
Chair for Network Architectures and Services
Department of Informatics
TU München – Prof. Carle

Network Security
Chapter 5

Cryptographic
Hash Functions

• Motivation
• Cryptographic Hash Functions

•MD5
• SHA-1

• Message Authentication Codes (MACs)

Network Security, WS 2008/09, Chapter 5 2

Motivation (1)

Data integrity is an essential security service

Upon receiving a message m, we need to detect whether m has
been modified intentionally by an attacker

Common practice in data communications: error detection code over
messages, to identify if errors were introduced during transmission

Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

Underlying idea of these codes: add redundancy to a message for
being able to detect, or even correct transmission errors

The error detection/correction code of choice and its parameters:
trade-off between
• computational overhead

• increase of message length

• Probability/characteristics of errors on the transmission medium

Network Security, WS 2008/09, Chapter 5 3

Motivation (2)

It is a different (and much harder!) problem to determine if m has been
modified on purpose!

Consequently, we need to add a Modification Detection Code (MDC)
that fulfills some additional properties which should make it
computationally infeasible for an attacker to tamper with messages

This property is fulfilled by so-called “cryptographic hash functions”

Network Security, WS 2008/09, Chapter 5 4

Cryptographic Hash Functions: Definition

Definition: hash function
A hash function is a function h which has the following two properties:

• Compression: h maps an input x of arbitrary finite bit length
to an output h(x) of fixed bit length n:

h: {0,1}* → {0,1} n

• Ease of computation: Given h and x it is easy to compute h(x)

Definition: one-way function
A hash function is a function h which has the following property
for essentially all pre-specified outputs y, it is computationally infeasible
to find an x such that h(x) = y
e.g. given p a large prime number and g a primitive root in Z*

p

Let h(x) = gx mod p
Then h is a one-way function

Network Security, WS 2008/09, Chapter 5 5

Cryptographic Hash Functions: Definition

Definition: cryptographic hash function
A cryptographic hash function h is a hash function which additionally
satisfies the following properties:

(1) h is a one-way function
This property is also called (First) Pre-image resistance
(“Unbestimmbarkeit von Urbildern”):
For essentially all pre-specified outputs y, it is computationally infeasible
to find an x such that h(x) = y

(2) 2nd pre-image resistance (“Unbestimmbarkeit eines zweiten Urbildes”):
given x it is computationally infeasible to find any second input x’ with x ≠ x’
such that h(x) = h(x’)

Note: This property is very important for digital signatures.

(3) Collision resistance (“Kollissionsfreiheit”):
it is computationally infeasible to find any pair
(x, x’) with x ≠ x’ such that h(x) = h(x’)

(4) Random oracle property:
It is computationally infeasible to distinguish h(m) from random n-bit value

Network Security, WS 2008/09, Chapter 5 6

General Remarks (1)

Computational infeasibility
In a mathematical sense, the notion of computational infeasibility is directly
related to complexity theory.
It means that no polynomial complexity algorithm for the given problem
exists
However, cryptographic hash functions, which are actually used in
practice, e.g. SHA-1 or MD5, are not directly based on such mathematical
problems

Random output
The algorithm for calculating the hash value of a string is deterministic
However, the output of a cryptographic hash function should “look” random
[Ferg03]
In particular, a cryptographic hash function should map two “similar”
strings to completely uncorrelated outputs (similar in the sense of a small
Hamming distance) [Cos06]
In particular, a cryptographic hash function should not be additive
• If x’ = x ⊕ Δ, then H(x’) should be different from H(x) ⊕ H(Δ)

Network Security, WS 2008/09, Chapter 5 7

General Remarks (2)

Why not use CRC?
CRC is commonly used in networking environments
CRC is a fast compression function
However, CRC is not a cryptographic hash function
CRC does not provide 2nd pre-image resistance and collision resistance
CRC is additive

• If x’ = x ⊕ Δ, then CRC(x’) = CRC(x) ⊕ CRC(Δ)
CRC is useful for protecting against noisy channels
But not against intentional manipulation

Network Security, WS 2008/09, Chapter 5 8

Application of Cryptographic Hash Functions for Data Integrity

Cryptographic hash functions are used to detect whether a message
has been modified by an attacker

However, the use of a cryptographic hash function is not sufficient to
detect whether a message has been modified

