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Cryptographic Protocols

Definition:
A cryptographic protocol is defined as a series of steps and message 
exchanges between multiple entities in order to achieve a specific 
security objective
Properties of a protocol (in general):

Everyone involved in the protocol must know the protocol and all of the 
steps to follow in advance
Everyone involved in the protocol must agree to follow it
The protocol must be unambiguous, that is every step is well defined and 
there is no chance of misunderstanding
The protocol must be complete, i.e. there is a specified action for every 
possible situation

Additional property of a cryptographic protocol:
It should not be possible to do or learn more than what is specified in the 
protocol
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Applications of Cryptographic Protocols

Key establishment
Authentication

Data origin authentication
Entity authentication

Authenticated key establishment
Data integrity
Confidentiality

Secret sharing
Key escrow (ensuring that only an authorized entity can recover keys)
Zero-Knowledge proofs (proof of knowledge of an information without revealing the 
information)
Blind signatures (useful for privacy-preserving time-stamping services)
Secure elections
Electronic money

treated in 
this course
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Data Origin Authentication - Data Integrity

Definitions:
Data integrity is the security service that enable to verify that a message has not 
been altered by unauthorized entities.
Data origin authentication is the security service that enables entities to verify that a 
message has been originated by a particular entity and that it has not been altered 
afterwards. Therefore, in contrast to the data integrity service, data origin 
authentication necessarily involves identifying the source of a message.

Data origin authentication implies data integrity
Although it is possible to achieve data integrity without data origin 
authentication, they are normally achieved by the same mechanisms

By the application of a cryptographic hash function with a digital signature and 
appending the signed hash value to the message
By the use of MAC that is appended to the message 

Data integrity of messages exchanged is a fundamental building block to 
cryptographic protocols
Without data integrity, hardly any security goal can be achieved
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Entity Authentication

Definition:
Entity authentication is the security service that enables  
communication partners to verify the identity of their peer entities.
Entity authentication is the most fundamental security service, as all 
other security services build upon it
In general it can be accomplished by various means:

Knowledge: e.g. passwords
Possession: e.g. physical keys or cards
Immutable characteristic: e.g. biometric properties like fingerprint, etc.
Location: evidence is presented that an entity is at a specific place 
(example: people check rarely the authenticity of agents in a bank)
Delegation of authenticity: the verifying entity accepts that somebody who 
is trusted has already established authentication

In communication networks, direct verification of the above means is 
difficult or insecure which motivates the need for cryptographic
protocols
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Problem Statement (1)

Alice BobEve

(c.f. Niels Ferguson, Bruce Schneier: Practical Cryptography, Ch 8, 
pp. 111ff)
Goal

This chapter illustrates the functionality of a “secure channel” between two 
parties Alice and Bob, provided by a simple security protocol, the so-called 
secure channel algorithm.
The functionality of this secure channel is a good start for understanding 
the functionality of common security protocols such as IPSec and SSL
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Problem Statement (2)

Assumptions
The channel is bi-directional. i.e. Alice sends messages to Bob and Bob 
sends messages to Alice (almost all communications are bi-directional)
Eve tries to attack the secure channel in any possible way

• Eve can read all of the communication between Alice and Bob and arbitrarily 
manipulate exchanged messages

• Particularly, Eve can delete, insert, or modify exchanged messages.

Requirement
Alice and Bob share a secret session key K that is known only to both of 
them. 
The way how this key is established in discussed in the next Chapter
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Security Properties

Processing
Alice needs to send a sequence of messages (Service Data Units: SDU) 
m1, m2, …
These messages are processed by the secure channel algorithm (i.e. the 
security protocol), which generates PDUs (Protocol Data Units) and sends 
them to Bob
Bob processes the received PDUs using the corresponding secure 
channel algorithm and ends up with a sequence of messages m1‘, m2‘, …
In the ideal case {m1‘, m2‘, … } = {m1, m2, … }
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Security Properties

Security properties of the secure channel algorithm
Eve does not learn anything about the messages mi  except for their timing 
and size
{m1‘, m2‘, … } ≤ {m1, m2, … }
Bob can not prevent Eve from deleting a message in transit 
(and Bob can not prevent message loss neither)
The messages received are in the correct order
There are no duplicate messages, no modified messages and no bogus 
messages sent by someone else other than Alice
Bob knows exactly which messages he has missed
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General Remark

Some protocols have some acknowledgement mechanisms for 
recovering from message loss. 
However, this is not handled by the secure channel, since it would 
make it more complicated.
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Outline

The message processing in the secure channel consists of
Message numbering
Authentication
Encryption

There are two approaches for the order of applying the authentication 
and the encryption to a message
(1) One may either encrypt the message first, and then authenticate the 

obtained cipher text
(2) Or one might authenticate first and then encrypt the message with the 

MAC value together 
(this approach is used subsequently)

Both approaches have advantages and disadvantages
If encryption is applied first (1), Bob can discard bogus messages before 
spending CPU resources on decrypting them
If authentication is applied first (2), the MAC value will be also protected.
Also, the Horton principle: “Authenticate what you mean, not what you 
say” (2)
See [Fer03] for further details on this discussion
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Message Numbering

Message numbers allow Bob to reject replayed messages
They tell Bob which messages got lost in transit
They ensure that Bob receives the messages in their correct order
Messages numbers increase monotonically, 
i.e. later messages have a greater message number
Message numbers have to be unique
i.e. no two messages may have the same message number
A simple message numbering scheme functions as follow

Alice numbers the first message as 1, the second message as 2, etc.
Bob keeps track of the latest message number he has received
Any new message must have a message number that is larger than the 
message number of the previous message
If the message number overflows, 
e.g. message number is an 32-bit integer and the current message is 
232 -1, then Alice needs to stop using the current session key K before it 
can wrap back to 0.
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Authentication/ Encryption

For the data authentication, we need a MAC function, 
e.g. HMAC-SHA-256
With a hash-value of 256 bits the collision rate is extremely low.

The input to the MAC consists of
the message number i
the message mi

extra authentication data xi that is required by Bob to interpret mi , 
e.g., protocol version number, negotiated field size, etc. 
Note: the length of xi must be fix

Let ai := MAC (i || xi || mi )
The way how xi is interpreted is out-of-scope and not a part of the functionality of the 
secure channel algorithm. The secure channel algorithm just considers it as a string
However, the secure channel assures the integrity of xi

For encryption, we need an encryption algorithm, 
e.g. AES in CTR mode with 256 bits (since it is pretty fast and secure)

Frame Format
the message that Alice finally sends to Bob consists of 
message number i, followed by E(mi || ai )
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Initialization of the Secure Channel (1)

The initialization procedure of the secure channel generates 4 different 
keys from the existing shared session key K

An encryption key and an authentication key to send messages from Alice 
to Bob
An encryption key and an authentication key to send messages from Bob 
to Alice
It is strongly recommended not to reuse the same key for different 
purposes

Moreover, the initialization procedure sets the initial message numbers
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Possible Attacks on Secure Channels

If the same key K is used for different purposes, different attacks become possible.
E.g. If K is used for encryption in both directions, then known-plain-text attacks become 
possible:

Since encryption is done with AES in CTR mode
and assuming that Alice and Bob initialize the counter for the generation of the key 
streams ki in the same way (starting with 0 and incrementing by 1 for each
message)
The key stream ki generated for each message mi depends only on K and the 
sequence number i
Therefore, for each sequence number i the same key stream ki will be generated on 
both sides.
If an attacker can guess a plain text mi

then, it can decrypt m’i
m’i || a’i = ci ⊕ c’i ⊕ (mi || ai)

Note: Eve does not need to guess ai

for this attack, since it can perform 
the xor operation only on the first bits
that include mi.

