Network Security

Chapter 2 Basics of Cryptography

\author{

- Overview of Cryptographic Algorithms
 - Attacking Cryptographic Algorithms
 - Historical Approaches
}
- Foundations of Modern Cryptography

Cryptographic algorithms: overview

- During this course two main applications of cryptographic algorithms are of principal interest:
- Encryption of data: transforms plaintext data into ciphertext in order to conceal its' meaning
- Signing of data: computes a check value or digital signature to a given plain- or ciphertext, that can be verified by some or all entities being able to access the signed data
- Some cryptographic algorithms can be used for both purposes, some are only secure and / or efficient for one of them.
- Principal categories of cryptographic algorithms:
- Symmetric cryptography using 1 key for en-/decryption or signing/checking
- Asymmetric cryptography using 2 different keys for en-/decryption or signing/checking
- Cryptographic hash functions using 0 keys (the "key" is not a separate input but "appended" to or "mixed" with the data).

Attacking cryptography (1): Cryptanalysis

- Cryptanalysis is the process of attempting to discover the plaintext and / or the key
- Types of cryptanalysis:
- Ciphertext only: specific patterns of the plaintext may remain in the ciphertext (frequencies of letters, digraphs, etc.)
- Known ciphertext / plaintext pairs
- Chosen plaintext or chosen ciphertext
- Newer developments: differential cryptanalysis, linear cryptanalysis
- Cryptanalysis of public key cryptography:
- The fact that one key is publicly exposed may be exploited
- Public key cryptanalysis is more aimed at breaking the cryptosystem itself and is closer to pure mathematical research than to classical cryptanalysis
- Important directions:
- Computation of discrete logarithms
- Factorization of large integers

Attacking cryptography (2): brute force attack

- The brute force attack tries every possible key until it finds an intelligible plaintext:
- Every cryptographic algorithm can in theory be attacked by brute force
- On average, half of all possible keys will have to be tried

	Average Time Required for Exhaustive Key Search		
Key Size [bit]	Number of keys	Time required at 1 encryption $/ \mu \mathrm{s}$	Time required at 10^{6} encryption/ $\mu \mathrm{s}$
32	$2^{32}=4.3 * 10^{9}$	$2^{31} \mu \mathrm{~s}=35.8$ minutes	2.15 milliseconds
56	$2^{56}=7.2 * 10^{16}$	$2^{55} \mu \mathrm{~s}=1142$ years	10.01 hours
128	$2^{128}=3.4 * 10^{38}$	$2^{127} \mu \mathrm{~s}=5.4 * 10^{24}$ years	$5.4 * 10^{18}$ years

- 1 encryption / $\mu \mathrm{s}$: 100 Clock cycles of a 100 MHz processor
- $10^{\wedge} 6$ encryptions / $\mu \mathrm{s}$: Clock cycles using 500 parallel 2 GHz processors

Attacking cryptography (3): How large is large?

Reference Numbers Comparing Relative Magnitudes

Reference Numbers Comparing Relative Magnitudes		
Reference	Magnitude	
Seconds in a year	$\approx 3 \quad * 10^{7}$	
Seconds since creation of solar system	≈ 2	$* 10^{17}$
Clock cycles per year (3 GHz computer)	$\approx 1 \quad * 10^{17}$	
Binary strings of length 64	2^{64}	$\approx 1.8 * 10^{19}$
Binary strings of length 128	2^{128}	$\approx 3.4 * 10^{38}$
Binary strings of length 256	2^{256}	$\approx 1.2 * 10^{77}$
Number of 75 -digit prime numbers	$\approx 5.2 * 10^{72}$	
Electrons in the universe	$\approx 8.37 * 10^{77}$	

Classification of modern encryption algorithms

- The type of operations used for transforming plaintext to ciphertext:
- Substitution, which maps each element in the plaintext (bit, letter, group of bits or letters) into another element
- Transposition, which re-arranges elements in the plaintext
- The number of keys used:
- Symmetric ciphers, which use the same key for en- / decryption
- Asymmetric ciphers, which use different keys for en- / decryption
- The way in which the plaintext is processed:
- Stream ciphers work on bit streams and encrypt one bit after another
- Block ciphers work on blocks of width b with b depending on the specific algorithm.

Basic Kryptographic Principles

- Substitution
- Individual characters are exchanged by other characters

Types of substitution

- simple substitution substitution: operates on single letters
- polygraphic substitution: operates on larger groups of letters
- monoalphabetic substitution: uses fixed substitution over the entire message
- polyalphabetic substitution: uses different substitutions at different sections of a message
- Transposition
- The position of individual characters changes (Permutation)

Transposition: scytale

- Known as early as $7^{\text {th }}$ century BC
- Principle:
- Wrap parchment strip over a wooden rod of a fixed diameter and write letters along the rod.
- Unwrap a strip and "transmit"
- To decrypt, wrap a received over a wooden rod of the same diameter and read off the text.
- Example:
troops
headii
nthewe
stneed $\Rightarrow \quad$ thnsm predd opoah nrlod eeeis iedus
stneed
pplies
- Weakness:
- Easy to break by finding a suitable matrix transposition.

Monoalphabetic substitution: Atbash

Jeremiah 25:25
And all the kings of the north, far and near, one with another, and all the kingdoms of the world, which are upon the face of the earth: and the king of Sheshach shall drink after them.

Atbash code: reversed Hebrew alphabet.