Example: if Alice sends a message (x, H(x)) to Bob, with H a
cryptographic hash function, it holds:

The computation of H(x) is usually based on a well-known algorithm

The computation of H(x) does not include a secret key or anything else
bound to the identity of Alice

An attacker can modify x to x‘, calculate H(x‘) easily and sends (x‘, H(x‘)) to
Bob pretending that this message would be originating from Alice

Network Security, WS 2008/09, Chapter 5 9

Application of Cryptographic Hash Functions for Data Integrity

Alice needs a different method to prove to Bob that this message has
not been changed
1. Bob might receive the cryptographic hash value via an out-of-band (trusted)

channel, e.g. by phone call, or the hash value may be published on a
(trusted) web server.

2. Alice might digitally sign the message and send the signed message to
Bob. This requires that Bob knows Alice’s public key and is able to verify
the signature.

• In this case, in order to reduce computational overhead, Alice may just sign H(x)
with her private key (instead of x itself).

• Due to the 2nd pre-image resistance of H, it is infeasible to an attacker to
generate x’ such as H(x) = H(x’).

• If an attacker modifies x to x’, but does not modify the hash value H(x),
Bob will detect such a change as the hash value will not be valid: H(x) ≠ H(x’)

• If the attacker modifies the hash value from H(x) to H(x‘) as well, then Bob will
be able to detect this, since Alice signed H(x) and not H(x‘). The digital signature
will not be valid.

Network Security, WS 2008/09, Chapter 5 10

Application of Cryptographic Hash Functions for Data Integrity

3. In case Alice and Bob share a secret key, Alice can compute a „Message
Authentication Code“ (MAC) (see later in this chapter) and append it to
the message.

Network Security, WS 2008/09, Chapter 5 11

Message Authentication Codes (MACs)

Definition: message authentication code
A message authentication code algorithm is a family of functions hk
parameterized by a secret key k with the following properties:

• Compression:
hk maps an input x of arbitrary finite bitlength to an output hk(x) of fixed bitlength,
called the MAC

• Ease of computation:
given k, x and a known function family hk the value hk(x) is easy to compute

• Computation-resistance:
for every fixed, allowed, but unknown value of k, given zero or more text-MAC
pairs (xi, hk(xi)) it is computationally infeasible to compute a text-MAC pair
(x, hk(x)) for any new input x ≠ xi

Please note that computation-resistance implies the property of key
non-recovery

k can not be recovered from pairs (xi, hk(xi)),
but computation-resistance can not be deduced from key non-recovery, as
the key k needs not always to be recovered to forge new MACs
(as shown in subsequent example)

Network Security, WS 2008/09, Chapter 5 12

A Simple Attack Against an Insecure MAC

For illustrative purposes, consider the following MAC definition:
Input: message m = (x1, x2, ..., xn) with xi being 64-bit values, and key k
Compute Δ(m) := x1 ⊕ x2 ⊕ ... ⊕ xn with ⊕ denoting bitwise exclusive-or
Output: MAC Ck(m) := Ek(Δ(m)) with Ek(x) denoting DES encryption

The key length is 56 bit and the MAC length is 64 bit, so we would expect an
effort of about 255 operations to obtain the key k and break the MAC (= being
able to forge messages).
Unfortunately the MAC definition is insecure:

Assume an attacker Eve who wants to forge messages exchanged between Alice
and Bob obtains a message (m, Ck(m)) which has been “protected” by Alice using
the secret key k shared with Bob
Eve can construct a message m’ that yields the same MAC:

• Let y1, y2, ..., yn-1 be arbitrary 64-bit values
• Define yn := y1 ⊕ y2 ⊕ ... ⊕ yn-1 ⊕ Δ(m)
• This yn allows to construct the new message m’ := (y1, y2, ..., yn)
• Therefore, Ck(m’) = Ek(Δ(m’)) = Ek(y1 ⊕ y2 ⊕ ... ⊕ yn-1 ⊕ yn))

= Ek(y1 ⊕ y2 ⊕ ... ⊕ yn-1 ⊕ y1 ⊕ y2 ⊕ ... ⊕ yn-1 ⊕ Δ(m)))
= Ek(Δ(m)))
= Ck(m)

Therefore, Ck(m) is a valid MAC for m’
When Bob receives (m’, Ck(m)) from Eve, he will accept it as being originated

