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Chapter 4
Public Key Cryptography

“However, prior exposure to discrete mathematics
will help the reader to appreciate the concepts
presented here.”

E. Amoroso in another context [Amo94]
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;A"“ Public Key Cryptography

o General idea:
= Use two different keys
* aprivate key Ky,

* apublic key K,

= Given a ciphertext ¢c = E(K
compute the corresponding plaintext:
m = D(Kpriy s €) = D(Kpriy s E(Kpup s M))
* This implies that it should be infeasible to compute K, when given K,
= The key K
K

= The key K, can be publicly announced and is called A’s public key K,

oub - M) and K, it should be infeasible to

oriv IS ONly known to one entity A and is called A's private key

priv-A

iﬁ"“ Public Key Cryptography (4)

a Applications:

= Encryption:
« If B encrypts a message with A’s public key K,.» , he can be sure that only A
can decrypt it using Koriv-A
= Signing:
« If A encrypts a message with his own private key K., everyone can verify
this signature by decrypting it with A’s public key K, 5
= Attention: It is essential, that if B wants to communicate with A, it needs to
verify that he really knows A’s public key and not the key of an adversary!




;A"“ Public Key Cryptography (5)

o Design of asymmetric cryptosystems:

= Difficulty: Find an algorithm and a method to construct two keys K
such that it is not possible to decipher E(K
K
= Constraints:

Kpub
m) with the knowledge of

priv !
pub ?
pub

» The key length should be “manageable”

» Encrypted messages should not be arbitrarily longer than unencrypted
messages (we would tolerate a small constant factor)

» Encryption and decryption should not consume too much resources (time,
memory)

iﬁ'"‘ Public Key Cryptography (6)

o Basic idea:
Take a problem in the area of mathematics or computer science that is
hard to solve when knowing only K
but easy to solve when knowing K

pub !

priv

= Knapsack problems: basis of first working algorithms, which were
unfortunately almost all proven to be insecure

= Factorization problem: basis of the RSA algorithm
= Discrete logarithm problem: basis of Diffie-Hellman and EIGamal




'f‘ The RSA Public Key Algorithm (1) I

o The RSA algorithm was invented in 1977 by R. Rivest, A. Shamir and
L. Adleman [RSA78] and is based on Euler's Theorem.

Adi Shamir

Ron Rivest Leonard Adelaide
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"v‘ Some Mathematical Background I

o Definition: Euler's ® Function:

Let ®(n) denote the number of positive integers m less than n, such that m is
relatively prime to n.

“m is relatively prime to n” i.e. the greatest common divisor (gcd) between m
and n is one.

Q Letpprime, then {1,2,...,p-1} are relatively prime to p, = ®(p) = p-1
o Letpand q distinct prime numbers and n = p x g, then
®(n) = (p-1) x (9-1)

o Euler's Theorem:

Let n and a be positive and relatively prime integers,

= acD(n) = 1 MOD n
+ Proof: see [Niv80a]
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%@ The RSA Public Key Algorithm (2)

0 RSA Key Generation:

= Randomly choose p, g distinct large primes (e.g. both p and g have 100 to
200 digits each)

= Calculate n = p x q, calculate ®(n) = (p-1) x (g-1) (Euler’'s @ Function)

= Picke € Zsuchas 1<e<®(n)and e is relatively prime to ®(n), i.e. e and
®(n) do not have a greater common divisor greater than 1

= Using the extended Euclidean algorithm to compute d, such that:
exd=1MOD ®(n)
i.e., there exists u € Z such as exd=1+uxd(n)

= The public key is (n, e)

= The private key is d

%@ The RSA Public Key Algorithm (3)

a Encryption:
= Let M be an integer that represents the message to be encrypted, with M
positive, smaller than n.
» Example: Encode with <blank>=99, A=10,B =11, ..., Z2=35
So “HELLO” would be encoded as 1714212124,
If necessary, break M into blocks of smaller messages: 17142 12124

= To encrypt, compute: C = Me¢ MOD n

a Decryption:
= To decrypt, compute: M’ = C4 MOD n




%@ The RSA Public Key Algorithm (4)

o Why does RSA work:

= Asdxe=1MOD ®(n)

=3dkeZ (dxe)=1+kxd(n)

we have: M’ = C4 MOD n
=(Me)d MOD n
= MEx OMOD n
=M@Q+kxa(n) MOD n
=M x (M?2(M)x MOD n
=M x 1KkMOD n (Euler's Theorem)
=MMOD n=M

iﬁ"“ RSA Security

a The security of the RSA algorithm lies in the difficulty of factoring

n =p x g, while it is easy to compute ®(n) and then d, when p and q are
known.

a This class will not teach why it is difficult to factor large n’s, as this
would require to dive deep into mathematics

o Please be aware that if you choose p and q in an “unfortunate” way,
there might be algorithms that can factor more efficiently and your RSA
encryption is not at all secure.

a Moral: If you are to implement RSA by yourself, ask a cryptographer to
check your design

o Even better: If you have the choice, you should not implement RSA by
yourself and instead a published open source implementation that is
validated and well understood.