Alice Bob

ci = ( mi || ai ) ⊕ ki

c’i = ( m’i || a’i ) ⊕ ki

Eve
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Initialization of the Secure Channel (2)

Function InitializeSecureChannel
Input: K Key of the channel

R Role: Specified if this party is Alice or Bob
Output S State for the secure channel

// First compute the 4 keys that are needed
KeySendEnc SHA-256 (K || „Enc Alice to Bob“)
KeyRecEnc SHA-256 (K || „Enc Bob to Alice“)
KeySendAuth SHA-256 (K || „Auth Alice to Bob“)
KeyRecAuth SHA-256 (K || „Auth Bob to Alice“)
// The strings „Enc Alice to Bob“, „Enc Bob to Alice“, etc. are simply used to generate different

(uncorrelated) keys.They can be also substitued by other strings, e.g. „A“, „B“, „C“ and „D“.

// Swap the encryption and decryption keys if this party is Bob
If R = „Bob“ then { SWAP (KeySendEnc, KeyRecEnc )

SWAP (KeySendAuth, KeyRecAuth )
}

// Set the send and receive counters to zero. The send counter is the number of the last sent
message. The receive counter is the number of the last received message

(MsgCNTSend, MsgCNTRec ) (0,0)

// Package the state
S (KeySendEnc, KeyRecEnc, KeySendAuth, KeyRecAuth, MsgCNTSend, MsgCNTRec )
return S
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Sending a Message

Function SendMessage
Input: S Secure session state

m message to be sent
x addtional data to be authenticated

Output t data to be transmitted to the receiver
// First check the number and update it
if (MsgCNTSend >= MAX_MSG_NUMBER){

print „MsgCNTSend overflow; re-keying is required“
exit

}
MsgCNTSend MsgCNTSend + 1
i MsgCNTSend

// Compute the authentication
a HMAC-SHA-256 (KeySendAuth , i || x || m )
// Generate key stream k
k E(KeySendEnc, nonce || 0 ) || E(KeySendEnc, nonce || 1 ) || ...           
// the message number i can be used as nonce as this would garantee
// that (nonce || block-number) will be unique each time E is applied

// Form the final text (i is an integer of 4 bytes length)
ma m||a

t i || (ma ⊕ first-lenght(ma)-bytes(k) )
return t
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Receiving a Message

Function ReceiveMessage
Input: S Secure session state

t text received from transmitter
x addtional data to be authenticated

Output m message that was sent
// Split t into i and the encrypted message plus authenticator. 
// This split is unambiguous since i is an integer of 4 bytes length
i || t‘ t
// Generate the key stream, just as the sender did
k E(KeySendEnc, nonce || 0 ) || E(KeySendEnc, nonce || 1 ) || ...           
// Decrypt the message and MAC field, and split. 
// This split is also unambiguous since length of MAC value a is known (in this case 256 bits)
m || a t‘ ⊕ first-lenght(t‘)-bytes(k)
// Recompute the authentication
a’ HMAC-SHA-256 (KeyRecAuth, i || x || m )
if (a‘ ≠ a) {

destroy k, m 
return MsgAuthenticationFailure }

else if ( i <= MsgCNTRec ) {
destroy k, m
return MessageOrderError }

MsgCNTRec i

return m
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Message Reordering during Transmission

The presented algorithm for processing received messages 
guarantees that no message is received twice
However, messages that are re-ordered during transmission, 
otherwise perfectly valid, will be lost
In some situations this can be inefficient, e.g. with IP packets, since 
they can be reordered during transport
We will see that IPSec, the IP security protocol that encrypts and 
authenticate IP packets, deals with this problem by maintaining a 
replay protection window instead of a single counter
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Further Design Criteria

Negotiation of cryptographic algorithms
AES-256 and SHA-256 are just examples in this secure channel
Most security protocols support the negotiation of the cryptographic 
algorithms to be used
This is the case, e.g., for IPSec and SSL
The Kerberos authentication protocol version 4 (which will be explained 
later in this lecture) was based only on DES because DES was considered 
to be secure by the time Kerberos v4 was developed
This flaw was fixed for Kerberos v5
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Further Design Criteria

Multiple communication partners simultaneously
In many cases, Alice wishes to communicate with several partners
simultaneously, e.g. with Bob and Carol
Bob and Carol may use different cryptographic algorithms
Therefore, Alice needs to know how to handle a message received from 
Bob or from Carol.
Each message needs to include a unique identifier for the connection in 
order to facilitate this task
E.g. 

• In IPSec, this identifier is called the Security Parameter Index (SPI)
• In SSL/TLS, there is a so-called Session Identifier (SessionID) 
• (Both IPSec and SSL/TLS will be explained in subsequent chapters of this 

lecture)
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Secure Channels - Conclusions

The secure channel is one of the most useful application of 
cryptography.
Given good encryption and authentication primitives, it is possible to 
construct a secure channel
However, there are a lot of small details to pay attention to
Some applications require encryption 
However, in most cases, authentication is more important 
In fact Eve can cause a lot more damage if she manipulates messages 
and sends bogus messages, than by just listening to the message sent 
by Alice
In practice, the main difficulty frequently is not the secure channel 
itself. 
It can be instead

Establishing the shared secret
Knowing to whom you are talking to Entity authentication
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Problem Statement

Goal
Run a key exchange protocol such that at the end of the protocol:

• Alice and Bob have agreed on a shared „session key“ for a secure channel
• Alice and Bob have agreed on the cryptographic algorithms to be used for the 

secure channel
• Alice (Bob) must be able to verify that Bob (Alice) knows K and that he (she) is 

“alive”
• Alice and Bob must know that K is newly generated
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Entity Authentication or Key Establishment? (1)

Many authentication protocols – as a side effect of the authentication 
exchange - do establish a secret session key for securing the session 
(to be used only for the current session).
Some opinions about the relationship between authentication and key 
establishment:

„It is accepted that these topics should be considered jointly rather 
separately“ [Diff92]
„… authentication is rarely useful in the absence of an associated key 
distribution“ [Bell95]
„In our view there are situations when entity authentication by itself may 
useful, such as when using a physically secured communication channel.“
[Boyd03] 
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Entity Authentication or Key Establishment? (2)

Example
Alice wants to use the online banking service provided by her bank
Alice can perform an online banking session from any terminal using a (secure) 
Internet Browser
The Internet browser authenticates the web server based on the certificate (see 
below) which includes the public key of the web server.

Authentication of the web server: 
• as a consequence of this authentication mechanism, a shared session key KA,B  is 

generated, which can be used for this session (it is important that this session key is 
correctly destroyed when the session is over)

Authentication of the client:
• the web server authenticates Alice based on her PIN number. (As a consequence of the 

successful authentication of Alice, no additional secret key is established.)

This example shows that both cases are common: 
• Entity authentication with key establishment
• Entity authentication without key establishment

The goals of a protocol have to be carefully set up for each application scenario
• Entity authentication • Mutual entity authentication
• Entity auth. with key establishment • Mutual entity auth. with key establishment
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First Try: Key Establishment with Diffie-Hellman

Assume Alice and Bob want to establish a secure channel with a 
shared secret KA,B

The Diffie-Hellman protocol introduced in Chapter 4 is our first 
example of a cryptographic protocol for key exchange. So what’s 
wrong with it?
The problem with a “simple DH exchange” is that a man-in-the-middle 
attack is possible.
Neither Alice nor Bob know after a protocol run with whom they 
actually have exchanged a key
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Second Try: Static Approach

Static Approach for the negotiation of “session keys” and cryptographic 
algorithms 

Keys are manually exchanged. Cryptographic algorithms are agreed on 
personally

Pro’s
Simple, 
session keys are automatically authenticated

Con‘s
Manual process is required (either by a direct meeting or by phone call)
Does not scale for a large set of hosts

symmetric keys would be needed for n entities

Renewing of keys or cryptographic algorithms require another manual 
process
If the key is compromised, all sessions can be compromised (also previous 
recorded sessions!)
Keys are not changed frequently

2
)1(* −nn
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Example: Static Approach in GSM/UMTS Networks

The user mobile phone share a long-term secret key with the home 
network.
The secret key is stored in the SIM card that the user received from his 
provider.