Network Security, WS 2008/09, Chapter 5 13

Applications of Cryptographic Hash Functions

Principal application which led original design:
Message integrity:

• Using public key cryptography:
– The cryptographic hash value represents a digital fingerprint, which can be

signed with a private key, e.g. using the RSA or ElGamal algorithms,

– It is computationally infeasible to construct two messages with the same
fingerprint. Therefore, a given signed fingerprint can not be re-used by an
attacker

• Using a shared secret key:
– A MAC over a message m directly certifies that the sender of the message

possesses the secret key k and the message could not have been modified
without knowledge of that key

Network Security, WS 2008/09, Chapter 5 14

Other Applications which require some Caution (1)

Pseudo-random number generation
The output of a cryptographic hash function is assumed to be uniformly
distributed
Although this property has not been proven in a mathematical sense for
common cryptographic hash functions, such as MD5, SHA-1, it is often
used
Start with random seed, then hash

b0 = seed
bi+1 = H (bi | seed)

Encryption
Remember: Output Feedback Mode (OFB) – encryption performed by
generating a pseudo random stream, and performing XOR with plain text
Generate a key stream as follow:

k0 = H(KA,B | IV)
ki+1 = H (KA,B | ki)

The plain text is XORed with the key stream to obtain the cipher text.

Network Security, WS 2008/09, Chapter 5 15

Other Applications of Cryptographic Hash Functions

Authentication with a challenge-response mechanism
Alice Bob: random number “rA”

Bob Alice: “H(KA,B, rA)”

Based on the assumption that only Alice and Bob know the shared secret KA,B,
Alice can conclude that an attacker would not be able to compute H(KA,B, rA),
and therefore that the response is actually from Bob

Mutual authentication can be achieved by a 2nd exchange in opposite direction

This authentication is based on a well-established authentication method called
„challenge-response“

This type of authentication is used, e.g., by HTTP digest authentication
• If avoids transmitting the transport of the shared key (e.g. password) in clear text

An other type of a challenge-response would be, e.g., if Bob signs the challenge
“rA” with his private key

Note that this kind of authentication does not include negotiation of a session key.

Protocols for key negotiation will be discussed in subsequent chapters.

Network Security, WS 2008/09, Chapter 5 16

Other Applications of Cryptographic Hash Functions

Authentication with One-Time Passwords (OTP):
The basic idea of one-time-passwords authentication is to transmit a
“password”, that can only be used for one run of an authentication
dialogue
Initial Setup:

• The authenticator A sends a seed value rA and the peer entity B concatenates it
with his password and computes a hash value:
PWN = HN(rA, passwordB)

• The pair (N, PWN) is transmitted to the authenticator and stored at the
authenticator

Authentication dialogue:
• A → B: N - 1
• B → A: PWN-1 := HN-1(rA, passwordB)
• A checks if H(PWN-1) = PWN, and stores (N - 1, PWN-1) as the new

authentication information for B
Security: In order to break this scheme, an attacker would have to
eavesdrop one PWN and compute H-1(PWN) which is impractical
Note: One-time-passwords must not be confused with one-time-pads

Network Security, WS 2008/09, Chapter 5 17

Other Applications of Cryptographic Hash Functions

Cryptographic hash values can also be used for error detection, but
they are generally computationally more expensive than simple error
detection codes such as CRC

Network Security, WS 2008/09, Chapter 5 18

Overview of Commonly Used Cryptographic Hash Functions
and Message Authentication Codes

Cryptographic Hash Functions:
Message Digest 5 (MD5):

• Invented by R. Rivest
• Successor to MD4

Secure Hash Algorithm 1 (SHA-1):
• Invented by the National Security Agency (NSA)
• The design was inspired by MD4

Message Authentication Codes:
DES-CBC-MAC, AES-CBC-MAC

• Uses the Data Encryption Standard DES (or AES) in Cipher Block Chaining
mode
(Encryption: XOR plain text with cipher text of previous block, then encrypt)

• In general, the CBC-MAC construction can be used with any block cipher
MACs constructed from cryptographic hash functions:

• Example HMAC: H(K, p1, H(K, p2, m)), RFC 2104, details later
• This very common approach raises some cryptographic concern as it makes

some implicit but unverified assumptions about the properties of the hash
function

