# IP, OSPF and BGP in Action

#### Wolfgang Mühlbauer wolfgang@net.in.tum.de

(Some of these these slides are taken from Prof. Anja Feldmann. Thanks!)

# <u>Content</u>

- Routing protocols
  - Intra-domain: Open Shortest Path First (OSPF)
  - Inter-domain: Border Gateway Protocol (BGP)
- Configuration of real routers
  - Cisco IOS (C2691)
  - JunOS (M7I)
- Outline
  - 1. IP configuration
  - 2. OSPF configuration
  - 3. BGP configuration

# **IP** Configuration

## **Demo: Reachability between Interfaces**



# Configure IP addresses: Cisco IOS interface FastEthernet0/1 ip address 11.11.11.1 255.255.255.0 Juniper JunOS set interfaces ge-0/0/1 family inet address 11.11.11.2/24

## **Demo: Cisco/Juniper Configurations**

Muc-rc1 (Cisco)

```
Muc-rj1 (Juniper)
```

```
muc-rc1#show run
                                           root@muc-rj1# show
Building configuration...
                                           ## Last changed: 2008-11-12 00:16:34
                                              UTC
                                           version 8.2R1.7;
Current configuration : 1560 bytes
                                           interfaces {
                                             ge-0/0/1 {
version 12.3
                                                unit 0 {
hostname muc-rc1
                                                   family inet {
                                                      address 11.11.11.2/24;
interface FastEthernet0/1
ip address 11.11.11.1 255.255.255.0
                                                }
duplex auto
                                              }
speed auto
end
                                           [edit]
```

## Demo: Testing Connectivity (1)

#### Ping

• From muc-rc1 to muc-rj1:

```
muc-rcl#ping 11.11.11.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 11.11.11.2,
timeout is 2 seconds:
!!!!!
```

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

• From muc-rj1 to muc-rc1:

```
root@muc-rjl# run ping 11.11.11.1
PING 11.11.11.1 (11.11.11.1): 56 data bytes
64 bytes from 11.11.11.1: icmp_seq=0 ttl=255 time=3.427 ms
```

## <u>Demo: Testing Connectivity (2)</u>

#### **Routing Table at muc-rc1**

muc-rcl#show ip route Codes: C - connected, S - static, R - RIP, M - mobile, B -BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 ... ia - IS-IS inter area, \* - candidate default, u - per-user static route o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

11.0.0.0/24 is subnetted, 1 subnets

C 11.11.11.0 is directly connected, FastEthernet0/1

## **Demo: Adding a Loopback Interface**



- Loopback interfaces
  - Required for many features
  - Describes routers as a whole (not "sum of interfaces")
  - Configuration:
    - interface Loopback0
      - ip address 22.22.22.22 255.255.0
- **Why can't muc-rj1 ping 22.22.22.22**?

## Demo: Adding a Loopback Interface (2)



 Why can't muc-rj1 ping 22.22.22.22?
 Muc-rj1 does not have a route
 Add static route at muc-rj1 to Loopback
 set routing-options static route 22.22.22.0/24 next-hop 11.11.11.1

# **OSPF** Configuration

"Let's use OSPF rather than a static route"

# OSPF (Open Shortest Path First)

Open": specification publicly available
 RFC 1247, RFC 2328
 Working group formed in 1988

• Goals:

- Large, heterogeneous internetworks
- Uses the Link State algorithm
  - Topology map at each node
  - Route computation using Dijkstra's algorithm

□ Hierarchy

Multiple areas to keep routing scalable

# OSPFv2: Tasks

Neighbors Discovery • Maintenance Database • Granularity • Maintenance Synchronization **Routing table** • Metric Calculation

## **Neighbors - Discovery and Maintenance**

#### Hello Protocol

- Ensures that neighbors can send packets to and receive packets from the other side: bi-directional communication
- Ensures that neighbors agree on parameters (HelloInterval and RouterDeadInterval)
- How
  - Hello packet to fixed well-known multicast address
  - Periodic Hellos
  - Stroadcast network: electing designated router