Note: in GSM/UMTS networks, the scalability issue is not severe
A mobile device does not communicate directly with other mobile devices.
Communication takes place between the mobile device and the network 
instead. 
Only n symmetric keys are required (instead of                  keys).

More details on GSM/UMTS security will be provided in a subsequent 
chapter in this lecture.

2
)1(* −nn
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Trusted Third Parties (TTP)

Boyd‘s Theorem [Boyd03]
„Assuming the absence of a secure channel, two entities cannot establish 
an authenticated session without the existence of an entity that can 
mediate between the two and which both parties trust and have a secure 
channel with“.

A TTP is a special entity which has to be trusted by its users
A TTP can significantly reduce the key management complexity
“trusted” means that it is expected to always behave honestly. 
The TTP is assumed to always respond exactly according to the 
protocol specification, and, therefore, will never deliberately 
compromise the security of its clients.
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Key Distribution Centers (KDC)

A KDC is an option for providing authentication and key establishment.
A KDC is a TTP that shares secrets with all entities (an entity may be a 
user or a host)
Alice asks KDC for a secret to (securely) talk to Bob
KDC generates a secret KA,B

Example of KDCs:
The Kerberos protocol is based on a KDC
In fact, a Kerberos server is often called a KDC

Drawbacks: 
KDC can monitor all authentication and key establishment activities.
KDC knows the session key.
KDC needs to be online during the authentication and key establishment 
procedure.
KDC is a potential single-point-of-failure/ bottleneck.
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Public Key Infrastructures (PKI)

A Certificate Authority (CA) asserts the correctness of the certificate by 
signing it with her private key.
CA is a trusted third party (TTP) that is trusted by all the entities.
All entities know the public key of the CA
Since Alice knows CA’s public key, she can verify the signature of 
Bob’s certificate that was generated by CA
See later in this chapter for more details on PKIs
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Trusted Third Parties (TTP) – General Remarks

The TTP is a very powerful entity in this topology. If an attacker 
manages to compromise TTP, he will be in control of the whole 
network!

The TTP may  directly be involved in the authentication procedure, 
which is the case for KDCs

Online TTP

TTP may not be required for the authentication
In case a CA signs the public key of Alice, and Bob knows the public 
key of the CA, he will be able to verify the validity of Alice’s certificate 
that is signed by CA without talking to CA.

Offline TTP (provides more scalability)
However, Certificate Revocation Lists (CRLs) are still required.
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Some Notation... 

Notation Meaning

A

CAA

rA

tA
(m1, ..., mn)

A → B: m

KA, B

Name of A, analogous for B, E, TTP, CA

Certification Authority of A

Random value chosen by A

Timestamp generated by A

Concatenation of messages m1, ..., mn

A sends message m to B

Secret key, only known to A and B

Notation of Cryptographic Protocols (1)
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Some Notation... 

Notation Meaning

KA-pub

KA-priv

{m}K

H(m)

A[m] 

CertCKCA-priv
(KA-pub)

CA<<A>>

Public key of A

Private key of A

Message m encrypted with key K, synonym for E(K, m)

Cryptographic hash value over message m, computed 

with function H

Shorthand notation for (m, {H(m)}KA-priv
)

Certificate of CA for public key KA-pub of A, signed with
private certification key CKCA-priv

Shorthand notation for CertCKCA-priv
(KA-pub) 

Notation of Cryptographic Protocols (2)
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The Needham-Schroeder Protocol (1)

Invented in 1978 by Roger Needham and Michael Schroeder [Nee78]

Roger Needham

Michael Schroeder
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The Needham-Schroeder Protocol (2)

The Needham-Schroeder Protocol is a protocol for mutual 
authentication and key establishment
It aims to establish a session key between two users (or a user and an 
application server, e.g. email server) over an insecure network

The protocol has 2 versions:
The Needham Schroeder Symmetric Key Protocol:

• based on symmetric encryption
• Forms the basis for the Kerberos protocol

The Needham Schroeder Public Key Protocol:
• Uses public key cryptography
• A flaw in this protocol was published by Gavin Lowe 

[Lowe95] 17 years later!
• Lowe proposes also a way to fix the flaw in 

[Lowe95] 

Gavin Lowe
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The Needham-Schroeder Symmetric Key Protocol (1)

Authentication
Server AS

(user data)

1. R
equest T

ick
et, C

hallenge 1

2. R
esponse 1

, S
essi

on Key, T
ick

et

3. Ticket, Challenge2

4. Response2 , Challenge3

User Bob: B

The Needham Schroeder Symmetric Key Protocol - Overview

Long term symmetric key K
AS, B

Long term symmetric key: KAS, A

5. Response3

User Alice: A
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The Needham-Schroeder Symmetric Key Protocol (2)

AS shares symmetric keys with all users, in particular with Alice (KAS,A) and Bob (KAS,B)

1.) A → AS: (A, B, r1)

Alice sends a message to AS with her name und Bob’s name, telling the server she wants to 
communicate with Bob. 

In other words, Alice asks the KDC to supply a session key and a “ticket” for secure 
communication with Bob.

The freshly generated random number r1 is used to authenticate AS and avoid that a man-in-the-
middle is pretending to be AS.

2.) AS → A: {r1, KA,B, B, TicketA,B }KAS,A where TicketA,B = {KA,B, A} KAS,B

AS generates the session key KA,B and sends it to Alice encrypted with KAS,A

AS includes r1 in the encrypted message, so Alice can confirms that r1 is identical to the number 
generated by her in the first step, thus she knows the reply is a fresh reply from AS. 

Furthermore, AS includes a copy of the session key KA,B for Bob included in TicketA,B

Note here that during this protocol run, AS does not communicate directly with Bob

Since Alice may be requesting keys for several different people, the inclusion of Bob's name 
tells Alice who she is to share this key with.



Network Security, WS 2008/09, Chapter 7 44

The Needham-Schroeder Symmetric Key Protocol (3)

Needham-Schroeder protocol definition (continued):

3.) A → B: (TicketA,B ,r2)

Alice forwards the ticket to Bob. 
Bob can decrypt the ticket with KAS,B and get the session key KA,B . 
Since Alice’s name A is included in the ticket, Bob knows that this ticket was granted by AS for 
Alice
In order to verify that Bob is alive, receiving Alice’s messages and has the correct session key 
after message (3), Alice includes a challenge in message (3) which consists of a nonce random 
number r2

4.) B → A: {r3  , r2 - 1}KA,B

After decrypting message (3), Bob calculates (r2 – 1) and includes it in message (4) which is 
encrypted with the freshly generated session key KA,B 

However, Bob still also needs to verify that Alice knows the session key KA,B  and that she is alive 
(otherwise, an attacker could send an “old” ticket pretending to be Alice).
Therefore, Bob must challenge Alice with a new random number r3

5.) A → B: {r3 - 1}KA,B

After decrypting Bob’s message, Alice computes r3 - 1 and answers with message (5)
Bob decrypts the message and verifies that it contains r3 – 1.



Network Security, WS 2008/09, Chapter 7 45

The Needham-Schroeder Symmetric Key Protocol (4)

Discussion:
The Needham-Schroeder Symmetric Key Protocol can be considered as secure (no 
known attacks so far) if the session key KA,B can not be “brute-forced” or discovered 
by an attacker.