Network Security, WS 2008/09, Chapter 5 19

Common Structure of Cryptographic Hash Functions (1)

Like most of today’s block ciphers follow the general structure of a
Feistel network, most cryptographic hash functions in use today follow
a common structure:

Let y be an arbitrary message. Usually, the length of the message is
appended to the message and padded to a multiple of some block size b.
Let (y0, y1, ..., yL-1) denote the resulting message consisting of L blocks of
size b
The general structure is as depicted below:

CV is a chaining value, with CV0 := IV and H(y) := CVL

f is a specific compression function which compresses (n + b) bit to n bit

f

y0

CV0

n

b

f

y1

CV1

n

b

f

yL-1

CVL-1

n

b

CVLCV2

n ... n

Network Security, WS 2008/09, Chapter 5 20

Common Structure of Cryptographic Hash Functions (2)

The hash function H can be summarized as follows:
CV0 = IV = initial n-bit value
CVi = f(CVi-1, yi-1) 1 ≤ i ≤ L
H(y) = CVL

It has been shown [Mer89a] that if the compression function f is
collision resistant, then the resulting iterated hash function H is also
collision resistant
Cryptanalysis of cryptographic hash functions thus concentrates on the
internal structure of the function f and finding efficient techniques to
produce collisions for a single execution of f
Primarily motivated by birthday attacks, a common minimum
suggestion for n, the bit length of the hash value, is 160 bit, as this
implies an effort of order 280 to attack which is considered infeasible
today

Network Security, WS 2008/09, Chapter 5 21

The Message Digest 5 (1)

MD5 follows the common structure outlined before [Riv92a]:
The message y is padded by a “1” followed by 0 to 511 “0” bits such that
the length of the resulting message is congruent 448 modulo 512
The length of the original message is added as a 64-bit value resulting in a
message that has length which is an integer multiple of 512 bit
This new message is divided into blocks of length b = 512 bit
The length of the chaining value is n = 128 bit

• The chaining value is “structured” as four 32-bit registers A, B, C, D
• Initialization: A := 0x 01 23 45 67 B := 0x 89 AB CD EF

C := 0x FE DC BA 98 D := 0x 76 54 32 10

• This initialization vector is in little-endian format

Each block of the message yi is processed with the chaining value CVi with
the function f which is internally realized by 4 rounds of 16 steps each

• Each round uses a similar structure and makes use of a table T containing 64
constant values of 32-bit each,

• Each of the four rounds uses a specific logical function g

Network Security, WS 2008/09, Chapter 5 22

The Message Digest 5 (1)

MD5 follows the common structure outlined before [Riv92a]:
The message y is padded such that the length of the resulting message is
congruent 448 modulo 512
The remaining 64 bits to get an overall length which is an integer multiple
of 512 bit, are used to encode the length of the original message.
The padding is a single “1” bit followed “0” bits
This new message is divided into blocks of length b = 512 bit
The length of the chaining value is n = 128 bit

• The chaining value is “structured” as four 32-bit registers A, B, C, D
• Initialization: A := 0x 01 23 45 67 B := 0x 89 AB CD EF

C := 0x FE DC BA 98 D := 0x 76 54 32 10

• This initialization vector is in little-endian format

Each block of the message yi is processed with the chaining value CVi with
the function f which is internally realized by 4 rounds of 16 steps each

• Each round uses a similar structure and makes use of a table T containing 64
constant values of 32-bit each,

• Each of the four rounds uses a specific logical function g

Network Security, WS 2008/09, Chapter 5 23

The Message Digest 5 (2) - Structure of One Step

The function g is a different logical function for each round
(see RFC1321 Section 3.4 and Section A.3 for more details)
yi[k] denotes the kth 32-bit word of message block i (of length 512 bit)
T[j] is the jth entry of table t with j incremented modulo 64 every step
CLSs denotes cyclical left shift by s bits with s following some schedule defined in
RFC1321

A B C D

+

+

g

A B C D

+yi[k]

+T[j]

CLSs

Network Security, WS 2008/09, Chapter 5 24

The Message Digest 5 (3)

The MD5 value over a message is the content of the chaining value
CV after processing the final message block
Security of MD5:

Every bit of the 128-bit hash code is a function of every input bit
Between 1992 and 1996 significant progress in cryptanalyzing MD5 has
been published
In 1996 H. Dobbertin published an attack that allows to generate a collision
for the function f (realized by the 64 steps described above).
In reaction to this RSA Laboratories publish in 1996 [Rob96a]:

“Existing signatures formed using MD5 are not at risk and while MD5 is still
suitable for a variety of applications (namely those which rely on the one-way
property of MD5 and on the random appearance of the output) as a precaution
it should not be used for future applications that require the hash function to be
collision-resistant.”

