## Network Security

## Chapter 4 Public Key Cryptography

"However, prior exposure to discrete mathematics will help the reader to appreciate the concepts presented here."
E. Amoroso in another context [Amo94]


## Public Key Cryptography

- General idea
- Use two different keys
- a private key $K_{\text {priv }}$
- a public key $K_{\text {pub }}$
- Given a ciphertext $c=E\left(K_{\text {pub }}, m\right)$ and $K_{\text {pub }}$ it should be infeasible to compute the corresponding plaintext:

$$
m=D\left(K_{\text {priv }}, c\right)=D\left(K_{\text {priv }}, E\left(K_{\text {pub }}, m\right)\right)
$$

- This implies that it should be infeasible to compute $K_{\text {priv }}$ when given $K_{\text {pub }}$
- The key $K_{\text {priv }}$ is only known to one entity A and is called A's private key $K_{\text {priv-A }}$
- The key $K_{\text {pub }}$ can be publicly announced and is called A's public key $K_{\text {pub-A }}$


## Public Key Cryptography (4)

- Applications:
- Encryption:
- If $B$ encrypts a message with $A$ 's public key $K_{\text {pub-A }}$, he can be sure that only $A$ can decrypt it using $K_{\text {priv-A }}$
- Signing:
- If $A$ encrypts a message with his own private key $K_{\text {priv-A }}$, everyone can verify this signature by decrypting it with A's public key $K_{\text {pub-A }}$
- Attention: It is essential, that if B wants to communicate with $A$, it needs to verify that he really knows A's public key and not the key of an adversary!

Public Key Cryptography (5)

- Design of asymmetric cryptosystems:
- Difficulty: Find an algorithm and a method to construct two keys $K_{\text {priv }}, K_{\text {pub }}$ such that it is not possible to decipher $E\left(K_{\text {pub }}, m\right)$ with the knowledge of $K_{\text {pub }}$
- Constraints:
- The key length should be "manageable"
- Encrypted messages should not be arbitrarily longer than unencrypted messages (we would tolerate a small constant factor)
- Encryption and decryption should not consume too much resources (time, memory)

Public Key Cryptography (6)

- Basic idea:

Take a problem in the area of mathematics or computer science that is hard to solve when knowing only $K_{\text {pub }}$,
but easy to solve when knowing $K_{\text {priv }}$

- Knapsack problems: basis of first working algorithms, which were unfortunately almost all proven to be insecure
- Factorization problem: basis of the RSA algorithm
- Discrete logarithm problem: basis of Diffie-Hellman and ElGamal


## The RSA Public Key Algorithm (1)

- The RSA algorithm was invented in 1977 by R. Rivest, A. Shamir and L. Adleman [RSA78] and is based on Euler's Theorem.


Ron Rivest


Adi Shamir


Leonard Adelaide

## Some Mathematical Background

- Definition: Euler's $\Phi$ Function:

Let $\Phi(n)$ denote the number of positive integers $m$ less than $n$, such that $m$ is relatively prime to $n$.
" $m$ is relatively prime to $n$ " i.e. the greatest common divisor (gcd) between $m$ and $n$ is one.

- Let $p$ prime, then $\{1,2, \ldots, p-1\}$ are relatively prime to $p, \Rightarrow \Phi(p)=p-1$
- Let $p$ and $q$ distinct prime numbers and $n=p \times q$, then $\Phi(\mathrm{n})=(\mathrm{p}-1) \times(\mathrm{q}-1)$
- Euler's Theorem:

Let $n$ and $a$ be positive and relatively prime integers,
$\Rightarrow \mathrm{a}^{\Phi(n)} \equiv 1$ MOD $n$

- Proof: see [Niv80a]

The RSA Public Key Algorithm (2)

- RSA Key Generation:
- Randomly choose $p, q$ distinct large primes (e.g. both $p$ and $q$ have 100 to 200 digits each)
- Calculate $\mathrm{n}=\mathrm{p} \times \mathrm{q}$, calculate $\Phi(\mathrm{n})=(\mathrm{p}-1) \times(\mathrm{q}-1) \quad$ (Euler's $\Phi$ Function)
- Pick $e \in Z$ such as $1<e<\Phi(n)$ and $e$ is relatively prime to $\Phi(n)$, i.e. $e$ and $\Phi(\mathrm{n})$ do not have a greater common divisor greater than 1
- Using the extended Euclidean algorithm to compute d, such that:
$\mathrm{e} \times \mathrm{d} \equiv 1$ MOD $\Phi(n)$
i.e., there exists $u \in Z$ such as
$\mathrm{e} \times \mathrm{d}=1+\mathrm{u} \times \Phi(n)$
- The public key is ( $n, e$ )
- The private key is $d$