However, if an attacker, Eve, can manage to get to know a session key KA,B , she 
can later use this to impersonate as Alice by replaying the message 3:

3’) E → B: (TicketA,B, r2)

4’) B → A: {r3  , r2 - 1}KA,B
, Eve has to intercept this message

Since Eve knows KA,B knows she will be able to decrypt Bob‘s reply 4’) and answers 
with

5’) E → B: {r3 - 1}KA,B

So, if an attacker Eve is able to compromise one session key KA,B , she will be able 
to impersonate Alice in the future even though she doesn’t know KA,TTP

This problem is solved in the Kerberos protocol with timestamps.
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The Needham-Schroeder Symmetric Key Protocol (5)

Note: 
The term „ticket“ was not used in the original description of the Needham-
Schroeder Protocol. [Nee78]
However, it is used here to provide an analogy with the Kerberos protocol.
In the Kerberos protocol, the ticket includes more data than KA,B and A.
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The Needham-Schroeder Public Key Protocol (1)

The Needham-Schroeder Public Key Protocol

Protocol description

Attack published by Gavin Lowe in 1995
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The Needham-Schroeder Public Key Protocol (2)

Assumptions
AS is a trusted server. 
AS knows the public keys of all users
All users know AS‘s public key

Protocol run

1.) A → AS: (A, B)

Alice requests Bob’s public key from AS.

2.) AS → A: { KB-pub , B }KAS-priv

AS asserts that Bob’s public key is KB-pub

3.) A → B: { rA , A }KB-pub

Alice generates a random number rA and sends it to Bob together with her name, 
encrypted with Bob’s public key KB-pub

4.) B → AS: (B, A)

Bob requests Alice’s public key from AS.
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The Needham-Schroeder Public Key Protocol (3)

Needham-Schroeder public key protocol definition (continued):

5.) AS → B: { KA-pub , A }KAS-priv

AS asserts that Alice’s public key is KA-pub

6.) B → A: { rA , rB } KA-pub

Bob generates a random number rB and sends it to Alice together with rA encrypted with KA-pub. 
Thus, Bob proves to Alice that he was able to decrypt message (3) successfully and therefore 
proving his identity to Alice. Here in message (6), Bob challenges also, whether she can decrypt 
the message and extracts rB .

7.) A → B: { rB } KB-pub

Alice decrypts message (6) with her private key, extracts rB and encrypts it with Bob’s public key.
Upon receipt, Bob can verify that rB is correct and thus verify that he is talking to Alice.

At the end of the protocol run, Alice and Bob know each other‘s identities, know both rA ,
rB but rA , rB are not known to eavesdroppers. Therefore, a symmetric session key KA,B 
can be now easily derived on both sides: e.g. KA,B  = H(rA , rB ), where H is cryptographic 
hash function that has been agreed on a priori.
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The Needham-Schroeder Public Key Protocol (4)

Attack:
The Needham-Schroeder Public Key Protocol is vulnerable to a man-in-the-middle 
attack.
If an attacker M can persuade A to initiate a session with him, he can relay the 
messages to B and convince B that he is communicating with A.

For simplicity, we don’t illustrate the communication with AS here, which remains 
unchanged.

3’) A → M: { rA , A }KM-pub

• A sends rA to M, who decrypts the message with KM-priv

3’’) M → B:  { rA , A } KB-pub

• M relays the message to B, pretending that A is communicating

6’) B → M: { rA , rB } KA-pub

• B sends rB

6’’) M → A: { rA , rB } KA-pub

• M relays it to A
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The Needham-Schroeder Public Key Protocol (5)

Attack on the Needham-Schroeder public key protocol (continued):

7’) A → M: { rB } KM-pub

A decrypts rB and confirms it to M, who learns it

7’’) M → B: { rB } KB-pub

M re-encrypts rB and convinces B that he has decrypted it.

At the end of the attack, B falsely believes that A is communicating with him, and that rA
and rB are known only to A and B.
The attack was first described in 1995 by Gavin Lowe [Lowe95]. 
The paper also describes a fixed version of the protocol, referred to as the Needham-
Schroeder-Lowe protocol. The fix involves the modification of message (6)

6.) B → A: { rA , rB } KA-pub

which is replaced with the fixed version
6.) B → A: { rA , rB , B } KA-pub
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Kerberos (1)

Kerberos is an authentication and access control service 
for work-station clusters that was designed at the MIT 
during the late 1980s

Design goals:
Security: eavesdroppers or active attackers should not be able to obtain the 
necessary information to impersonate a user when accessing a service
Reliability: as every use of a service requires prior authentication, Kerberos should 
be highly reliable and available
Transparency: the authentication process should be transparent to the user beyond 
the requirement to enter a password
Scalability: the system should be able to support a large number of clients and 
servers

The underlying cryptographic primitive of Kerberos is symmetric encryption 
(Kerberos V. 4 uses DES, V. 5 allows other algorithms)
A good tutorial on the reasoning beyond the Kerberos design is given in 
[Bry88a], that develops the protocol in a series of fictive dialogues
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Kerberos (2)

The basic usage scenario of Kerberos is a user, Alice, who wants to access one or more 
different services (e.g. AFS, printing server, email server), that are provided by different 
servers S1, S2, ... connected over an insecure network

Kerberos deals with the following security aspects of this scenario:

Authentication: Alice will authenticate to an authentication server (AS) who will 
provide a temporal permit to demand access for services. This permit is called 
ticket-granting ticket (TGT, also called TicketTGS) and is comparable to a temporal 
passport.

Access control: by presenting her ticket-granting ticket (TicketTGS) Alice can demand 
a ticket granting server (TGS) to obtain access to a service provided by a specific 
server S1. The TGS decides if the access will be permitted and answers with a 
service granting ticket (SGS, also called TicketS1) for server S1.

Key exchange: the authentication server provides a session key KA,TGS for 
communication between Alice and TGS and the TGS provides a session key KA,S1

for communication between Alice and S1. The use of these session keys also 
serves for authentication purposes.
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Kerberos (3)

KDC

Authentication
Server AS

(user data)

Ticket Granting
Server TGS

(access data)

1. Request TGT

2. TGT, Session Key KA,TGS

3. Request SGT
4. SGT, Session Key KA,S15. Request Service
6. Service Authenticator

Server

Accessing a Service with Kerberos Version 4 - Protocol Overview

KTGS, S1

KAS, TGS
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Kerberos (4)

At the beginning, the user A logs on at his workstation and requests to access a service:
The workstation represents him in the Kerberos protocol and sends the first 
message to the authentication server AS, containing his name A, a timestamp tA , 
the name of an appropriate ticket granting server TGS and the requested ticket 
lifetime:
1.) A → AS: (A, tA ,TGS, RequestedTicketLifetimeTGS)

AS looks up A and his password in the user’s database, generates the master key KA,AS
out of A’s password (KA,AS = MD5(PasswordA)), extracts the workstation IP address
AddrA, creates a ticket granting ticket TicketTGS and a session key KA,TGS, and sends the 
following message to A:

2.) AS → A: {KA,TGS, TGS, tAS, LifetimeTicketTGS, TicketTGS}KA,AS

with TicketTGS = {KA,TGS, A, AddrA, TGS, tAS, LifetimeTicketTGS}KAS,TGS

Upon receipt of this message, the workstation asks user A to type in her password, 
computes the key KA,AS from it, and uses this key to decrypt the message. If Alice does 
not provide her “authentic” password, message (2) can not be decrypted correctly and 
the protocol run will fail.
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Kerberos (5)

Alice creates a so-called authenticator and sends it together with the ticket-granting 
ticket and the server name S1 to TGS:

3.) A → TGS: (S1, TicketTGS, AuthenticatorA,TGS)

with AuthenticatorA,TGS = {A, AddrA, t’A}KA,TGS

With the Authenticator, A can prove to TGS that she knows the secret KA,TGS

In order to counter reply attacks, a fresh timestamp t’A is included in the 
Authenticator.