In the meantime, collision attacks on MD5 are computationally feasible and
some examples of real-world file formats which were manipulated in order
to obtain a common MD5 hash, together with the corresponding software
for finding these collisions, can be found on the Internet, i.e., at [PSMD5]

Network Security, WS 2008/09, Chapter 5 25

The Secure Hash Algorithm SHA-1 (1)

Also SHA-1 follows the common structure as described above:
SHA-1 works on 512-bit blocks and produces a 160-bit hash value
As its design was also inspired by the MD4 algorithm, its initialization is basically the
same like that of MD5:

• The data is padded, a length field is added and the resulting message is processed as
blocks of length 512 bit

• The chaining value is structured as five 32-bit registers A, B, C, D, E
• Initialization: A = 0x 67 45 23 01 B = 0x EF CD AB 89

C = 0x 98 BA DC FE D = 0x 10 32 54 76
E = 0x C3 D2 E1 F0

• The values are stored in big-endian format
Each block yi of the message is processed together with CVi in a module realizing
the compression function f in four rounds of 20 steps each.

• The rounds have a similar structure but each round uses a different primitive logical
function f1, f2, f3, f4

• Each step makes use of a fixed additive constant Kt, which remains unchanged during one
round

The text block yi which consists of 16 32-bits words is „stretched“ with a recurrent
linear function in order to make 80 32-bits out of it, which are required for the 80
steps:

• t∈{0, ..., 15} ⇒ Wt := yi[t]
• t∈{16, ..., 79} ⇒ Wt := CLS1(Wt-16 ⊕ Wt-14 ⊕ Wt-8 ⊕ Wt-3)

Network Security, WS 2008/09, Chapter 5 26

The Secure Hash Algorithm SHA-1 (2) - One Step

After step 79 each register A, B, C, D, E is added modulo 232 with the value of the
corresponding register before step 0 to compute CVi+1

f(t DIV 20)
yi[k]

CLS5 +

+

+

+

Wt

K(t DIV 20)

A B C D E

CLS30

A B C D E

Network Security, WS 2008/09, Chapter 5 27

The Secure Hash Algorithm SHA-1 (3)

The SHA-1 value over a message is the content of the chaining value
CV after processing the final message block
Security of SHA-1:

As SHA-1 produces a hash value of length 160 bit, it offers better security
against brute-force and birthday attacks than MD5
In February 2005, 3 Chinese Scientists published a paper where they
break SHA-1 collision resistance within 269 steps, which is much less than
expected from a cryptographic hash function with an output of 160 bits
(280)
Up to now, no attacks on the pre-image resistance of SHA-1 have been
published

Further comparison between SHA-1 and MD5:
Speed: SHA-1 is slower than MD5

- 20 steps are required instead of 16,
- CV is larger

Simplicity and compactness: both algorithms are simple to describe and
implement and do not require large programs or substitution tables
Little-endian vs. big-endian architecture: there appears to be no advantage
of either approach

Network Security, WS 2008/09, Chapter 5 28

Attacks Based on the Birthday Phenomenon (1)

Attack against collision resistance of cryptographic hash functions
The Birthday Phenomenon:

How many people need to be in a room such that the possibility that there
are at least two people with the same birthday is greater than 0.5?
For simplicity, we don’t care about February, 29, and assume that each
birthday is equally likely

Define P(n, k) := Pr[at least one duplicate in k items, with each item
able to take one of n equally likely values
between 1 and n]

Define Q(n, k) := Pr[no duplicate in k items, each item between 1 and n]
P(n, k) = 1 - Q(n, k)
We are able to choose the first item from n possible values, the second item
from n - 1 possible values, etc.
Hence, the number of different ways to choose k items out of n values with
no duplicates is: N = n × (n - 1) × ... × (n - k + 1) = n! / (n - k)!
The number of different ways to choose k items out of n values, with or
without duplicates is: nk