## The RSA Public Key Algorithm (3)

- Encryption:
- Let $M$ be an integer that represents the message to be encrypted, with $M$ positive, smaller than $n$.
- Example: Encode with <blank> = 99, A = 10, B = 11, ..., Z = 35 So "HELLO" would be encoded as 1714212124.
If necessary, break M into blocks of smaller messages: 1714212124
- To encrypt, compute: $C \equiv M^{e}$ MOD $n$
- Decryption:
- To decrypt, compute: $M^{\prime} \equiv C^{d}$ MOD $n$

The RSA Public Key Algorithm (4)

- Why does RSA work:
- As $d \times e \equiv 1$ MOD $\Phi(n)$
$\Rightarrow \exists \mathrm{k} \in \mathrm{Z}: \quad(d \times e)=1+\mathrm{k} \times \Phi(n)$
we have: $M^{\prime} \equiv \mathrm{C}^{d}$ MOD n
$\equiv\left(M^{e}\right)^{d}$ MOD $n$
$\equiv M^{(e \times d)}$ MOD n
$\equiv M^{(1+k \times \Phi(n))} M O D \mathrm{n}$
$\equiv M \times\left(M^{\Phi(n)}\right)^{k}$ MOD n
$\equiv M \times 1^{\kappa}$ MOD $n \quad$ (Euler's Theorem)
$\equiv M$ MOD $\mathrm{n}=\mathrm{M}$


## RSA Security

- The security of the RSA algorithm lies in the difficulty of factoring $n=p \times q$, while it is easy to compute $\Phi(n)$ and then $d$, when $p$ and $q$ are known.
- This class will not teach why it is difficult to factor large n's, as this would require to dive deep into mathematics
- Please be aware that if you choose p and q in an "unfortunate" way, there might be algorithms that can factor more efficiently and your RSA encryption is not at all secure.
- Moral: If you are to implement RSA by yourself, ask a cryptographer to check your design
- Even better: If you have the choice, you should not implement RSA by yourself and instead a published open source implementation that is validated and well understood.



## Diffie-Hellman Key Exchange (1)

- The Diffie-Hellman key exchange was first published in the landmark paper [DH76], which also introduced the fundamental idea of asymmetric cryptography
- The DH exchange in its basic form enables two parties $A$ and $B$ to agree upon a shared secret using a public channel:
- Public channel means, that a potential attacker E (E stands for eavesdropper) can read all messages exchanged between $A$ and $B$
- It is important, that $A$ and $B$ can be sure, that the attacker is not able to alter messages, as in this case he might launch a man-in-the-middle attack
- The mathematical basis for the DH exchange is the problem of finding discrete logarithms in finite fields
- The DH exchange is not an encryption algorithm.


## Digital Signatures using RSA

- As $(d \times e)=(e \times d)$, the operation also works in the opposite direction, i.e. it is possible to encrypt with $d$ and decrypt with $e$
- This property allows to use the same keys $d$ and e for:
- Encryption:

When $B$ encrypts a message using $e$, which is public, only $A$ can decrypt it using $d$.

- Digital Signatures:

When $A$ encrypts a message using $d$, which is private, $B$ can decrypt it using $e$.
In this case, $B$ can be sure that it is $A$ who sent the message, since it is assumed that only $A$ possesses the private key $d$.

## Some Mathematical Background (1)

- Theorem/Definition: primitive root, generator
- Let $p$ be prime. Then $\exists \mathrm{g} \in\{1,2, \ldots, \mathrm{p}-1\}$ such as $\left\{g^{a} \mid 1 \leq a \leq(p-1)\right\}=\{1,2, \ldots, p-1\}$
i.e. by exponentiating $g$ you can obtain all numbers between 1 and ( $p-1$ )
- For the proof see [Niv80a]
- $g$ is called a primitive root (or generator) of $\{1,2, \ldots, p-1\}$
- Example: Let $p=7$. Then 3 is a primitive root of $\{1,2, \ldots, \mathrm{p}-1\}$

$$
\begin{aligned}
& 1 \equiv 3^{6} \text { MOD } 7,2 \equiv 3^{2} \text { MOD } 7,3 \equiv 3^{1} \text { MOD } 7,4 \equiv 3^{4} \text { MOD } 7, \\
& 5 \equiv 3^{5} \text { MOD } 7,6 \equiv 3^{3} \text { MOD } 7
\end{aligned}
$$