An authenticator must be used only once.

Upon receipt, TGS decrypts TicketTGS, extracts the session key KA,TGS and uses this key 
to decrypt AuthenticatorA,TGS. 

If the name and address in the authenticator and in the ticket are matching and the 
timestamp t’A is still fresh (not older than 5 minutes), it checks if A may access the 
service S1 based on the access policies database and creates the following message:

4.) TGS → A: {KA,S1, S1, tTGS, TicketS1}KA,TGS

with TicketS1 = {KA,S1, A, AddrA, S1, tTGS, LifetimeTicketS1}KTGS,S1
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Kerberos (6)

Alice decrypts the message and does now hold a session key for secure 
communication with S1. She now sends a message to S1 to show him her 
ticket and a new authenticator:

5.) A → S1: (TicketS1, AuthenticatorA,S1)
with AuthenticatorA,S1 = {A, AddrA, t’’A}KA,S1

Here, the Authenticator is used to counter replay attacks.

Upon receipt, S1 decrypts the ticket with the key KTGS,S1 he shares with TGS
and obtains the session key KA,S1 for secure communication with A. Using this 
key he checks the authenticator and responds to A:

6.) S1 → A: {t’’A + 1}KA,S1

By decrypting this message and checking the contained value, Alice can verify 
that she is really communicating with S1, as only he (besides TGS) knows the 
key KTGS,S1 required to decrypt TicketS1 which contains the session key KA,S1, 
and so only he is able to decrypt AuthenticatorA,S1 and to answer with t’’A + 1 
encrypted with KA,S1
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Multiple Domain Kerberos (1)

Consider an organization with workstation clusters on two different 
sites, and imagine that user A of site 1 wants to use a server of site 2:

If both sites do use their own Kerberos servers and user databases 
(containing passwords) then there are in fact two different domains, also 
called realms in Kerberos terminology.
In order to avoid that user A has to be registered in both realms, Kerberos 
allows to perform an inter-realm authentication.

Inter-realm authentication requires, that the ticket granting servers of 
both domains share a secret key KTGS1,TGS2

The basic idea is that the TGS of another realm is viewed as a normal 
server for which the TGS of the local realm can hand out a ticket.
After obtaining the ticket for the remote realm, Alice requests a service 
granting ticket from the remote TGS 
However, this implies that remote realm has to trust the Kerberos 
authentication service of the home domain of a “visiting” user!
Scalability problem: n realms require n × (n -1) / 2 secret keys!
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Multiple Domain Kerberos (2)

Kerberos

Authentication
Server

(user data)

Ticket Granting
Server

(access data)

1. Request TGT

2. TGT, Session Key

3. Request TGTrem
4. TGTrem, Session Key

5. Request SGT

6. SGT, Session Key

Server

8. Serv ice Authenticator

7. R
equest Serv ice

Kerberos

Authentication
Server

(user data)

Ticket Granting
Server

(access data)

Realm 1

Realm 2

KTGS1, TGS2



Network Security, WS 2008/09, Chapter 7 62

Multiple Domain Kerberos (3)

Messages exchanged during a multiple domain protocol run:
1.) A → AS1: (A, tA ,TGS1, RequestedTicketLifetimeTGS)

2.) AS1 → A: {KA,TGS1, TGS1, tAS, LifetimeTicketTGS1, TicketTGS1}KA

with TicketTGS1 = {KA,TGS1, A, AddrA, TGS1, tAS, LifetimeTicketTGS1}KAS1,TGS1

3.) A → TGS1: (TGS2, TicketTGS1, AuthenticatorA,TGS1)
with AuthenticatorA,TGS1 = {A, AddrA, t’A}KA,TGS1

4.) TGS1 → A: {KA,TGS2, TGS2, tTGS1, TicketTGS2}KA,TGS1

with TicketTGS2 = {KA,TGS2, A, AddrA, TGS2, tTGS1, LifetimeTicketTGS2}KTGS1,TGS2

5.) A → TGS2: (S2, TicketTGS2, AuthenticatorA,TGS2)
with AuthenticatorA,TGS2 = {A, AddrA, t’’A}KA,TGS2

6.) TGS2 → A: {KA,S2, S2, tTGS2, TicketS2}KA,TGS2

with TicketS2 = {KA,S2, A, AddrA, S2, tTGS2, LifetimeTicketS2}KTGS2,S1

7.) A → S2: (TicketS2, AuthenticatorA,S2)
with AuthenticatorA,S2 = {A, AddrA, t’’’A}KA,S2

8.) S1 → A: {t’’’A + 1}KA,S1
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Kerberos V.4 Pro’s and Con’s (1)

Advantages of Kerberos V.4
Simpler than V.5 and provides high performance due to hard coding of the 
parameters
But: ticket lifetimes are encoded in 1 byte (i.e. 256 different possible 
values) with 5 minutes as the smallest unit

The maximal ticket lifetime is 21 hours and 20 minutes

Disadvantages of Kerberos V.4
Hard encoding of the parameters can also cause many limitations.
Offline dictionary attacks on user passwords can easily be mounted by 
simply requesting a ticket granting ticket for some user from the AS, which 
is then encrypted with this user’s guessed master key.
Only DES is available for encryption.
Only IP (and only IPv4) is supported
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Kerberos V.4 Pro’s and Con’s (2)

Maximum ticket lifetime is about 21 hours. This is insufficient for some 
long running applications
Tickets can only be used from one host (delegation of rights is not 
possible)
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Kerberos V.5 (1)

Encoding
Kerberos V.5 uses ASN.1 syntax which is more flexible than binary hard-
coded type length
e.g.

HostAddress ::= SEQUENCE {
addr-type[0] INTEGER,
address[1] OCTET STRING 

}

Ticket lifetimes
Kerberos V.5 allows for much longer ticket lifetimes, since time encoding in 
ASN.1 allows for times until Dec 31, 9999.
Since it would useful to invalidate Kerberos tickets that have a long 
lifetime, an additional management of the tickets is required.

• E.g. in case employee X has left the company and had root access.

Kerberos V5 offers the option that tickets can be re-validated by the KDC 
with a fresh timestamp before they can be re-used.
The new ticket lifetime features render the management of master key 
versions at the KDC more complicated than in V.4
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Kerberos V.5 (2)

Delegation of rights
In contrast to Kerberos V.4, in V.5 Alice can request that multiple network 
addresses should be included in the ticket or no address at all, which 
means that it can be used from any user’s address
This is useful, e.g. if the user wants to execute some batch scripts even if 
he is not logged in, e.g. for periodic backups
It is a policy decision if the KDC issues such tickets, and if a service 
accepts tickets from specific addresses or not.
The KDC can log all delegation events and can provide an audit trail in 
case of a security compromise of a service.

This access control model provides for a lot of flexibility but is also 
inherently dangerous if not configured correctly.
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Kerberos V.5 (3) 

Some improvements of cryptographic primitives
The master key is a hash function of Alice’s password and the realm 
name.
Kerberos V.5 also allows DES and permits new modes which should 
provide confidentiality and integrity protection.
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Kerberos - Evading password guessing attacks

In Kerberos v4, any user, or attacker Mallory, can request a ticket for Alice.
Mallory can not immediately decrypt the message (2) received from AS, since 
she does not know Alice’s master key KA

However, since the algorithm how KA, is derived from Alice‘s password is known 
(a hash of the Alice‘s password), Mallory can perform a password guessing 
attack (also called dictionary attack) using message (2)

Kerberos v5 has the pre-authentication option to prevent this attack
Alice needs to include a fresh timestamp encrypted with her master key {tA}KA

when sending the authentication request, i.e. message (1)

This measure is effective against active attackers.
However, passive attacks are still possible 

Mallory can record authentication exchanges of other users and perform a password 
guessing attack.