;g'.‘ Digital Signatures using RSA
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iﬁ".‘ Digital Signatures using RSA

o As(dxe)=(exd),the operation also works in the opposite direction,
i.e. it is possible to encrypt with d and decrypt with e

a This property allows to use the same keys d and e for:

= Encryption:
When B encrypts a message using e, which is public, only A can decrypt it
using d.

= Digital Signatures:
When A encrypts a message using d, which is private, B can decrypt it
using e.
In this case, B can be sure that it is A who sent the message,
since it is assumed that only A possesses the private key d.




;A".‘ Diffie-Hellman Key Exchange (1)

a The Diffie-Hellman key exchange was first published in the landmark
paper [DH76], which also introduced the fundamental idea of
asymmetric cryptography

a The DH exchange in its basic form enables two parties A and B to
agree upon a shared secret using a public channel:

= Public channel means, that a potential attacker E (E stands for
eavesdropper) can read all messages exchanged between A and B

= |tis important, that A and B can be sure, that the attacker is not able to alter
messages, as in this case he might launch a man-in-the-middle attack

» The mathematical basis for the DH exchange is the problem of finding
discrete logarithms in finite fields

» The DH exchange is not an encryption algorithm.

iﬁ! Some Mathematical Background (1)

o Theorem/Definition: primitive root, generator

= Letp be prime. Then3 g € {1,2,...,p-1} such as
{028]1<a<(p-1)}=4{12,...,p-1}

i.e. by exponentiating g you can obtain all numbers between 1 and (p -1)

= For the proof see [Niv80a]

= gis called a primitive root (or generator) of {1,2,...,p-1}

a Example: Let p = 7. Then 3 is a primitive root of {1,2,...,p-1}
1=3MOD 7,2=32MOD 7,3=3'MOD 7,4=3*MOD 7,
5=3°MOD 7,6=33MOD 7




;A"“ Some Mathematical Background (2)

a Definition: discrete logarithm

= Let p be prime, g be a primitive root of {1,2,...,p-1} and ¢ be any element of
{1,2,...,p-1}. Then 3 z such that: gz=c MOD p

z is called the discrete logarithm of ¢ modulo p to the base g

= Example 6 is the discrete logarithm of 1 modulo 7 to the base 3 as
36=1MOD 7

= The calculation of the discrete logarithm z when given g, ¢, and p is a
computationally difficult problem and the asymptotical runtime of the best
known algorithms for this problem is exponential in the bit-length of p

w4 Diffie-Hellman Key Exchange (2)
Whitfield Martin E.
Diffie Hellman

Generate random a < p
Compute X = g2 MOD p

Generate random b < p
Compute Y = g° MOD p

/ Compute K =Xt MOD p

KCompute K =Ya2MOD p/ \ /




;A"“ Diffie-Hellman Key Exchange (3)

a If Alice (A) and Bob (B) want to agree on a shared secret K and their only
means of communication is a public channel, they can proceed as follows:

a A chooses a prime p, a primitive root g of {1,2,...,p-1} (how to find a primitive
root g is not treated here), and a random number x

o A and B can agree upon the values p and g prior to any communication, or A
can choose p and g and send them with his first message

A chooses a random number a:
A computes X = g2 MOD p and sends X to B
B chooses a random number b
B computes Y = gt MOD p and sends Y to A

Both sides compute the common secret:

= A computes K=Y2MOD p

* B computes K' = X? MOD p

= Asg@-bMOD p=g®-3d MOD p, it holds: K =K’
0 An attacker Eve who is listening to the public channel can only compute the
secret K, if she is able to compute either a or b which are the discrete
logarithms of X and Y modulo p to the base g.

