
Chair for Network Architectures and Services
Department of Informatics
TU München – Prof. Carle

Network Security
Chapter 4

Public Key Cryptography

“However, prior exposure to discrete mathematics
will help the reader to appreciate the concepts
presented here.”
E. Amoroso in another context [Amo94]

Network Security, WS 2008/09, Chapter 4 2

Encryption/Decryption using Public Key Cryptography

Network Security, WS 2008/09, Chapter 4 3

Public Key Cryptography

General idea:
Use two different keys

• a private key Kpriv

• a public key Kpub

Given a ciphertext c = E(Kpub , m) and Kpub it should be infeasible to
compute the corresponding plaintext:

m = D(Kpriv , c) = D(Kpriv , E(Kpub , m))

• This implies that it should be infeasible to compute Kpriv when given Kpub

The key Kpriv is only known to one entity A and is called A’s private key
Kpriv-A

The key Kpub can be publicly announced and is called A’s public key Kpub-A

Network Security, WS 2008/09, Chapter 4 4

Public Key Cryptography (4)

Applications:
Encryption:

• If B encrypts a message with A’s public key Kpub-A , he can be sure that only A
can decrypt it using Kpriv-A

Signing:
• If A encrypts a message with his own private key Kpriv-A, everyone can verify

this signature by decrypting it with A’s public key Kpub-A

Attention: It is essential, that if B wants to communicate with A, it needs to
verify that he really knows A’s public key and not the key of an adversary!

Network Security, WS 2008/09, Chapter 4 5

Public Key Cryptography (5)

Design of asymmetric cryptosystems:
Difficulty: Find an algorithm and a method to construct two keys Kpriv , Kpub

such that it is not possible to decipher E(Kpub , m) with the knowledge of
Kpub

Constraints:
• The key length should be “manageable”
• Encrypted messages should not be arbitrarily longer than unencrypted

messages (we would tolerate a small constant factor)
• Encryption and decryption should not consume too much resources (time,

memory)

Network Security, WS 2008/09, Chapter 4 6

Public Key Cryptography (6)

Basic idea:
Take a problem in the area of mathematics or computer science that is
hard to solve when knowing only Kpub ,
but easy to solve when knowing Kpriv

Knapsack problems: basis of first working algorithms, which were
unfortunately almost all proven to be insecure
Factorization problem: basis of the RSA algorithm
Discrete logarithm problem: basis of Diffie-Hellman and ElGamal

Network Security, WS 2008/09, Chapter 4 7

The RSA Public Key Algorithm (1)

The RSA algorithm was invented in 1977 by R. Rivest, A. Shamir and
L. Adleman [RSA78] and is based on Euler’s Theorem.

Ron Rivest

Adi Shamir

Leonard Adelaide

Network Security, WS 2008/09, Chapter 4 8

Some Mathematical Background

Definition: Euler’s Φ Function:
Let Φ(n) denote the number of positive integers m less than n, such that m is
relatively prime to n.

“m is relatively prime to n” i.e. the greatest common divisor (gcd) between m
and n is one.

Let p prime, then {1,2,…,p-1} are relatively prime to p, ⇒ Φ(p) = p-1
Let p and q distinct prime numbers and n = p × q, then

Φ(n) = (p-1) × (q-1)

Euler’s Theorem:

Let n and a be positive and relatively prime integers,

⇒ aΦ(n) ≡ 1 MOD n
• Proof: see [Niv80a]

Network Security, WS 2008/09, Chapter 4 9

The RSA Public Key Algorithm (2)

RSA Key Generation:
Randomly choose p, q distinct large primes (e.g. both p and q have 100 to
200 digits each)

Calculate n = p × q, calculate Φ(n) = (p-1) × (q-1) (Euler’s Φ Function)

Pick e ∈ Z such as 1 < e < Φ(n) and e is relatively prime to Φ(n), i.e. e and
Φ(n) do not have a greater common divisor greater than 1

Using the extended Euclidean algorithm to compute d, such that:

e × d ≡ 1 MOD Φ(n)

i.e., there exists u ∈ Z such as e × d = 1 + u × Φ(n)

The public key is (n, e)

The private key is d

Network Security, WS 2008/09, Chapter 4 10

The RSA Public Key Algorithm (3)

Encryption:
Let M be an integer that represents the message to be encrypted, with M
positive, smaller than n.