Therefore, it is important to choose good passwords for the security of 
Kerberos.
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Kerberos V4: Misuse of encryption for message authentication (1)

Kerberos V4 uses DES in a special mode called Propagating Cipher 
Block Chaining (PCBC).
A modification in a cipher text encrypted in CBC mode results into a 
damage in the next two blocks in the decrypted plain text.
A modification in a cipher text encrypted in PCBC mode results into a 
damage in all the remaining blocks in the decrypted plain text.
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Reminder: CBC Error Propagation 

A distorted cipher text block results in two distorted plaintext blocks, as 
pi´ is computed using ci-1 and ci

Source: http://www.wikipedia.org/
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Kerberos V4: Misuse of encryption for message authentication (2)

In Kerberos V4, the PCBC mode was supposed to allow for providing 
message encryption and integrity by processing the message only once:

If a block in the cipher text is manipulated by an attacker, all the remaining blocks in 
the decrypted plain text at the receiver‘s side will be damaged.
If order to be able to verify the latter case (i.e. whether the message is damaged) 
Kerberos V4 uses a checksum computed with the key (KAS,A ,KA,TGS or KA,S1 ) and 
the message.
The encrypted message is transmitted together with the checksum.
The algorithm for the checksum is not documented, only implemented.

Although not broken. Not believed to be strong.
Potential problems:

The checksum is not a cryptographic hash function.
Therefore, it might reveal some information about the key (the one-way property of 
cryptographic hash functions is not necessarily satisfied)
It might be also easier to find two messages with the same check sum (the 2nd pre-
image resistance of cryptographic hash function is not necessarily satisfied)

Not used in V5.
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Kerberos V5: are things getting better? (1)

Algorithms for encryption and message integrity for Kerberos V5 are 
specified in [RFC3961]
[RFC3961] allows for unkeyed checksums for verifying the data 
integrity, 

e.g. CRC, MD5, SHA-1
The checksum is encrypted together with the message to be transmitted.

“An unkeyed checksum mechanism can be used with any encryption type, as the
key is ignored (a key is not needed for the computing of the checksum), but its use 
must be limited to cases where the checksum itself is protected, to avoid trivial 
attacks.” [RFC3961] (Section 4)

“These (unkeyed) checksum types use no encryption keys and thus can be used in 
combination with any encryption type, but they may only be used with caution, in 
limited circumstances where the lack of a key does not provide a window for an 
attack, preferably as part of an encrypted message. Keyed checksum algorithms 
are recommended.” [RFC3961] (Section 6.1)
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Kerberos V5: are things getting better? (2)

Fortunately, Kerberos V5 allows also for keyed checksums
e.g. HMAC with MD5 or SHA-1

In this case, different keys can be used for encryption and for data integrity.
“Due to advances in cryptography, some cryptographers consider using the same 
key for multiple purposes unwise. Since keys are used in performing a number of 
different functions in Kerberos, it is desirable to use different keys for each of these 
purposes, even though we start with a single long-term or session key.”
[RFC3961] (Section 2)

More information on the algorithms used in Kerberos for encryption and data 
integrity can be found in 

[RFC3961] Encryption and Checksum algorithms for Kerberos V5
[RFC3962] Adds AES cipher suites for Kerberos V5
[RFC4757] Microsoft implementation of Kerberos (with RC4 and HMAC)

If you want to use Kerberos, you should use the latest version of it. 
It has been around for a while and many competent people have 
looked at it.
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Kerberos – Reality check (1)

In many environements, the application of the user is not „kerberized“.

In this case, the application servers needs to perform the Kerberos 
exchange on behalf on the user, and get a ticket for itself, if 
authentication is successful.
Since the application server requires the user name and password in 
order to perform the Kerberos authentication exchange successfully, it 
is very important that the user name and password are protected by 
another mean, e.g. a TLS tunnel between the user’s application and 
the application server.
Note: the user‘s password will be revealed to the application server.

Server

KDCuser name & password
Kerberos protocol exchange

auth. success/failure
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Kerberos – Reality check (2)

Even worse: most of the application servers do not support Kerberos 
by themselves.
However, they can be enabled to use Kerberos with so-called 
Pluggable Authentication Modules (PAM)

PAM can authenticate users based on different sources of 
authentication databases and potentially with different protocols.
The native Kerberos protocol as described by MIT is rarely used today.

PAM API

FTP Server SSH Server IMAP Server

Kerberos RADIUS LDAP

Apache Web Server

PAM Configuration file

Services and applications

PAM authentication service modules

addressed in this lecture
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Kerberos - Discussion

General properties
Kerberos provides authentication of users and authorization to access 
services over an insecure network.
The KDC is logically separated into an Authentication Server and a Ticket 
Granting Server
The user needs to enter her password only once (Single-Sign-On). 
Authenticated access to services with the service tickets occurs
transparently to the user.

Reliability
The KDC is involved in each authentication process.

The KDC must be highly reliable
The design of the Kerberos protocol does not foresee a solution for 
reliability
Reliability is implemented with backup KDCs.
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Kerberos - Discussion

Security and complexity
Although V5 fixes some flaws of V4, it introduces higher complexity, e.g. 
due to the complex management of tickets.
The requirement that all hosts need to have synchronized clocks could be 
fixed if random numbers are used for the Authenticators instead of 
timestamps. (will be treated at assignments)
However, such a fix is currently not foreseen.
Kerberos V4 tries to protect the password by using it only once in an 
authentication protocol run.
However, dictionary attacks are very easy to perform
An „attacker“ Mallory can request a ticket for any user „Alice“ and performs 
a dictionary attacks based on the received response from the KDC.
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Kerberos - Discussion

Kerberos V5 tries to fix this problem with the pre-authentication
However, dictionary attacks are still possible.
Mallory needs to wait until Alice requests an ticket. 
Mallory can also listen to Kerberos authentication protocol runs in the 
network and collects the messages required for a dictionary attack.
Dictionary attacks on Kerberos could be avoided with an additional DH 
exchange (will be treated at assignments)
However, such a fix is currently not foreseen neither.
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PKI - Overview

Each entity has a public key/private key pair, 
e.g. RSA or ECC public/private keys 
Each entity has a „certificate“ that binds its „name“ to its public key
Note: in a networking environment “names” could be

a user name (eventually with an email address) 
But it could be also e.g. IP addresses, the DNS name of the node, etc.

A Certificate Authority (CA) asserts the correctness of the certificate by 
signing it with her private key.
CA is a trusted third party (TTP) that is trusted by all the entities.
Furthermore, each entity knows the public key of CA
When Alice whishes to communicate with Bob, she can receives Bob‘s 
certificate

E.g. from a directory service or from Bob himself at the beginning of the 
authentication procedure

Since Alice knows CA’s public key, she can verify the signature of 
Bob’s certificate that was generated by CA
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X.509 PKI Authentication Services – Introduction

X.509 is an international recommendation of ITU-T and is part of the 
X.500-series defining directory services:

The first version of X.509 was standardized in 1988
A second version standardized 1993 resolved some security concerns
A third version was drafted in 1995

X.509 defines a framework for provision of authentication services, 
comprising:

Certification of public keys and certificate handling:
• Certificate format
• Certificate hierarchy 
• Certificate revocation lists
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X.509 – Public Key Certificates (1)

Version
Certificate

Serial Number
Algorithm ID
Parameters
Issuer Name
Not Before
Not After

Subject Name
Algorithm ID
Parameters

Key
Issuer Unique ID

Subject Unique ID
Extensions
Signature

Signature
Algorithm

Period of
Validity

Subject’s
Public 

Key Info

V
ersion 1

V
ersion 2

V
ersion 3

All Versions

A public key certificate is 
some sort of  passport, 
certifying that a public key 
belongs to a specific name
Certificates are issued by 
certification authorities (CA)
If all users know for sure the 
public key of the CA, every 
user can check every 
certificate issued by this CA
Certificates can avoid 
online-participation of a TTP 
The security of the private 
key of the CA is crucial to 
the security of all users!
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X.509 – Public Key Certificates (2)

