

Chair for Network Architectures and Services Department of Informatics TU München – Prof. Carle

Network Security

Chapter 2 Basics of Cryptography

- Overview of Cryptographic Algorithms
- Attacking Cryptographic Algorithms
- Historical Approaches
- Foundations of Modern Cryptography

Attacking cryptography (1): Cryptanalysis

- Cryptanalysis is the process of attempting to discover the plaintext and / or the key
- □ Types of cryptanalysis:
 - Ciphertext only: specific patterns of the plaintext may remain in the ciphertext (frequencies of letters, digraphs, etc.)
 - Known ciphertext / plaintext pairs
 - Chosen plaintext or chosen ciphertext
 - Newer developments: differential cryptanalysis, linear cryptanalysis
- Cryptanalysis of public key cryptography:
 - The fact that one key is publicly exposed may be exploited
 - Public key cryptanalysis is more aimed at breaking the cryptosystem itself and is closer to pure mathematical research than to classical cryptanalysis
 - Important directions:
 - Computation of discrete logarithms
 - Factorization of large integers

Cryptographic algorithms: overview

- During this course two main applications of cryptographic algorithms are of principal interest:
 - Encryption of data: transforms plaintext data into ciphertext in order to conceal its' meaning
 - Signing of data: computes a check value or digital signature to a given plain- or ciphertext, that can be verified by some or all entities being able to access the signed data
- Some cryptographic algorithms can be used for both purposes, some are only secure and / or efficient for one of them.
- Principal categories of cryptographic algorithms:
 - Symmetric cryptography using 1 key for en-/decryption or signing/checking
 - Asymmetric cryptography using 2 different keys for en-/decryption or signing/checking
 - Cryptographic hash functions using 0 keys (the "key" is not a separate input but "appended" to or "mixed" with the data).

Network Security, WS 2008/09

Attacking cryptography (2): brute force attack

- □ The *brute force attack* tries every possible key until it finds an intelligible plaintext:
 - Every cryptographic algorithm can in theory be attacked by brute force
 - On average, half of all possible keys will have to be tried

Average Time Required for Exhaustive Key Search

Key Size [bit]	Number of keys	Time required at 1 encryption / μ s	Time required at 10^6 encryption/µs				
32	2 ³² = 4.3 * 10 ⁹	$2^{31} \mu s$ = 35.8 minutes	2.15 milliseconds				
56	$2^{56} = 7.2 * 10^{16}$	$2^{55}\mu s$ = 1142 years	10.01 hours				
128	2 ¹²⁸ = 3.4 * 10 ³⁸	$2^{127} \mu s = 5.4 * 10^{24} \text{ years}$	5.4 * 10 ¹⁸ years				

1 encryption / µs: 100 Clock cycles of a 100 MHz processor

10^6 encryptions / µs: Clock cycles using 500 parallel 2GHz processors

Attacking cryptography (3): How large is large?

Reference Numbers Comparing Relative Magnitudes

Reference	Magnitude					
Seconds in a year	≈ 3 × 10 ⁷					
Seconds since creation of solar system	≈ 2 * 10 ¹⁷					
Clock cycles per year (3 GHz computer)	≈ 1 * 10 ¹⁷					
Binary strings of length 64	$2^{64} \approx 1.8 * 10^{19}$					
Binary strings of length 128	$2^{128}\approx 3.4 * \ 10^{38}$					
Binary strings of length 256	$2^{256}\approx1.2~~*~10^{77}$					
Number of 75-digit prime numbers	$\approx 5.2 * 10^{72}$					
Electrons in the universe	≈ 8.37 × 10 ⁷⁷					

Network Security, WS 2008/09

Classification of modern encryption algorithms

- □ The type of operations used for transforming plaintext to ciphertext:
 - Substitution, which maps each element in the plaintext (bit, letter, group of bits or letters) into another element
 - Transposition, which re-arranges elements in the plaintext
- □ The number of keys used:
 - Symmetric ciphers, which use the same key for en- / decryption
 - Asymmetric ciphers, which use different keys for en- / decryption
- The way in which the plaintext is processed:
 - Stream ciphers work on bit streams and encrypt one bit after another
 - *Block ciphers* work on blocks of width *b* with *b* depending on the specific algorithm.

Network Security, WS 2008/09

Basic Kryptographic Principles

Substitution

Individual characters are exchanged by other characters

Types of substitution

- simple substitution substitution: operates on single letters
- polygraphic substitution: operates on larger groups of letters
- monoalphabetic substitution: uses fixed substitution over the entire message
- polyalphabetic substitution: uses different substitutions at different sections of a message
- Transposition
 - The position of individual characters changes (Permutation)

X

Transposition: scytale

- □ Known as early as 7th century BC
- □ Principle:
 - Wrap parchment strip over a wooden rod of a fixed diameter and write letters along the rod.
 - Unwrap a strip and "transmit"
 - To decrypt, wrap a received over a wooden rod of the same diameter and read off the text.
- □ Example:

troops headii nthewe stneed moresu pplies

- Weakness:
 - Easy to break by finding a suitable matrix transposition.

7

Monoalphabetic substitution: Atbash

Jeremiah 25:25

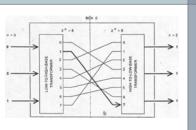
And all the kings of the north, far and near, one with another, and all the kingdoms of the world, which are upon the face of the earth: and the king of Sheshach shall drink after them.