• Example: Encode with <blank> = 99, A = 10, B = 11, ..., Z = 35
So “HELLO” would be encoded as 1714212124.
If necessary, break M into blocks of smaller messages: 17142 12124

To encrypt, compute: C ≡ Me MOD n

Decryption:
To decrypt, compute: M’ ≡ Cd MOD n

Network Security, WS 2008/09, Chapter 4 11

The RSA Public Key Algorithm (4)

Why does RSA work:
As d × e ≡ 1 MOD Φ(n)

⇒ ∃ k ∈ Z: (d × e) = 1 + k × Φ(n)
we have: M’ ≡ Cd MOD n

≡ (Me) d MOD n
≡ M(e× d) MOD n
≡ M(1 + k × Φ(n)) MOD n
≡ M × (MΦ (n))k MOD n
≡ M × 1k MOD n (Euler’s Theorem)
≡ M MOD n = M

Network Security, WS 2008/09, Chapter 4 12

RSA Security

The security of the RSA algorithm lies in the difficulty of factoring
n = p × q, while it is easy to compute Φ(n) and then d, when p and q are
known.
This class will not teach why it is difficult to factor large n’s, as this
would require to dive deep into mathematics
Please be aware that if you choose p and q in an “unfortunate” way,
there might be algorithms that can factor more efficiently and your RSA
encryption is not at all secure.
Moral: If you are to implement RSA by yourself, ask a cryptographer to
check your design
Even better: If you have the choice, you should not implement RSA by
yourself and instead a published open source implementation that is
validated and well understood.

Network Security, WS 2008/09, Chapter 4 13

Digital Signatures using RSA

Network Security, WS 2008/09, Chapter 4 14

Digital Signatures using RSA

As (d × e) = (e × d) , the operation also works in the opposite direction,
i.e. it is possible to encrypt with d and decrypt with e

This property allows to use the same keys d and e for:
Encryption:
When B encrypts a message using e, which is public, only A can decrypt it
using d.
Digital Signatures:
When A encrypts a message using d, which is private, B can decrypt it
using e.
In this case, B can be sure that it is A who sent the message,
since it is assumed that only A possesses the private key d.

Network Security, WS 2008/09, Chapter 4 15

Diffie-Hellman Key Exchange (1)

The Diffie-Hellman key exchange was first published in the landmark
paper [DH76], which also introduced the fundamental idea of
asymmetric cryptography

The DH exchange in its basic form enables two parties A and B to
agree upon a shared secret using a public channel:

Public channel means, that a potential attacker E (E stands for
eavesdropper) can read all messages exchanged between A and B
It is important, that A and B can be sure, that the attacker is not able to alter
messages, as in this case he might launch a man-in-the-middle attack
The mathematical basis for the DH exchange is the problem of finding
discrete logarithms in finite fields
The DH exchange is not an encryption algorithm.

Network Security, WS 2008/09, Chapter 4 16

Some Mathematical Background (1)

Theorem/Definition: primitive root, generator

Let p be prime. Then ∃ g ∈ {1,2,…,p-1} such as

{ga | 1 ≤ a ≤ (p-1) } = {1,2,…,p-1}

i.e. by exponentiating g you can obtain all numbers between 1 and (p -1)

For the proof see [Niv80a]

g is called a primitive root (or generator) of {1,2,…,p-1}

Example: Let p = 7. Then 3 is a primitive root of {1,2,…,p-1}

1 ≡ 36 MOD 7, 2 ≡ 32 MOD 7, 3 ≡ 31 MOD 7, 4 ≡ 34 MOD 7,

5 ≡ 35 MOD 7, 6 ≡ 33 MOD 7

Network Security, WS 2008/09, Chapter 4 17

Some Mathematical Background (2)