## Some Mathematical Background (2)

- Definition: discrete logarithm
- Let $p$ be prime, $g$ be a primitive root of $\{1,2, \ldots, p-1\}$ and $c$ be any element of $\{1,2, \ldots, p-1\}$. Then $\exists z$ such that: $\mathrm{g}^{2} \equiv \mathrm{c}$ MOD p
$z$ is called the discrete logarithm of $c$ modulo $p$ to the base $g$
- Example 6 is the discrete logarithm of 1 modulo 7 to the base 3 as $36 \equiv 1$ MOD 7
- The calculation of the discrete logarithm $z$ when given $g, c$, and $p$ is a computationally difficult problem and the asymptotical runtime of the best known algorithms for this problem is exponential in the bit-length of $p$


## Diffie-Hellman Key Exchange (3)

- If Alice $(A)$ and $\operatorname{Bob}(B)$ want to agree on a shared secret $K$ and their only means of communication is a public channel, they can proceed as follows:
- A chooses a prime $p$, a primitive root $g$ of $\{1,2, \ldots, p-1\}$ (how to find a primitive root $g$ is not treated here), and a random number $x$
- $A$ and $B$ can agree upon the values $p$ and $g$ prior to any communication, or $A$ can choose $p$ and $g$ and send them with his first message
- $A$ chooses a random number a:
- A computes $X=g^{a}$ MOD $p$ and sends $X$ to $B$
- B chooses a random number $b$
- $B$ computes $Y=g^{b} M O D p$ and sends $Y$ to $A$
- Both sides compute the common secret:
- A computes $K=Y^{a} M O D p$
- B computes $K^{\prime}=X^{b} M O D p$
- As $g^{(a \cdot b)}$ MOD $p=g^{(b \cdot a)}$ MOD $p$, it holds: $K=K^{\prime}$
- An attacker Eve who is listening to the public channel can only compute the secret $K$, if she is able to compute either $a$ or $b$ which are the discrete logarithms of $X$ and $Y$ modulo $p$ to the base $g$.

Diffie-Hellman Key Exchange (2)


## The El Gamal Algorithm

- The ElGamal algorithm was invented by an Egyptian cryptographer "Tahar El Gamal"

- The ElGamal algorithm can be used for both, encryption and digital signatures (see also [EIG85a])
- Like the DH exchange it is based on the difficulty of computing discrete logarithms in finite fields

Elliptic Curve Cryptography (ECC)

- Motivation: we assume that RSA is currently the most widely implemented algorithm for Public Key Cryptography.
- However, an alternative is required due to the developments in the area of primality testing, factorization and computation of discrete logarithms that led to techniques that allow to solve these problems in a more efficient way
- ECC is based on a finite field of points.
- Points are presented within a 2-dimensional coordinate system: (x,y)
- All points within the elliptic curve satisfy an equation of this type:

$$
y^{2}=x^{3}+a x+b
$$

Elliptic Curve Cryptography (ECC)

- Given this set of points an additive operator can be defined

- A multiplication of a point $P$ by a number $n$ is simply the addition of $P$ to itself $n$ times

$$
\mathrm{Q}=\mathrm{nP}=\mathrm{P}+\mathrm{P}+\ldots+\mathrm{P}
$$

- The problem of determining n , given P and Q is called the elliptic curve's discrete logarithm problem (ECDLP)
- The ECDLP is believed to be hard in the general class obtained from the group of points on an elliptic curve over a finite field
- The use of ECC is getting more and more widespread
- e.g. the implementation of the SSL/TLS protocol „OpenSSL"
- One of the advantages compared to RSA and El Gamal is the compact key length