Atbash code: reversed Hebrew alphabet.

A <u>Aleph</u> x	B Beth 2	G Gimel	D Daleth T	Н <u>Не</u> л	WVFY <u>Waw</u> 1	Z Zajin T	Н <u>Chet</u> л	T <u>Tet</u> v	IJ Jod ,	K <u>Kaph</u> כך	L لا لا	M Mem מם	N Nun נו	X <u>Samech</u> o	O <u>Ajin</u> y	P <u>Pe</u> קס	Z <u>Sade</u> ۲ ۲	Q Koph P	R <u>Resch</u> ר	S Sin v	Т <u>Taw</u> л
Т	S	R	Q	Z	P	O	X	N	M	L	K	IJ	T	Н	Z	WVFY	Н	D	G	B	A
<u>Taw</u>	Sin	<u>Resch</u>	Koph	<u>Sade</u>	<u>Pe</u>	<u>Ajin</u>	<u>Samech</u>	<u>Nun</u>	<u>Mem</u>	<u>Lamed</u>	<u>Kaph</u>	Jod	<u>Tet</u>	<u>Chet</u>	Zajin	<u>Waw</u>	<u>Не</u>	Daleth	<u>Gimel</u>	Beth	Aleph
л	v	r	P	۲ ۲	ףפ	y	o	נו	מם	ک	כר	,	v	п	T	1	л	T	ړ	⊐	×

Sheshach לבב לך ש ש ⇔ Babel

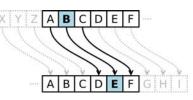
Network Security, WS 2008/09


Modern cryptography: S and P-boxes

S-box:

- Block-wise substitution of binary digits.
- Resistant to attacks for sufficiently large block size; e.g. for n=128 it provides 2¹²⁸ possible mappings.

P-box:


- Block-wise permutation of binary digits.
- Realizes a simple transposition cipher with maximal entropy.
- Problem: straightforward attacks exist.

Monoalphabetic substitution: Caesar cipher

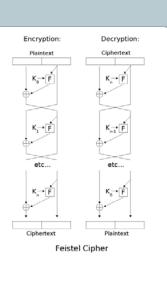
Ceasar code: left shift of alphabet by 3 positions.

- □ Example (letter of Cicero to Caesar): MDEHV RSNQNRQNV PHDH XHVXNPRQNZP HABES OPINIONIS MEAE TESTIMONIUM
- Weakness: a limited number of possible substitutions. Easy to break by brute force!

Network Security, WS 2008/09

F

Feistel network: a product cipher of S and P-boxes


- A revival of the idea of a product cipher.
- Multiple rounds provide a cryptographically strong polyalphabetic substitution.
- Combination of substitution with transposition provides protection against specific attacks (frequency analysis).
- □ Follows the theoretical principles outlined by C. Shannon in 1949: combines "confusion" with "diffusion" to attain maximal entropy of a cipher text.
 - Confusion: cipher text statistics depend in a very complex way on plaintext statistics (approach: substitution in different rounds)
 - Diffusion: each digit in plaintext and in key influence many digits of cipher text (approach: many rounds with transposition)

11

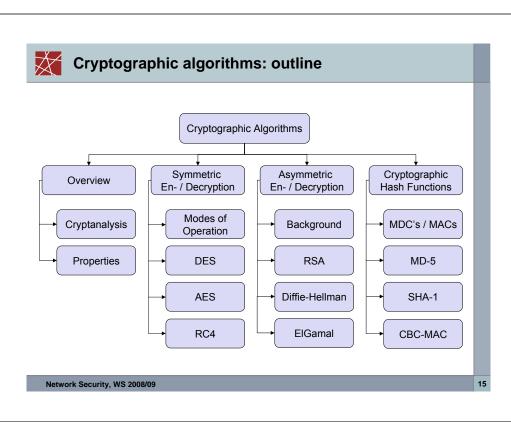
A practical Feistel cipher

- A multiple-round scheme with separate keys per round.
- □ Invertible via a reverse order of rounds.
- 3 rounds suffice to achieve a pseudorandom permutation.
- 4 rounds suffice to achieve a strong pseudorandom permutation (i.e. it remains pseudorandom to an attacker with an oracle access to its inverse permutation).
- A foundation for a large number of modern symmetric ciphers: DES, Lucifer, Blowfish, RC5, Twofish, etc.

Network Security, WS 2008/09

13

 \mathbf{X}


Network Security, WS 2008/09

Important properties of encryption algorithms

Consider, a sender is encrypting plaintext messages P_1 , P_2 , ... to ciphertext messages C_1 , C_2 , ...

Then the following properties of the encryption algorithm are of special interest:

- Error propagation characterizes the effects of bit-errors during transmission of ciphertext to reconstructed plaintext P₁', P₂', ...
 - Depending on the encryption algorithm there may be one or more erroneous bits in the reconstructed plaintext per erroneous ciphertext bit
- Synchronization characterizes the effects of lost ciphertext data units to the reconstructed plaintext
 - Some encryption algorithms can not recover from lost ciphertext and need therefore explicit re-synchronization in case of lost messages
 - Other algorithms do automatically re-synchronize after 0 to n (n depending on the algorithm) ciphertext bits