Definition: discrete logarithm
Let p be prime, g be a primitive root of {1,2,…,p-1} and c be any element of
{1,2,…,p-1}. Then ∃ z such that: gz ≡ c MOD p
z is called the discrete logarithm of c modulo p to the base g
Example 6 is the discrete logarithm of 1 modulo 7 to the base 3 as
36 ≡ 1 MOD 7
The calculation of the discrete logarithm z when given g, c, and p is a
computationally difficult problem and the asymptotical runtime of the best
known algorithms for this problem is exponential in the bit-length of p

Network Security, WS 2008/09, Chapter 4 18

Diffie-Hellman Key Exchange (2)

Generate random a < p
Compute X = ga MOD p

Generate random b < p
Compute Y = gb MOD p

Compute K = Xb MOD p

Compute K = Ya MOD p

(p, g, X)

Y

Whitfield
Diffie

Martin E.
Hellman

Network Security, WS 2008/09, Chapter 4 19

Diffie-Hellman Key Exchange (3)

If Alice (A) and Bob (B) want to agree on a shared secret K and their only
means of communication is a public channel, they can proceed as follows:
A chooses a prime p, a primitive root g of {1,2,…,p-1} (how to find a primitive
root g is not treated here), and a random number x
A and B can agree upon the values p and g prior to any communication, or A
can choose p and g and send them with his first message
A chooses a random number a:
A computes X = ga MOD p and sends X to B
B chooses a random number b
B computes Y = gb MOD p and sends Y to A
Both sides compute the common secret:

A computes K = Ya MOD p
B computes K’ = Xb MOD p
As g(a . b) MOD p = g(b . a) MOD p, it holds: K = K’

An attacker Eve who is listening to the public channel can only compute the
secret K, if she is able to compute either a or b which are the discrete
logarithms of X and Y modulo p to the base g.

Network Security, WS 2008/09, Chapter 4 20

The El Gamal Algorithm

The ElGamal algorithm was invented by an Egyptian cryptographer
“Tahar El Gamal”

The ElGamal algorithm can be used for both, encryption and digital
signatures (see also [ElG85a])
Like the DH exchange it is based on the difficulty of computing discrete
logarithms in finite fields

Network Security, WS 2008/09, Chapter 4 21

Elliptic Curve Cryptography (ECC)

Motivation: we assume that RSA is currently the most widely
implemented algorithm for Public Key Cryptography.

However, an alternative is required due to the developments in the
area of primality testing, factorization and computation of discrete
logarithms that led to techniques that allow to solve these problems in
a more efficient way

ECC is based on a finite field of points.
Points are presented within a 2-dimensional coordinate system: (x,y)

All points within the elliptic curve satisfy an equation of this type:
y2 = x3 + ax + b

Network Security, WS 2008/09, Chapter 4 22

Elliptic Curve Cryptography (ECC)

Given this set of points an additive operator can be defined

A multiplication of a point P by a number n is simply the addition of P to itself n times
Q = nP = P + P + … + P

The problem of determining n, given P and Q is called the elliptic curve’s discrete
logarithm problem (ECDLP)

The ECDLP is believed to be hard in the general class obtained from the group of points
on an elliptic curve over a finite field

The use of ECC is getting more and more widespread
e.g. the implementation of the SSL/TLS protocol „OpenSSL“

One of the advantages compared to RSA and El Gamal is the compact key length

Network Security, WS 2008/09, Chapter 4 23

Digital Signature Standard (DSS)

Recall that the NIST has standardized algorithms for symmetric
encryption, it has also standardized algorithms for digital signature
generation
that can be used for the protection of messages, and for the
verification and validation of those digital signatures.
Three techniques are allowed:

Digital Signature Algorithm (DSA)
• Security is based on the difficulty of the discrete logarithm problem
• Builds on the El Gamal digital algorithm

RSA
Elliptic Curve Digital Signatue Algorithm (ECDSA)

Furthermore, a cryptographic hash function (SHA-1) is used for
generating a hash value of the message to be signed.
E.g. Digital signature of message M using RSA:

S ≡ Hd(M) MOD n

Network Security, WS 2008/09, Chapter 4 24

Key Length (1)

It is difficult to give good recommendations for appropriate and secure
key lengths
Hardware is getting faster (Remember Moore's law)
So key lengths that might be considered as secure this year, might
become insecure in 2 years
Adi Shamir published in 2003 [Sham03] a concept for breaking 1024
bits RSA key with a special hardware within a year (hardware costs
were estimated at 10 Millions US Dollars)
Bruce Schneier recommends in [Fer03] a minimal length of 2048 bits
for RSA “if you want to protect your data for 20 years”
He recommends also the use of 4096 and up to 8192 bits RSA keys

Network Security, WS 2008/09, Chapter 4 25

Key Length (2)

Comparison of the security of different cryptographic
algorithms with different key lengths

Note: this is an informal way of comparing the complexity of
breaking an encryption algorithm
So please be careful when using this table
Note also: symmetric algorithms are supposed to have no better
attack that breaks it other than brute-force

51215360256

3847680192

2563214128

1942054103

139102474

12077764

10562256

ECCRSA/El GamalSymmetric

Source [Bless05] page 89

Network Security, WS 2008/09, Chapter 4 26

RSA vs. DSA Performance

27342048DSA

320102048RSA

941121024DSA

1078621024RSA

273331512DSA

3287342512RSA

Verify/sSigns/sKeysizeAlgorithm

Digital signature performance (Pentium II 400/OpenSSL)
Source [Resc00] page: 182

Network Security, WS 2008/09, Chapter 4 27

Summary

Public key cryptography allows to use two different keys for:
Encryption / Decryption
Digital Signing / Verifying

Some practical algorithms that are still considered to be secure:
RSA, based on the difficulty of factoring
Diffie-Hellman (not an asymmetric algorithm, but a key agreement protocol)
ElGamal, like DH based on the difficulty of computing discrete logarithms

As their security is entirely based on the difficulty of certain number
theory problems, algorithmic advances constitute their biggest threat
One of the reasons why considerable effort and progress has been seen
in ECC
Practical considerations:

Public key cryptographic operations are about magnitudes slower than
symmetric ones
Public cryptography is often just used to exchange a symmetric session key
securely, which is on turn will be used for to secure the data itself.

Network Security, WS 2008/09, Chapter 4 28

Additional References

[Bless05] R. Bless, S. Mink, E.-O. Blaß, M. Conrad, H.-J. Hof, K. Kutzner, M. Schöller: "Sichere
Netzwerkkommunikation", Springer, 2005, ISBN: 3-540-21845-9

[Bre88a] D. M. Bressoud. Factorization and Primality Testing. Springer, 1988.
[Cor90a] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to Algorithms. The MIT Press,

1990.
[DH76] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE Transactions on

Information Theory, IT-22 , pp. 644-654, 1976.
[DSS] National Institute of Standards and Technology (NIST). FIPS 186--3, DRAFT Digital

Signature Standard (DSS), March 2006.
[ElG85a] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete

Logarithms. IEEE Transactions on Information Theory, Vol.31, Nr.4, pp. 469-472, July
1985.

[Ferg03] Niels Ferguson, B. Schneier: “Practical Cryptography”, Wiley, 1st edition, March 2003
[Kob87a] N. Koblitz. A Course in Number Theory and Cryptography. Springer, 1987.
[Men93a] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers,

1993.
[Niv80a] I. Niven, H. Zuckerman. An Introduction to the Theory of Numbers. John Wiley & Sons, 4th

edition, 1980.
[Resc00] Eric Rescorla, „SSL and TLS: Designing and Building Secure Systems“, Addison-Wesley,

2000
[RSA78] R. Rivest, A. Shamir und L. Adleman. A Method for Obtaining Digital Signatures and Public

Key Cryptosystems. Communications of the ACM, February 1978.
[Sham03] Adi Shamir, Eran Tromer, “On the cost of factoring RSA-1024”, RSA Cryptobytes vol. 6,

2003