So, Q(n, k) = N / nk = n! / ((n - k)! × nk)

Network Security, WS 2008/09, Chapter 5 29

Attacks Based on the Birthday Phenomenon (2)

P(n, k) := Pr[at least one duplicate in k items, with each item able to
take one of n equally likely values between 1 and n]
We have:

We will use the following inequality: (1 - x) ≤ e-x for all x ≥ 0

So:

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −
−××⎟

⎠
⎞

⎜
⎝
⎛ −×⎟

⎠
⎞

⎜
⎝
⎛ −−=

⎥⎦
⎤

⎢⎣
⎡ +−

××
−

×
−

−=

+−××−×
−=

×−
−=−=

n
k

nn

n
kn

n
n

n
n

n
knnn

nkn
nknQknP

k

k

11...21111

1...211

)1(...)1(1

)!(
!1),(1),(

() () ()[]

n
kk

n
k

nn

n
k

nn

e

e

eeeknP

2
)1(

1...21

)1(21

1

1

...1),(

−×−

−+++−

−−−−

−=

−=

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛××⎟

⎠
⎞⎜

⎝
⎛×⎟

⎠
⎞⎜

⎝
⎛−>

Network Security, WS 2008/09, Chapter 5 30

Attacks Based on the Birthday Phenomenon (3)

In the last step, we used the equality: 1 + 2 + ... + (k - 1) = (k2 - k) / 2
Exercise: proof the above equality by induction

Let’s go back to our original question: how many people k have to be
in one room such that there are at least two people with the same
birthday (out of n = 365 possible) with probability ≥ 0,5?

So, we want to solve:

For large k we can approximate k × (k - 1) by k2, and we get:

For n = 365, we get k = 22.54 which is quite close to the correct answer 23

n
kk

e

e

n
kk

n
kk

2
)1()2ln(

2

12
1

2
)1(

2
)1(

−×
=⇔

=⇔

−=
−×

−×−

nnk 18.1)2ln(2 ≈=

Network Security, WS 2008/09, Chapter 5 31

Attacks Based on the Birthday Phenomenon (4)

What does this have to do with cryptographic hash functions?
We have shown, that if there are n possible different values, the
number k of values one needs to randomly choose in order to obtain a
pair of identical values with probability ≥ 0.5, is in the order of
Now, consider the “Yuval’s square root attack” [Yuv79a]:

Eve wants Alice to sign a message m1 which Alice normally never would
sign. Eve knows that Alice uses the function H to compute a cryptographic
hash value of m. The hash value has length r bit before she signs it with
her private key yielding her digital signature
First, Eve produces her message m1. If she would now compute H(m1)
and then try to find a second harmless message m2 which leads to the
same hash value her search effort in the average case would be on the
order of 2(r - 1)

Instead she takes any harmless message m2 and starts producing
variations m1’ and m2’ of the two messages, e.g. by adding <space>
<backspace> combinations or varying with semantically identical words

n

Network Security, WS 2008/09, Chapter 5 32

Attacks Based on the Birthday Phenomenon (5)

As we learned from the birthday phenomenon, Eve will just have to
produce about variations of each of the two messages such
that the probability that she obtains two messages m1’ and m2’ with
the same hash value is at least 0.5
As she has to store the messages together with their hash values in
order to find a match, the memory requirement of her attack is on the
order of and its computation time requirement is on the same
order
After she has found m1’ and m2’ with H(m1’) = H(m2’) she asks Alice
to sign m2’. Eve can then take this signature and claim that Alice
signed m1’

222
rr =

22
r

Network Security, WS 2008/09, Chapter 5 33

Attacks Based on the Birthday Phenomenon (6)

Attacks following this method are called birthday attacks
Consider now, that Alice uses RSA with keys of length 2048 bit and a
cryptographic hash function which produces hash values of length 96
bit.

Eves average effort to produce two messages m1’ and m2’ as described
above is on the order of 248, which is feasible today. Breaking RSA keys of
length 2048 bit is far out of reach with today's algorithms and technology

Network Security, WS 2008/09, Chapter 5 34

Cipher Block Chaining Message Authentication Codes (1)

A CBC-MAC is computed by encrypting a message in CBC Mode and
taking the last ciphertext block or a part of it as the MAC:

This MAC needs not to be signed any further, as it has already been
produced using a shared secret K

However, it is not possible to say who exactly has created a MAC, as
everybody (sender, receiver) who knows the secret key K can do so

This scheme works with any block cipher (DES, AES, ...)

