_CBC_SHA = { 0x00, 0x33 }
TLS_DH_anon_WITH_AES_128_CBC_SHA = { 0x00, 0x34 }

AES cipher suites with 256 bit key length
TLS_RSA_WITH_AES_256_CBC_SHA = { 0x00, 0x35 }
TLS_DH_DSS_WITH_AES_256_CBC_SHA = { 0x00, 0x36 }
TLS_DH_RSA_WITH_AES_256_CBC_SHA = { 0x00, 0x37 }
TLS_DHE_DSS_WITH_AES_256_CBC_SHA = { 0x00, 0x38 }
TLS_DHE_RSA_WITH_AES_256_CBC_SHA = { 0x00, 0x39 }
TLS_DH_anon_WITH_AES_256_CBC_SHA = { 0x00, 0x3A }

Network Security, WS 2008/09, Chapter 9 38

Datagram TLS (DTLS) (1)

SSL/TLS was originally designed to run on top of TCP
Datagram TLS (DTLS) is a new protocol defined in [RFC4347] that can
be used on top of unreliable transport protocols, such as UDP
DTLS is already supported by the open source implementation of TLS:
OpenSSL
DTLS is very similar to TLS.
Therefore, [RFC4347] refers to the TLS specification and specifies
only the differences to TLS.

Network Security, WS 2008/09, Chapter 9 39

Datagram TLS (DTLS) (2)

DTLS provides
an unreliable transport for application payload.
replay protection with an explicit sequence number that is included in the
record header, since message re-ordering, message duplication and
message loss are possible
protection against Denial-of-Service attacks

• TLS operates on TCP. Therefore, the IP address of the client is known by the
time the TLS handshake is initiated.

• This reduces the potential for DoS attack.
• Note however: TCP SYN attacks are still possible (see later in this lecture)
• DTLS supports protection against DoS attacks with cookies similar to IKEv2

DTLS needs to take care of a re-transmitting its own control messages
(e.g. DTLS handshake messages) since the underlying transport
protocol does not provide it.
For more details about the differences between TLS and DTLS, please
refer to [RFC4347]

Network Security, WS 2008/09, Chapter 9 40

TLS - Summary

TLS TLS

TLS provides
server authentication and eventually also client authentication
key establishment and negotiation of cryptographic algorithms
data integrity, confidentiality and replay protection

a TLS session can be used to protect several TCP connections
TLS consists of a record protocol, handshake protocol, change cipher
spec protocol and alert protocol
DTLS is a similar protocol to TLS with some extensions and
modifications that are required due to the unreliable transport

TCP

TCP

Network Security, WS 2008/09, Chapter 9 41

Additional References

[FKK96a] A. O. Freier, P. Karlton, P. C. Kocher. The SSL Protocol Version 3.0.
Netscape Communications Corporation, 1996.

[RESC01] E. Rescorla, „SSL and TLS – Designing and Building Secure
Systems“. Addison – Wesely. 2001

[RFC3268] P. Chown, “AES Ciphersuites for TLS”, RFC 3268, 2002
[RFC4279] P. Eronen, H. Tschofenig. “Pre-Shared Key Ciphersuites for

Transport Layer Security (TLS) ”. RFC 4279, 2005
[RFC4346] T. Dierks, E. Rescorla. “The TLS Protocol Version 1.1”. RFC 4346,

2006
[RFC4347] E. Rescorla. N. Modadugu “Datagram Transport Layer Security”. RFC

4347, 2006
[RFC4492] S. Blake-Wilson, et al, “Elliptic Curve Cryptography (ECC) Cipher

Suites for Transport Layer Security (TLS)”, RFC 4492, 2006
[RFC5246] T. Dierks, E. Rescorla, “The Transport Layer Security (TLS) Protocol

Version 1.2”, RFC 5246, August 2008.

Chair for Network Architectures and Services
Department of Informatics
TU München – Prof. Carle

Appendix

IPSec vs. TLS
a comparison

Network Security, WS 2008/09, Chapter 9 43

IPSec vs. TLS (1)

Both protocols provides the following security services:
Peer-authentication
Confidentiality
Message integrity
Replay protection

Protocol components and equivalence/similarity between them
IPSec consists of several protocols; AH, ESP und IKE(v1/v2)
TLS is basically a single protocol, although different message categories
are called protocols: the Record protocol, the Handshake Protocol,
Change cipher suite protocol and Alert protocol
The TLS Handshake Protocol, Change Cipher Suite Protocol and Alert
Protocol provide similar functionality to IKEv2
The TLS Record protocol provides similar functionality for application data
as IPSec “AH and ESP” protocols provide for IP traffic

Network Security, WS 2008/09, Chapter 9 44

IPSec vs. TLS (2)

Scope of the protection: End points of the „secure channel“
TLS operates end-to-end between two applications
IPSec can operate end-to-end between two hosts, middle-to-middle (i.e. gateway-
to-gateway) or end-to-middle (host-to-gateway)

Scope of the protection: Protocol headers
TLS protects only the payload of the application. It does not protect the transport
header. It does not protect the IP header.
IPSec protects the application payload, the transport header and the IP header
(except if ESP is used in transport mode without AH. In this case, the IP header is
not protected)

Scope of the protection: data flows to be protected
TLS is used to establish a “secure channel”, which can protect several subsequent
TCP connections
IPSec can be used to protect several data flows between two hosts A and B.
For each data flow to be protected, usually four security associations are required
The data flows to be protected are defined by so-called traffic selectors, which
consist of the source/destination IP address and port numbers and the transport
protocol, e.g. TCP or UDP

Network Security, WS 2008/09, Chapter 9 45

IPSec vs. TLS (3)

Terminology: Client and Server vs. Initiator and Responder
In IKEv2, the terminology used for the communication partners is “Initiator”
and “Responder”. In TLS “Client” and “Server”.
Note however, that in many environments where IKEv2 is used, there is a
“client” behind the “Initiator” and a “server” behind the “Responder”, e.g. a
VPN client connecting to a VPN gateway.

