

Chair for Network Architectures and Services Department of Informatics TU München – Prof. Carle

Network Security

Chapter 2 Basics of Cryptography

- Overview of Cryptographic Algorithms
- Attacking Cryptographic Algorithms
- Historical Approaches
- Foundations of Modern Cryptography

Cryptographic algorithms: overview

- During this course two main applications of cryptographic algorithms are of principal interest:
 - Encryption of data: transforms plaintext data into ciphertext in order to conceal its' meaning
 - Signing of data: computes a check value or digital signature to a given plain- or ciphertext, that can be verified by some or all entities being able to access the signed data
- Some cryptographic algorithms can be used for both purposes, some are only secure and / or efficient for one of them.
- □ Principal categories of cryptographic algorithms:
 - *Symmetric cryptography* using 1 key for en-/decryption or signing/checking
 - Asymmetric cryptography using 2 different keys for en-/decryption or signing/checking
 - Cryptographic hash functions using 0 keys (the "key" is not a separate input but "appended" to or "mixed" with the data).

Attacking cryptography (1): Cryptanalysis

- Cryptanalysis is the process of attempting to discover the plaintext and / or the key
- □ Types of cryptanalysis:
 - Ciphertext only: specific patterns of the plaintext may remain in the ciphertext (frequencies of letters, digraphs, etc.)
 - Known ciphertext / plaintext pairs
 - Chosen plaintext or chosen ciphertext
 - Newer developments: *differential cryptanalysis, linear cryptanalysis*
- □ Cryptanalysis of public key cryptography:
 - The fact that one key is publicly exposed may be exploited
 - Public key cryptanalysis is more aimed at breaking the cryptosystem itself and is closer to pure mathematical research than to classical cryptanalysis
 - Important directions:
 - Computation of discrete logarithms
 - Factorization of large integers

Attacking cryptography (2): brute force attack

- □ The *brute force attack* tries every possible key until it finds an intelligible plaintext:
 - Every cryptographic algorithm can in theory be attacked by brute force
 - On average, half of all possible keys will have to be tried

Average Time Required for Exhaustive Key Search											
Key Size [bit]	Number of keys	Time required at 1 encryption / μs	Time required at 10 ⁶ encryption/µ								
32	$2^{32} = 4.3 * 10^9$	$2^{31} \mu s$ = 35.8 minutes	2.15 milliseconds								
56	$2^{56} = 7.2 * 10^{16}$	$2^{55} \mu s = 1142 \text{ years}$	10.01 hours								
128	$2^{128} = 3.4 * 10^{38}$	$2^{127}\mu s$ = 5.4 * 10 ²⁴ years	5.4 * 10 ¹⁸ years								

- 1 encryption / μs: 100 Clock cycles of a 100 MHz processor
- 10^6 encryptions / μ s: Clock cycles using 500 parallel 2GHz processors

Attacking cryptography (3): How large is large?

Reference Numbers Comparing Relative Magnitudes												
Reference	Magnitude											
Seconds in a year	≈ 3 × 10 ⁷											
Seconds since creation of solar system	≈ 2 × 10 ¹⁷											
Clock cycles per year (3 GHz computer)	≈ 1 × 10 ¹⁷											
Binary strings of length 64	$2^{64} \approx 1.8 * 10^{19}$											
Binary strings of length 128	$2^{128} \approx 3.4 * 10^{38}$											
Binary strings of length 256	$2^{256} \approx 1.2 * 10^{77}$											
Number of 75-digit prime numbers	$\approx 5.2 * 10^{72}$											
Electrons in the universe	≈ 8.37 × 10 ⁷⁷											

\mathbf{X}

Classification of modern encryption algorithms

- □ The type of operations used for transforming plaintext to ciphertext:
 - Substitution, which maps each element in the plaintext (bit, letter, group of bits or letters) into another element
 - *Transposition,* which re-arranges elements in the plaintext
- □ The number of keys used:
 - Symmetric ciphers, which use the same key for en- / decryption
 - Asymmetric ciphers, which use different keys for en- / decryption
- □ The way in which the plaintext is processed:
 - Stream ciphers work on bit streams and encrypt one bit after another
 - Block ciphers work on blocks of width b with b depending on the specific algorithm.