$\begin{array}{\|c} \hline \frac{A}{4} \\ \frac{\text { Alph }}{} \\ \hline \end{array}$	$\stackrel{\text { B }}{\text { Beth }}$	$\stackrel{\text { Simel }}{\substack{\text { Sin }}}$	$\stackrel{\text { Daleth }}{7}$	$\begin{array}{\|l\|} \hline \begin{array}{c} \mathrm{He} \\ \hline \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { wVY } \\ & \frac{\text { Waw }}{1} \end{aligned}$	zain	$\begin{aligned} & \text { H } \\ & \frac{\text { chet }}{\pi} \end{aligned}$	$\begin{array}{\|c\|} \hline \frac{T}{} \\ \hline \frac{\mathrm{Tet}}{\mathrm{v}} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \mathrm{Jog} \\ \text { Jod } \end{array}$	$\begin{array}{\|c} \hline K \\ \frac{K a p h}{72} \end{array}$	$\begin{array}{\|c\|} \hline \text { Lamed } \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline N \\ \frac{N u n}{12} \\ \hline \end{array}$	$\begin{gathered} x \\ \frac{\text { Samech }}{0} \\ \hline 0 \end{gathered}$	$\begin{array}{\|l\|} \hline \frac{0}{} \frac{\text { iin }}{v} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{P} \\ & \frac{\mathrm{Pe}}{12} \end{aligned}$	$\begin{array}{\|c\|} \hline \frac{\text { Sade }}{} \\ \hline \mathrm{ps} \\ \hline \end{array}$	$\stackrel{\text { Koph }}{\text { K }}$	$\begin{array}{\|c} \hline R \\ \text { Resch } \\ \hline \end{array}$	S $\frac{s}{\text { Sin }}$	${ }_{\text {Taw }}{ }_{\text {T }}$
$\begin{array}{\|c\|} \hline \frac{\top}{\top} \\ \frac{\mathrm{Taw}}{n} \end{array}$	$\begin{aligned} & \hline s \\ & \frac{s i n}{v} \end{aligned}$	$\begin{array}{\|c\|} \hline R \\ \hline \frac{R}{R} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \frac{Q}{\mathrm{Koph}} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \frac{\mathrm{Sade}}{} \\ \hline \mathrm{~s} \end{array}$	$\begin{aligned} & \hline p \\ & \frac{P e}{72} \end{aligned}$	$\begin{array}{\|c} \hline \frac{O}{\text { Ainn }} \end{array}$	$\begin{array}{\|c\|} \hline x \\ \frac{\text { Samech }}{0} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \frac{N}{\left\lvert\, \frac{N u n}{12}\right.} \end{array}$	$\begin{array}{\|c\|c\|} \hline \left.\begin{array}{c} \mathrm{m} \\ \mathrm{Mem} \\ \hline 0 \end{array} \right\rvert\, \end{array}$	$\begin{array}{\|c\|} \hline \frac{\mathrm{Lamed}}{i} \\ \hline \end{array}$	$\begin{gathered} \hline K \\ \frac{K a p h}{7} \end{gathered}$	$\begin{aligned} & \text { Jod } \\ & \text { Jood } \end{aligned}$	$\begin{array}{\|c\|} \hline \frac{T}{4} \\ \frac{T e t}{v} \end{array}$	$\begin{aligned} & \begin{array}{c} \text { H } \\ \text { Chet } \end{array} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Zajin } \end{array}$	wVFY Waw	$\begin{aligned} & \hline \mathrm{H} \\ & \underline{\mathrm{He}} \mathrm{~J} \end{aligned}$	D ${ }_{\text {D }}^{\text {Datet }}$	${ }_{\text {Gimel }}^{\text {G }}$	$\frac{\text { Beth }}{}$	$\underset{\text { A }}{\text { Aleph }}$

Monoalphabetic substitution: Caesar cipher

- Ceasar code: left shift of alphabet by 3 positions.

- Example (letter of Cicero to Caesar): MDEHV RSNQNRQNV PHDH XHVXNPRQNZP HABES OPINIONIS MEAE TESTIMONIUM
- Weakness: a limited number of possible substitutions. Easy to break by brute force!

Modern cryptography: S and P-boxes

S-box:

- Block-wise substitution of binary digits.
- Resistant to attacks for sufficiently large block size; e.g. for $\mathrm{n}=128$ it provides 2^{128} possible mappings.

P-box:

- Block-wise permutation of binary digits.
- Realizes a simple transposition cipher with maximal entropy.
- Problem: straightforward attacks exist.

A practical Feistel cipher

- A multiple-round scheme with separate keys per round.
- Invertible via a reverse order of rounds.
- 3 rounds suffice to achieve a pseudorandom permutation.
- 4 rounds suffice to achieve a strong pseudorandom permutation (i.e. it remains pseudorandom to an attacker with an oracle access to its inverse permutation).
- A foundation for a large number of modern symmetric ciphers: DES, Lucifer, Blowfish, RC5, Twofish, etc.

Important properties of encryption algorithms

Consider, a sender is encrypting plaintext messages $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots$ to ciphertext messages $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots$
Then the following properties of the encryption algorithm are of special interest:

- Error propagation characterizes the effects of bit-errors during transmission of ciphertext to reconstructed plaintext $\mathrm{P}_{1}{ }^{\prime}, \mathrm{P}_{2}{ }^{\prime}, \ldots$
- Depending on the encryption algorithm there may be one or more erroneous bits in the reconstructed plaintext per erroneous ciphertext bit
- Synchronization characterizes the effects of lost ciphertext data units to the reconstructed plaintext
- Some encryption algorithms can not recover from lost ciphertext and need therefore explicit re-synchronization in case of lost messages
- Other algorithms do automatically re-synchronize after 0 to n (n depending on the algorithm) ciphertext bits