Multiplexing of „secure channels“
IKEv2 negotiates an IKE_SA, which can be used to negotiate several
CHILD_SAs that are used to protect the data traffic
TLS negotiates an initial connection. Based on it further connections can
be negotiated if the session is resumable.

Network Security, WS 2008/09, Chapter 9 46

IPSec vs. TLS (4)

Mutual authentication
IKEv2 and TLS provide both mutual authentication.
However, mutual authentication is a “MUST” in IKEv2 whereas in TLS it is
allowed (and even very common) that the server is authenticated while the
client is not authenticated

Authentication with a long-term pre-shared secret
IKEv2 allows for peer authentication using a long-term shared secret.
This option has been added to TLS recently [RFC4279]

Authentication messages and fields
Authentication in TLS is performed either based on the signed
KeyExchange messages (in case of a DH key exchange) or the “Finished”
message (in case of RSA key exchange)
Authentication in IKEv2 is performed based on the AUTH-Payload

Perfect forward secrecy
IKEv2 provides perfect forward secrecy, if the KE value in the
IKE_SA_INIT exchange are used only once
TLS provides perfect forward secrecy only if ephemeral DH exchange is
used

Network Security, WS 2008/09, Chapter 9 47

IPSec vs. TLS (5)

Cryptographic properties: Certificate key algorithms
IKEv2 does not specify the public key algorithms to be used in case of
authentication is performed via certificates, as the certificate specifies the public key
algorithm
TLS specifies explicitly which algorithms to be used. Currently: RSA, DSS and ECC

Cipher suite: negotiation
In both cases, the client/Initiator sends a set of proposed cipher suites, and the
server/Responder chooses one of them,
i.e. the negotiation of the cipher suite can occur usually in a single round trip

Cipher suite: encoding
IPSec uses a hierarchy “SA payload proposals protocols transforms
attributes” to encode a cipher suite
TLS uses a single value to encode a cipher suite

Supported transport protocols
IPSec protects the IP packet and does not care about the transport protocol
TLS runs on top of TCP
DTLS runs on top of UDP and other unreliable transport protocols.
TLS and DTLS are different protocols (although similar)
However, implementation of TLS might support DTLS easily,
e.g. OpenSSL supports both

Network Security, WS 2008/09, Chapter 9 48

IPSec vs. TLS (6)

Cryptographic properties: Generation of keying material: equivalence
and similarity in the key hierarchy:

The exchanged DH key (gxy = KEi * KEr) in IKEv2 plays a similar role as the
pre-master key in TLS in the key hierarchy
SKEYSEED in IKEv2 plays a similar role as the master-secret TLS.

• Both are respectively the second keys in the key hierarchy
• In both cases fresh random numbers are involved in the computation
• Keying material for a TLS session key_block is derived from the master-secret
• Keying material {SKd,....} in IKEv2 is derived from SKEYSEED

Cryptographic properties: Pseudo-random function
The pseudo-random functions prf is negotiated dynamically in IKEv2
during the IKE_SA_INIT exchange
The pseudo-random function PRF in TLS is defined in the standard and
includes both HMAC_MD5 and HMAC_SHA-1
Dynamic negotiation of the PRF function will be included in TLS V1.2

Network Security, WS 2008/09, Chapter 9 49

IPSec vs. TLS (7)

Sequence numbers for replay protection
Both protocols provide replay protection
In TLS the sequence number is not carried explicitly, since a reliable
transport is assumed with TCP.
In AH/ESP the sequence number is carried explicitly in the AH/ESP
header
In DTLS, the sequence number is carried explicitly as well, since no
reliable transport is assumed

Protection against DoS attacks
IKEv2 provides protection against DoS attacks using cookies
TLS does not provide protection against DoS attacks, since it runs on top
of TCP
DTLS provides DoS protection using cookies, similar to IKEv2

Network Security, WS 2008/09, Chapter 9 50

IPSec vs. TLS (8)

Administrative issues: root access
The configuration of IPSec policies on a host or a router requires
administrative access (e.g. root)
TLS on the contrary can be used by any application and does not require
administrative access

Administrative issues: Issues with firewalls and NATs
IPSec has incompatibility issues with middleboxes such as firewalls und
NATs, since such devices examine and possibly manipulate the IP header
and the transport header
Note:

• Incompatibility issues with NATs can be resolved by UDP encapsulation of the
protected IP traffic

• Incompatibility issues with firewalls are resolved if the firewall is co-located with
the IPSec end point

TLS can operate well in the presence of firewalls and NATs (as long as the
port numbers used by the application are not blocked by the firewall), since
the IP header and the transport header are not modified by TLS

Network Security, WS 2008/09, Chapter 9 51

IPSec vs. TLS (9)

Applications
IPSec can be used to

• build VPNs
• protect a wireless connection in case no secure protocol at the link layer can be

provided
• protect any kind of data traffic between at the IP layer

TLS can be used for securing HTTP traffic and any other application’s
traffic
TLS is getting more popular to be used for VPNs due to its flexibility.
Especially the administrative issues of IPSec mentioned above make TLS
more attractive to use for building VPNs

• e.g. the open source VPN solution OpenVPN is based on TLS
One can say that IPSec and TLS are concurrent solutions for building
VPNs
Both IPSec and TLS in turn compete with other VPN solutions,
e.g. OpenSSH or L2TP