0O 00D O

;ﬁ"“ The El Gamal Algorithm

o The ElGamal algorithm was invented by an Egyptian cryptographer
“Tahar El Gamal”

a The ElGamal algorithm can be used for both, encryption and digital
signatures (see also [EIG85a] )

o Like the DH exchange it is based on the difficulty of computing discrete
logarithms in finite fields




i{"‘ Elliptic Curve Cryptography (ECC)

o Motivation: we assume that RSA is currently the most widely
implemented algorithm for Public Key Cryptography.

a However, an alternative is required due to the developments in the
area of primality testing, factorization and computation of discrete
logarithms that led to techniques that allow to solve these problems in
a more efficient way

o ECC is based on a finite field of points.
a Points are presented within a 2-dimensional coordinate system: (x,y)

a All points within the elliptic curve satisfy an equation of this type:

y2=x3+ax+b

5‘{"‘ Elliptic Curve Cryptography (ECC)

a

o Given this set of points an additive operator can be defined

P+Q+R=0 P+Q+Q=0 P+Q+0=0 P+P+0=0

o A multiplication of a point P by a number n is simply the addition of P to itself n times
Q=nP=P+P+..+P
o The problem of determining n, given P and Q is called the elliptic curve’s discrete
logarithm problem (ECDLP)

o The ECDLP is believed to be hard in the general class obtained from the group of points
on an elliptic curve over a finite field

o The use of ECC is getting more and more widespread
= e.g. the implementation of the SSL/TLS protocol ,OpenSSL*

= One of the advantages compared to RSA and El Gamal is the compact key length




iﬁ".‘ Digital Signature Standard (DSS) I

o Recall that the NIST has standardized algorithms for symmetric
encryption, it has also standardized algorithms for digital signature
generation

a that can be used for the protection of messages, and for the
verification and validation of those digital signatures.

o Three techniques are allowed:

= Digital Signature Algorithm (DSA)
» Security is based on the difficulty of the discrete logarithm problem
 Builds on the ElI Gamal digital algorithm

= RSA
= Elliptic Curve Digital Signatue Algorithm (ECDSA)
o Furthermore, a cryptographic hash function (SHA-1) is used for
generating a hash value of the message to be signed.
a E.g. Digital signature of message M using RSA:
S = HY(M) MOD n

eensemsmmmcmes =

;ﬁ"“ Key Length (1) I

a Itis difficult to give good recommendations for appropriate and secure
key lengths

o Hardware is getting faster (Remember Moore's law)

o So key lengths that might be considered as secure this year, might
become insecure in 2 years

o Adi Shamir published in 2003 [Sham03] a concept for breaking 1024
bits RSA key with a special hardware within a year (hardware costs
were estimated at 10 Millions US Dollars)

a Bruce Schneier recommends in [Fer03] a minimal length of 2048 bits
for RSA “if you want to protect your data for 20 years”

o He recommends also the use of 4096 and up to 8192 bits RSA keys




;A".‘ Key Length (2)

o Comparison of the security of different cryptographic
algorithms with different key lengths

» Note: this is an informal way of comparing the complexity of
breaking an encryption algorithm

» So please be careful when using this table

* Note also: symmetric algorithms are supposed to have no better
attack that breaks it other than brute-force

Symmetric

RSA/El Gamal

ECC

56

622

105

64

e

120

74

1024

139

103

2054

194

128

3214

256

192

7680

384

256

15360

512

Source [Bless05] page 89

iﬁ"“ RSA vs. DSA Performance

Algorithm | Keysize | Signs/s Verify/s
RSA 512 342 3287
DSA 512 331 273
RSA 1024 62 1078
DSA 1024 112 94
RSA 2048 10 320
DSA 2048 34 27

Digital signature performance (Pentium Il 400/OpenSSL)
Source [Resc00] page: 182




X A
gi(. Summary

a Public key cryptography allows to use two different keys for:
= Encryption / Decryption
= Digital Signing / Verifying
o Some practical algorithms that are still considered to be secure:
» RSA, based on the difficulty of factoring
= Diffie-Hellman (not an asymmetric algorithm, but a key agreement protocol)
= ElGamal, like DH based on the difficulty of computing discrete logarithms
o As their security is entirely based on the difficulty of certain number
theory problems, algorithmic advances constitute their biggest threat
o One of the reasons why considerable effort and progress has been seen
in ECC
a Practical considerations:

= Public key cryptographic operations are about magnitudes slower than
symmetric ones

= Public cryptography is often just used to exchange a symmetric session key
securely, which is on turn will be used for to secure the data itself.
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