## Demo: Hello Protocol

```
    OSPF configuration:

            Cisco
            router ospf 1000
            log-adjacency-changes
            network 0.0.0.0 255.255.255.255 area 0
            Juniper
            protocols {
                ospf {
                    area 0.0.0.0 {
                        interface ge-0/0/1.0;}}

    Monitor "Hello" packets at Cisco interface

            01:30:31.193995 Out IP 11.11.11.2 > 224.0.0.5;
```

```
OSPFv2, Hello, length 48
```

Observations

• Hello packet sent every 10 seconds

• Hello packets sent to multicast address (224.0.0.5)

## Link State Database

- Based on link-state technology
  - Local view of topology in a database
- Database
  - Consists of Link State Advertisements (LSA)
  - LSA: data unit describing local state of a network/router)
  - Must kept synchronized to react to routing failures

**Currently empty** 



## Link State Database: Example

| LS-Type     | Link State ID | Adv. Router | Checksum | Seq. No.   | Age  |
|-------------|---------------|-------------|----------|------------|------|
| Doutor I SA | 10 1 1 1      | 10 1 1 1    | 0v0h47   | 0,20000006 | 0    |
| Roulei -LSA | 10.1.1.1      | 10.1.1.1    | 089047   | 0x0000000  | 0    |
| Router-LSA  | 10.1.1.2      | 10.1.1.2    | 0x219e   | 0x80000007 | 1618 |
| Router-LSA  | 10.1.1.3      | 10.1.1.3    | 0x6b53   | 0x80000003 | 1712 |
| Router-LSA  | 10.1.1.4      | 10.1.1.4    | 0xe39a   | 0x8000003a | 20   |
| Router-LSA  | 10.1.1.5      | 10.1.1.5    | 0xd2a6   | 0x80000038 | 18   |
| Router-LSA  | 10.1.1.6      | 10.1.1.6    | 0x05c3   | 0x80000005 | 1680 |



Consists of a Header and a Body

□ Header size is 20 Byte and consists of

| 0 1                             | 2        | 3        |  |  |  |  |
|---------------------------------|----------|----------|--|--|--|--|
| 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 | 67890123 | 45678901 |  |  |  |  |
| LS Age                          | Options  | LS Type  |  |  |  |  |
| Link State ID                   |          |          |  |  |  |  |
| Advertising Router              |          |          |  |  |  |  |
| LS sequence number              |          |          |  |  |  |  |
| LS Checksum                     | Ler      | igth     |  |  |  |  |

# LSAs (2.)

#### Identifying LSAs

- LS Type Field
  - Router LSA: Describes a router
  - Network LSA: Describes a network (e.g., Ethernet segment)
- Link State ID Field
- Advertising Router Field
- Verifying LSA Contents: LS Checksum Field
- Identifying LSA Instances
  - (keep in mind that the topology changes)
  - LS Sequence Number Field
    - Linear sequence space



LS Age Field

(to ensure consistency)