Notation of a certificate binding a public key KA-puc to user A issued by 
certification authority CA using its private key KCA-priv:

CertKCA-priv(KA-pub) = CA[V, SN, AI, CA, TCA, A, KA-pub]
with: V = version number

SN = serial number
AI = algorithm identifier of signature algorithm used 
CA = name of certification authority
TCA = period of validity of this certificate
A = name to which the public key in this certificate is bound
KA-pub= public key to be bound to a name

The shorthand notation CA[m] stands for (m, {H(m)}KCA-priv)
Another shorthand notation for CertKCA-priv(KA-pub) is CA<<A>>
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X.509 – Certificate Chains & Certificate Hierarchy (1)

Consider now two users Alice and Bob, living in different countries, 
who want to communicate securely:

Chances are quite high that their public keys are certified by different CAs
Let’s call Alice’s certification authority CA and Bob’s CB
If Alice does not trust or even know CB then Bob’s certificate CB<<B>> is 
useless to her, and the same applies in the other direction

A solution to this problem is to construct certificate chains: 
Imagine for a moment that CA and CB know and trust each other

• A real world example of this concept is the mutual trust between countries 
considering their passport issuing authorities

If CA certifies CB’s public key with a certificate CA<<CB>> and CB
certifies CA’s public key with a certificate CB<<CA>>, then A and B can 
check their certificates by checking a certificate chain:

• Upon being presented CB<<B>> Alice tries to look up if there is a certificate 
CA<<CB>>

• She then checks the chain: CA<<CB>>, CB<<B>>
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X.509 – Certificate Chains & Certification Hierarchy (2)

Certificate chains need not to be limited to a length of two certificates:
CA<<CC>>, CC<<CD>>, CD<<CE>>, CE<<CG>>, CG<<G>
would permit Alice to check the certificate of user G issued by CG even if 
she just knows and trusts her own certification authority CA
In fact, A’s trust in the key KG-priv is established by a chain of trust between 
certification authorities 
However, if Alice is presented CG<<G>>, it is not obvious which 
certificates she needs for checking it

X.509 therefore suggests that authorities are arranged in a certification 
hierarchy, so that navigation is straightforward:

CD

CECC

CBCA CF CHCG
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X.509 – Certificate Revocation (1)

When a certificate is issued, it is expected to be in use for its entire 
validity period. 
However, various circumstances may cause a certificate to become
invalid prior to the expiration of the validity period. 
Reasons for revocating a certificate:

The information in the certificate is not valid anymore.
The private key can not be used anymore, e.g. because 
• the physical medium where the private key was stored becomes defect, e.g. 

the hard disk, the USB stick or the smart card.
• the physical medium where the private key is stored has been stolen.
• the private is protected with a password and the password can not be 

recovered.
The private key is (partially) revealed or at least assumed to be revealed, 
e.g. a Trojan horse or a key logger has been discovered on the computer.
The parameters of the certificate become inadequate, e.g.
• The cryptographic algorithm is broken.
• The key length is considered as inappropriate.
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X.509 – Certificate Revocation (2)

An even worse situation occurs if the private key of a certification 
authority is compromised:

This implies that all certificates signed with this key have to be revoked.
Certificate revocation is realized by maintaining certificate revocation 
lists (CRL):
CRLs are stored in the X.500 directory
Each CA issues a signed data structure periodically called a certificate 
revocation list (CRL).

Certificate revocation is a relatively slow and expensive operation
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Online Certificate Status Protocol (OCSP)

The CRL can be accessed with the Online Certificate Status Protocol
(OCSP)
An OCSP client issues a status request to an OCSP server and 
suspends acceptance of the certificate in question until the responder 
provides a response.
CAs that support an OCSP service, either hosted locally or provided
by an Authorized Responder, provide the necessary information for 
the online validation of the status of the certificate.
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Simple Certificate Validation Protocol (SCVP)

OCSP makes no claim about the validity of the certificate other than its 
revocation status.
However, the certificate consumer needs to build the certificate
validation path and needs to inquire the revocation status of each of 
the certificates in the certificates’ chain.
The certificate validation process is rather resource-consuming.
Therefore, in some environments, e.g. with cell phones, it would be 
desirable to fully off-load the certificate validation process to an 
external trusted entity.
The Simple Certificate Validation Protocol (SCVP) [RFC5055] offers 
this functionality.
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PKI - Discussion

PKIs assume a relationship between the CA and the entities, which is
not always available: 

There is no „global“ PKI
There is no worldwide CA. (But CAs might “cross-certify” each others)

It remains questionable whether a CA executes its task faithfully, i.e., 
whether a CA verify the identity of the users thoroughly.
In particular, if the CA certifies millions of users.

Nevertheless, PKIs are very commonly used
They are integrated, e.g. in each Internet browser
Every Internet-Browser has a list of „root CAs“ that are considered as 
trusted.
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Part I:   Introduction

Part II:  The Secure Channel

Part III:  Authentication and Key Establishment Protocols

Introduction
Key Distribution Centers (KDC)

Public Key Infrastructures (PKI)

Building Blocks of key exchange protocols

Part I:   Introduction

Part II:  The Secure Channel

Part III:  Authentication and Key Establishment Protocols

Introduction
Key Distribution Centers (KDC)

Public Key Infrastructures (PKI)

Building Blocks of key exchange protocols

Overview
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Problem Statement

(c.f. Niels Ferguson, Bruce Schneier: Practical Cryptography, Ch. 15,  pp. 
261ff)
Assumption

Alice and Bob are able to authenticate messages to each other, e.g. 
• Using RSA signatures, if Alice and Bob know each other‘s public keys or using 

a PKI
• Using a long term pre-shared secret key and a MAC function

Goal
Run a key exchange protocol such as at the end of the protocol:

1. Alice and Bob have agreed on a shared „session key“ for a secure channel
2. Alice and Bob have agreed on the cryptographic algorithms to be used for the 

secure channel
3. Alice (Bob) must be able to verify that Bob (Alice) knows K and that he (she) is 

“alive”
4. Alice and Bob must know that K is newly generated

Note: even if Alice and Bob possess a long term pre-shared secret 
key, it is recommended to perform a key exchange in order to derive a 
separate session key
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Reasons for Separating Session Keys and Long-Term Keys

Why do we need a session key if we already have a (long term) key?

De-couple the session key from the long-term key
1. If the session key is compromised, e.g. because of a flawed 

implementation of the secure channel, then the long-term shared secret 
should remain safe.

2. If the long-term key is compromised after the key negotiation has been 
run, the attacker who learns the shared secret key still does not learn the 
session key negotiated by the protocol, i.e. yesterday‘s data is still 
protected if the long-term key is compromised today. 
These properties are important and make the entire system more robust
The 2nd property is called „Forward Secrecy“

Definition: Forward Secrecy [Boyd03]
A key establishment protocol provides forward secrecy if compromise of 
the long-term keys of a set of entities (private keys or symmetric keys) 
does not compromise the session keys established in previous protocol 
runs involving these entities.
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Other Reasons for Separating Session Keys and Long-Term Keys

Sometimes the long-term key is weak, e.g. passwords
Users do not want to memorize a 30-letters password
They tend to choose much simpler ones

In some cases, the session key needs to be changed before the 
session is over (re-keying)

This is, e.g., the case if the message sequence numbers overflow and 
need to be reset
This would be problematic if the session key is equal to the long-term key
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First Try

Alice and Bob perform a Diffie-Hellman key exchange and then 
authenticate the obtained key k

Alice Bobga mod n

AuthA(K)

gb mod n

AuthB(K)

K = gab K = gab

Check(AuthA(K))

Check(AuthB(K))

Known (p,g) Known (p,g)
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Problems with “First Try”

Alice and Bob use constant DH parameters p and g
This is a bad design, since

• p and g might be considered as insecure after a while
• Protocols live for a long time. Using the same constants raises interoperability 

issues 

The exchange uses 4 messages, whereas it is possible to achieve the 
goal using 3 messages
K is used as input for the authentication function Auth

This would be fine, if Auth is a strong function
But if Auth(K) leaks some knowledge about K this would require a new 
analysis of the entire protocol
A rule of thumb: “Secrets should be used only for a single purpose”.