Encrypt

C1

K

y2

Encrypt

C2

K

yn

Encrypt

Cn

K...

y1

+ +Cn-1

MAC (16 to b bits)

Network Security, WS 2008/09, Chapter 5 35

Cipher Block Chaining Message Authentication Codes (2)

CBC-MAC security
CBC-MAC must NOT be used with the same key as for the encryption

In particular, if CBC mode is used for encryption, and CBC-MAC for
integrity with the same key, the MAC will be equal to the last cipher text
block

Otherwise, AES-CBC-MAC is considered to be secure

It is used, e.g., for IEEE 802.11 (WLAN) WPA2

CBC-MAC performance
Older symmetric block ciphers (such as DES) require more computing
effort than dedicated cryptographic hash functions, e.g. MD5, SHA-1
therefore, these schemes are considered to be slower.
However, newer symmetric block ciphers (AES) is faster than conventional
cryptographic hash functions.
Therefore, AES-CBC-MAC is becoming popular.

Network Security, WS 2008/09, Chapter 5 36

Constructing a MAC from a Cryptographic Hash Functions (1)

Reasons for constructing MACs from cryptographic hash functions :
Cryptographic hash functions generally execute faster than symmetric
block ciphers (Note: with AES this isn’t much of a problem today)
There are no export restrictions to cryptographic hash functions

Basic idea: “mix” a secret key K with the input and compute a hash
value
The assumption that an attacker needs to know K to produce a valid
MAC nevertheless raises some cryptographic concern:

The construction H(K | m) is not secure
The construction H(m, K) is not secure
The construction H(K, p, m, K) with p denoting an additional padding field
does not offer sufficient security

Network Security, WS 2008/09, Chapter 5 37

Constructing a MAC from a Cryptographic Hash Functions (2)

The construction H(K | m | K), called prefix-suffix mode, has been used
for a while.

See for example [RFC 1828]
It has been also used in earlier implementations of the Secure Socket
Layer (SSL) protocol (until SSL 3.0)
However, it is now considered vulnerable to attack by the cryptographic
community.

The most used construction is:

The length of the key K is first extended to the block length required for the
input of the hash function H by appending zero bytes.
Then it is xor’ed respectively with two constants opad and ipad
The hash function is applied twice in a nested way.
Currently no attacks have been discovered on this MAC function. (see
note 9.67 in [Men97a])
It is standardized in RFC 2104 [Kra97a] and is called HMAC

))|(|(mipadKHopadKH ⊕⊕

Network Security, WS 2008/09, Chapter 5 38

Additional References

(Beyond the scope of examination)
[Cos06] B. Coskun, N. Memon, "Confusion/Diffusion Capabilities of Some Robust Hash

Functions", CISS 2006: Conference on Information Sciences and Systems,
March 22-24, 2006, Princeton, NJ

[Kra97a] H. Krawczyk, M. Bellare, R. Canetti. HMAC: Keyed-Hashing for Message
Authentication. Internet RFC 2104, February 1997.

[Mer89a] R. Merkle. One Way Hash Functions and DES. Proceedings of Crypto ‘89,
Springer, 1989.

[Ferg03] Niels Ferguson, Bruce Schneier, „Practical Cryptography“, John Wiley & Sons,
2003

[PSMD5] Peter Selinger, http://www.mscs.dal.ca/~selinger/md5collision/
[RFC1828] P. Metzger, „IP Authentication using Keyed MD5“, IETF RFC 1828, August

1995
[Riv92a] R. L. Rivest. The MD5 Message Digest Algorithm. Internet RFC 1321, April

1992.
[Rob96a] M. Robshaw. On Recent Results for MD2, MD4 and MD5. RSA Laboratories'

Bulletin, No. 4, November 1996.
[Yiqun05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu, "Collision Search Attacks on

SHA1", February 2005, <http://theory.csail.mit.edu/~yiqun/shanote.pdf>
[Yuv79a] G. Yuval. How to Swindle Rabin. Cryptologia, July 1979.