Basic Kryptographic Principles

- Substitution
 - Individual characters are exchanged by other characters
 - Types of substitution
 - simple substitution substitution: operates on single letters
 - polygraphic substitution: operates on larger groups of letters
 - monoalphabetic substitution: uses fixed substitution over the entire message
 - polyalphabetic substitution: uses different substitutions at different sections of a message
- Transposition
 - The position of individual characters changes (Permutation)

Transposition: scytale

- □ Known as early as 7th century BC
- □ Principle:
 - Wrap parchment strip over a wooden rod of a fixed diameter and write letters along the rod.
 - Unwrap a strip and "transmit"
 - To decrypt, wrap a received over a wooden rod of the same diameter and read off the text.

• Example:

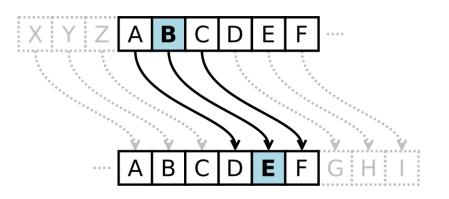
troops headii nthewe	opoah	nrlod	eeeis	iedus
----------------------------	-------	-------	-------	-------

- □ Weakness:
 - Easy to break by finding a suitable matrix transposition.

Monoalphabetic substitution: Atbash

Jeremiah 25:25

And all the kings of the north, far and near, one with another, and all the kingdoms of the world, which are upon the face of the earth: and the king of Sheshach shall drink after them.

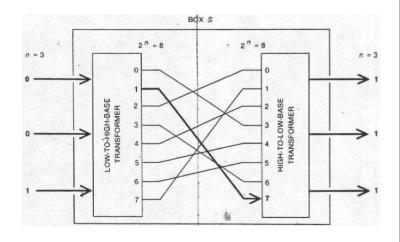

Atbash code: reversed Hebrew alphabet.

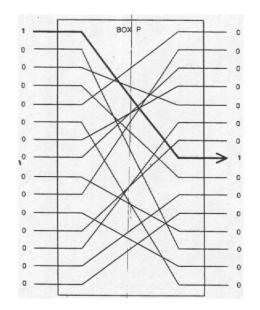
A	B	G	D	H	WVFY	Z	H	T	IJ	K	L	M	N	X	O	P	Z	Q	R	S	Т
<u>Aleph</u>	<u>Beth</u>	Gimel	<u>Daleth</u>	<u>He</u>	<u>Waw</u>	<u>Zajin</u>	<u>Chet</u>	<u>Tet</u>	Jod	<u>Kaph</u>	<u>Lamed</u>	<u>Mem</u>	<u>Nun</u>	<u>Samech</u>	<u>Ajin</u>	<u>Pe</u>	<u>Sade</u>	<u>Koph</u>	<u>Resch</u>	<u>Sin</u>	<u>Taw</u>
×	ב	x	ז	7	เ	ĭ	⊓	ບ	,	רר	ל	מם	נן	o	v	ๆ ๑	۲ ۲	P	ר	≌	л
ד	S	R	Q	Z	P	O	X	N	M	L	K	IJ	T	Н	Z	WVFY	Н	D	G	B	A
<u>Taw</u>	<u>Sin</u>	<u>Resch</u>	<u>Koph</u>	<u>Sade</u>	<u>Pe</u>	<u>Ajin</u>	<u>Samech</u>	<u>Nun</u>	<u>Mem</u>	<u>Lamed</u>	<u>Kaph</u>	Jod	<u>Tet</u>	<u>Chet</u>	<u>Zajin</u>	<u>Waw</u>	<u>Не</u>	<u>Daleth</u>	<u>Gimel</u>	<u>Beth</u>	<u>Aleph</u>
ת	ฃ	ר	?	۲ ۲	ฦ๑	ע	o	נן	מם	ز	רך	,	ບ	п	ĭ	เ	л	ז	ک	ב	×

Sheshach לבב ⇒ כך שש Babel ⇒ לבב

□ Ceasar code: left shift of alphabet by 3 positions.

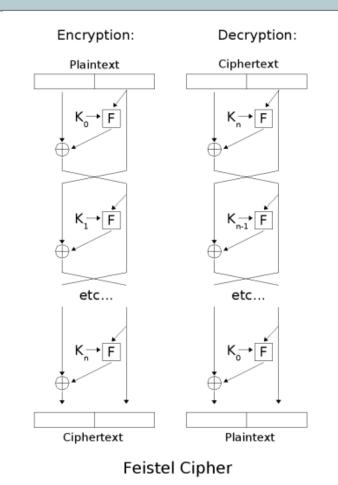
- Example (letter of Cicero to Caesar):
 MDEHV RSNQNRQNV PHDH XHVXNPRQNZP
 HABES OPINIONIS MEAE TESTIMONIUM
- Weakness: a limited number of possible substitutions. Easy to break by brute force!