The authentication messages are too similar
If Auth is a MAC function, then AuthB(K) = AuthA(K)
Bob can just send the authentication value that he received from Alice.
At the end of the protocol run, Alice can not be sure that Bob has the 
correct key
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Second Attempt

Alice Bob

Alice chooses the DH parameters p and g
Bob verifies that he supports p and g

The protocol exchange is reduced to 2 messages

(p,g, ga,AuthA(p,g, ga)

gb,AuthB(gb)

• Check(p,g, ga,AuthA(p,g, ga))
• k = gab

• Check(gb,AuthB(gb))
• k = gab



Network Security, WS 2008/09, Chapter 7 99

Second Attempt, Evaluation

DH parameters are chosen dynamically
If p is not large enough, Bob can send an error message to Alice with the 
minimal supported length for p and abort the protocol run

The protocol run requires only 2 messages
The key gab is not used anymore for the authentication of messages
String that are being authenticated are not the same
However, a replay attack possible

Bob can not be sure that he is actually talking to Alice
Anybody can record the first message that Alice sends and then later send 
it to Bob
Bob verifies AuthA and finishes the protocol thinking that he has just 
shared a session key k with Alice 

This problem is called the lack of liveliness
Bob can not be sure that Alice is „alive“, and he is not talking to a replaying 
attacker
The typical way to solve this problem is to make sure that Alice‘s 
authenticator AuthA covers a random value that has been chosen by Bob
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Third Attempt

Alice BobNa,(p,g), ga

AuthA(p,g,ga ,Nb )

Nb, gb ,AuthB(gb ,Na )
k = gab k = gab

Check(AuthA)

Check(AuthB)
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Further Design Issues: Dynamic Negotiation of Crypto Algorithms

Alice and Bob need to agree on the cryptographic algorithms to be 
used for encryption and data integrity

Facilitates the support of new stronger cryptographic algorithms
Deprecated cryptographic algorithms can be removed easily
Upgrades do not require an additional standardization process

Alice
Bob

List of supported 
crypto algorithms

Chosen crypto 
algorithms
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Further Design Issues: Denial-of-Service Protection (1)

Bob may be flooded with a large number of requests for establishing a 
secure channel from a large number of attackers
This phenomena is called Distributed Denial-of-Service attacks 
(DDoS)
Since Bob needs to store state and perform computation for each 
request, a DoS attack would exhaust Bob‘s resources, such as CPU 
and memory
Possible Countermeasures:

Before processing a new request, verify if the “initiator” can receive 
messages sent to the claimed source of the request (see next slide)
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Denial-of-Service Protection with Cookies (1)

1: request Bob

Alice
2: Cookie

Upon receiving a request from Alice, Bob calculates a Cookie and sends it to Bob.
Alice will receive the Cookie and resend the request with the Cookie together.
Bob verifies that the Cookie is correct and then starts to process Alice‘s request.
An attacker that is sending requests with a spoofed (i.e. falsified) source address will not 
be able to send the Cookie.

“Request”

“Cookie”
Bob

Attacker

Alice

3: request, Cookie
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Denial-of-Service Protection with Cookies (2)

Requirements:
An attacker that is not on the path between Alice and Bob must not be able to guess 
the correct value of the Cookie
Bob must be able to generate the Cookie after receiving message 1 with minimal 
processing (CPU friendly)
Bob must be able to verify that the Cookie is correct upon receipt of message 3, 
without necessarily storing any information after message 1 (memory friendly)

Bob must be able to re-calculate the Cookie sent in message 2 and verify that 
the received Cookie from Alice in message 3 is correct

One possible way to compute the cookie could be as follow:
Cookie = Hash(Na | AddressAlice | <secret>)

where
Na is the nonce sent by Alice (as above)
<secret> is randomly generated secret known only to Bob
Hash is a cryptographic hash function.

Only a legitimate initiator (Alice) or a host on the path can read the “cookie”
and can send the cookie back to the responder (Bob)
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Denial-of-Service Protection with Cookies (3)

Additional requirement:
<secret> needs to be changed regularly. Otherwise, it can be brute-forced 
successfully after a while

Another possible way to compute the cookie could be as follow:
Cookie = <Version ID of Secret> | Hash(Na | IPa | <secret>) 

where
<Version ID of Secret> is changed whenever <secret> is regenerated.

Cookies discussion:
Advantage: allows to counter simple address spoofing attacks
Drawbacks: 

• requires one additional message roundtrip.
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Further Design Issues: Reuse of the DH Values

The calculation if the DH values ga and gb is computationally expensive
Alice and Bob may re-use the values ga and gb

However, Alice and Bob must ensure that the key has been freshly
generated
The random numbers Na and Nb can be included in the computation of 
the shared key
One possible way to compute the session key:

K = H ( Na | Nb | gab )  where H is a cryptographic hash function

However, the re-use of the DH values affects the property of (perfect) 
forward secrecy (see next slide).
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Perfect Forward Secrecy (1)

The DH exchange is not only used to gain a shared secret gab 

(that needs to be authenticated)
The DH exchange offers also the property of "perfect forward secrecy“
(PFS)

If any long term keys, 
• the long-term pre-shared secret key between Alice and Bob
• or Alice/Bob private key

is compromised, an attacker that has recorded previous protocol runs, 
would need to compromise the DH exchange as well in order to gain the 
session keys for these previous sessions

PFS requires that when a session is closed, each endpoint forgets
all the keying material used for this session
any information that could be used to recompute those keys 
In particular, it needs to forget the secrets used in the DH calculation and 
the state of a pseudo-random number generator that could be used to re-
compute the DH secrets.
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Perfect Forward Secrecy (2)

Note
By running a key exchange protocol, PFS is usually provided with the DH 
exchange
Many protocols do not provide PFS, since DH is computationally intensive
Examples

• IPSec IKEv (Version 1 and Version 2): yes,   
• TLS: PFS optionally provided with ephemeral (temporary) DH
• WLAN: WEP, WPA: no 
• GSM/UMTS Authentication and Key Exchange (AKA): no

(although some commercial products do already support PFS for GMS 
networks. But both mobile phones need to support it)
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Further Design Issues: Simplicity

„A more complex system loses on all fronts. It contains more 
weaknesses to start with, it is much harder to analyze, and it is much 
harder to implement without introducing security-critical errors in the 
implementation.“ [Fer00]

An important design criterion for a new protocol is that the protocol 
state machine should be as simple as possible.
Especially for security protocols, the simpler the state machine is the 
easier the security analysis of the protocol can be.
Remember that an attacker can send any type of message at any time 
to any participant in the protocol.
One way to reduce the complexity is to design the protocol such as it 
consists of pairs of messages:

a request 
and a response. 

Every request requires a response.
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Final protocol design attempt

Alice BobNa,(p,g), ga, proposed crypto algs

Nb, gb , chosen crypto algs

k = gab k = gab

Check(AuthA)

Check(AuthB)
AuthB(gb , chosen crypto algs, Na )

AuthA(p,g,ga, proposed crypto algs, Nb)
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