## Digital Signature Standard (DSS)

- Recall that the NIST has standardized algorithms for symmetric encryption, it has also standardized algorithms for digital signature generation
- that can be used for the protection of messages, and for the verification and validation of those digital signatures.
- Three techniques are allowed:
- Digital Signature Algorithm (DSA)
- Security is based on the difficulty of the discrete logarithm problem
- Builds on the El Gamal digital algorithm
- RSA
- Elliptic Curve Digital Signatue Algorithm (ECDSA)
- Furthermore, a cryptographic hash function (SHA-1) is used for generating a hash value of the message to be signed.
- E.g. Digital signature of message $M$ using RSA:

$$
S \equiv H^{d}(M) \text { MOD } n
$$

## Key Length (1)

- It is difficult to give good recommendations for appropriate and secure key lengths
- Hardware is getting faster (Remember Moore's law)
- So key lengths that might be considered as secure this year, might become insecure in 2 years
- Adi Shamir published in 2003 [Sham03] a concept for breaking 1024 bits RSA key with a special hardware within a year (hardware costs were estimated at 10 Millions US Dollars)
- Bruce Schneier recommends in [Fer03] a minimal length of 2048 bits for RSA "if you want to protect your data for 20 years"
- He recommends also the use of 4096 and up to 8192 bits RSA keys
- Comparison of the security of different cryptographic algorithms with different key lengths
- Note: this is an informal way of comparing the complexity of breaking an encryption algorithm
- So please be careful when using this table
- Note also: symmetric algorithms are supposed to have no better attack that breaks it other than brute-force

| Symmetric | RSA/EI Gamal | ECC |
| :---: | :---: | :---: |
| 56 | 622 | 105 |
| 64 | 777 | 120 |
| 74 | 1024 | 139 |
| 103 | 2054 | 194 |
| 128 | 3214 | 256 |
| 192 | 7680 | 384 |
| 256 | 15360 | 512 |
| Source [Bless05] page 89 |  |  |


| Algorithm | Keysize | Signs/s | Verify/s |
| :--- | :--- | :--- | :--- |
| RSA | 512 | 342 | 3287 |
| DSA | 512 | 331 | 273 |
| RSA | 1024 | 62 | 1078 |
| DSA | 1024 | 112 | 94 |
| RSA | 2048 | 10 | 320 |
| DSA | 2048 | 34 | 27 |

Digital signature performance (Pentium II 400/OpenSSL) Source [Resc00] page: 182

## Summary

- Public key cryptography allows to use two different keys for:
- Encryption / Decryption
- Digital Signing / Verifying
- Some practical algorithms that are still considered to be secure:
- RSA, based on the difficulty of factoring
- Diffie-Hellman (not an asymmetric algorithm, but a key agreement protocol)
- ElGamal, like DH based on the difficulty of computing discrete logarithms
- As their security is entirely based on the difficulty of certain number theory problems, algorithmic advances constitute their biggest threat
- One of the reasons why considerable effort and progress has been seen in ECC
- Practical considerations:
- Public key cryptographic operations are about magnitudes slower than symmetric ones
- Public cryptography is often just used to exchange a symmetric session key securely, which is on turn will be used for to secure the data itself.


## Additional References

[Bless05] R. Bless, S. Mink, E.-O. Blaß, M. Conrad, H.-J. Hof, K. Kutzner, M. Schöller: "Sichere M. Bressoud Factorization and Primality Testing Springer, 1988
[Cor90a] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms. The MIT Press,
[DH76] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory, IT-22 , pp. 644-654, 1976.
[DSS] National Institute of Standards and Technology (NIST). FIPS 186--3, DRAFT Digital Signature Standard (DSS), March 2006.
[EIG85a] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete Logarithms. IEEE Transactions on Information Theory, Vol.31, Nr.4, pp. 469-472, July
[Ferg03] Niels Ferguson, B. Schneier: "Practical Cryptography", Wiley, 1st edition, March 2003
[Kob87a] N. Koblitz. A Course in Number Theory and Cryptography. Springer, 1987.
[Men93a] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, A. J. Menezes. Eliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers,
1993. 1. Niven, H. Zuckerman. An Introduction to the Theory of Numbers. John Wiley \& Sons, $4^{\text {th }}$
edition, 1980.
[Niv80a] edition, 1980.
$\begin{array}{ll}\text { [Resc00] } & \text { Eric Rescorla, „SSL and TLS: Designing and Building Secure Systems", Addison-Wesley, } \\ \text { 2000 } \\ \text { [RSA78] } & \text { R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digital Signatures and Public }\end{array}$
[RSA78] $\quad \begin{aligned} & \text { R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digita } \\ & \text { Key Cryptosystems. Communications of the ACM, February } 1978 .\end{aligned}$
[Sham03] Adi Shamir, Eran Tromer, "On the cost of factoring RSA-1024", RSA Cryptobytes vol. 6,
2003 2003