Modern cryptography: S and P-boxes


S-box:

- Block-wise substitution of binary digits.
- Resistant to attacks for sufficiently large block size; e.g. for n=128 it provides 2¹²⁸ possible mappings.

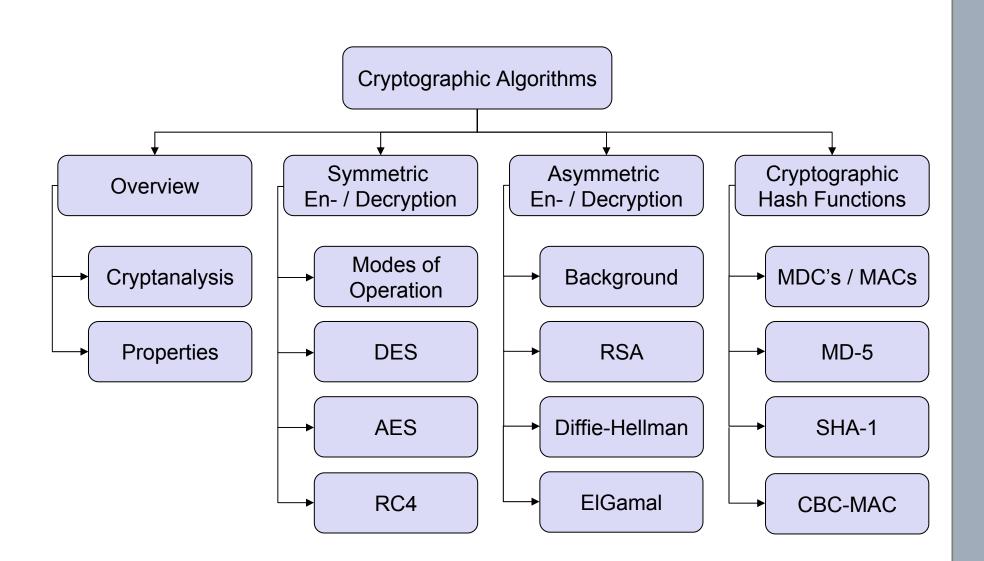
- □ Block-wise **permutation** of binary digits.
- Realizes a simple transposition cipher with maximal entropy.
- □ Problem: straightforward attacks exist.


Feistel network: a product cipher of S and P-boxes

- □ A revival of the idea of a product cipher.
- □ Multiple rounds provide a cryptographically strong polyalphabetic substitution.
- Combination of substitution with transposition provides protection against specific attacks (frequency analysis).
- Follows the theoretical principles outlined by C. Shannon in 1949: combines "confusion" with "diffusion" to attain maximal entropy of a cipher text.
 - Confusion: cipher text statistics depend in a very complex way on plaintext statistics (approach: substitution in different rounds)
 - Diffusion: each digit in plaintext and in key influence many digits of cipher text (approach: many rounds with transposition)

A practical Feistel cipher

- A multiple-round scheme with separate keys per round.
- □ Invertible via a reverse order of rounds.
- 3 rounds suffice to achieve a pseudorandom permutation.
- 4 rounds suffice to achieve a strong pseudorandom permutation (i.e. it remains pseudorandom to an attacker with an oracle access to its inverse permutation).
- A foundation for a large number of modern symmetric ciphers: DES, Lucifer, Blowfish, RC5, Twofish, etc.


Important properties of encryption algorithms

Consider, a sender is encrypting plaintext messages P_1 , P_2 , ... to ciphertext messages C_1 , C_2 , ...

Then the following properties of the encryption algorithm are of special interest:

- □ *Error propagation* characterizes the effects of bit-errors during transmission of ciphertext to reconstructed plaintext P_1 , P_2 , ...
 - Depending on the encryption algorithm there may be one or more erroneous bits in the reconstructed plaintext per erroneous ciphertext bit
- Synchronization characterizes the effects of lost ciphertext data units to the reconstructed plaintext
 - Some encryption algorithms can not recover from lost ciphertext and need therefore explicit re-synchronization in case of lost messages
 - Other algorithms do automatically re-synchronize after 0 to n (n depending on the algorithm) ciphertext bits