• Goal: new sequence number every 30 minutes

• Maximum value 1 hour

 $\bigcirc$  Age > 1 hour  $\Rightarrow$  invalid  $\Rightarrow$  removal

• Enables premature aging

Ensures removal of outdated information

## **Demo: Link State Database**

#### **Cisco**

| muc-rcl#show ip                      | ospf database     |            |             |                |         |     |  |  |  |
|--------------------------------------|-------------------|------------|-------------|----------------|---------|-----|--|--|--|
| OSPF R                               | outer with ID (2) | 2.22.22.22 | 2) (Process | ID 100         | )))     |     |  |  |  |
| Router Link States (Area 0)          |                   |            |             |                |         |     |  |  |  |
| Link ID                              | ADV Router        | Age        | Seq#        | Checks         | . #Linł | ٢S  |  |  |  |
| 11.11.11.2                           | 11.11.11.2        | 75         | 0x8000002   | 0x00EH         | FB6 1   |     |  |  |  |
| 22.22.22.22                          | 22.22.22.22       | 75         | 0x8000002   | 0x00AI         | 026 2   |     |  |  |  |
|                                      | Net Link States   | (Area O)   |             |                |         |     |  |  |  |
| Link ID                              | ADV Router        | Age        | Seq#        | Checks         | sum     |     |  |  |  |
| 11.11.11.1                           | 22.22.22.22       | 75         | 0x8000001   | 0x000 <i>A</i> | A3A     |     |  |  |  |
| Juniper                              |                   |            |             |                |         |     |  |  |  |
| root@muc-rj1# run show ospf database |                   |            |             |                |         |     |  |  |  |
| OSPF link s                          | tate database, A  | rea 0.0.0. | . 0         |                |         |     |  |  |  |
| Type ID                              | Adv Rtr           | Seq        | Age         | Opt            | Cksum   | Len |  |  |  |
| Router *11.11.                       | 11.2 11.11.11.1   | 2 0x8000   | 00002 318   | 0x22           | 0xefb6  | 36  |  |  |  |
| Router 22.22.                        | 22.22 22.22.22.   | 22 0x8000  | 00002 321   | 0x22           | 0xad26  | 48  |  |  |  |
| Network 11.11.                       | 11.1 22.22.22.    | 22 0x8000  | 0001 320    | 0x22           | 0xa3a   | 32  |  |  |  |

## **Database Synchronization**

Central aspect: all routers need to have identical databases!

- 2 types of synchronization
  - Initial synchronization
    - After hello
  - Continuous synchronization
    - Flooding

## **Initial Synchronization**

- Explicit transfer of the database upon establishment of neighbor ship
- Once bi-directional communication exists
- Send all LS header from database to neighbor
   OSPF database description packets (DD pkt)
   Flood all future LSA's

# Initial Synchronization (2.)

Database description (DD) exchange • Only one DD at a time • Wait for Ack Control of DD exchange • Determine Master/Slave for DD exchange O Determine which LSA's are missing in own DB • Request those via link state request packets Neighbor sends these in link state update packets **Result:** 

Fully adjacent OSPF neighbors

### **Example: Database Synchronization**



## **Continuous Synchronization - Flooding**

**Reliable flooding** 

○ LSAs must be acknowledged (implicit or explicit)

Robustness

◦ LSAs are aged

○ LSAs have checksums

 LSAs cannot be sent at an arbitrary rate there are timers

#### **Demo: Initial Database Synchronization**

Messages exchanged after re-establishing neighborhood between muc-rc1 and muc-rj1

01:30:31.193995 Out IP 11.11.11.2 > 224.0.0.5: OSPFv2, Hello, length 48 01:30:31.307993 In IP 11.11.11.1 > 11.11.11.2: OSPFv2, Database Description, length 44 01:30:31.308782 Out IP 11.11.11.2 > 11.11.11.1: OSPFv2, Database Description, length 32 01:30:31.308838 In IP 11.11.11.1 > 11.11.11.2: OSPFv2, LS-Request, length 48 01:30:31.358461 Out IP 11.11.11.2 > 11.11.11.1: OSPFv2, LS-Update, length 112 01:30:31.408428 Out IP 11.11.11.2 > 224.0.0.5: OSPFv2, LS-Update, length 60 01:30:31.513376 In IP 11.11.11.1 > 224.0.0.5: OSPFv2, LS-Update, length 76 01:30:31.513662 Out IP 11.11.11.2 > 11.11.11.1: OSPFv2, LS-Update, length 76 01:30:33.268557 Out IP 11.11.11.2 > 224.0.0.5: OSPFv2, LS-Update, length 64 01:30:33.278724 In IP 11.11.11.1 > 11.11.11.2: OSPFv2, LS-Ack, length 44 01:30:33.938660 In IP 11.11.11.1 > 224.0.0.5: OSPFv2, LS-Ack, length 104

# Calculation of routing table

- Link state database is a directed graph with costs for each link
- Dijkstra's SPF algorithms
  - Add all routers to shortest-path-tree
  - Add all neighbors to candidate list
  - Add routers with the smallest cost to tree
  - Add neighbors of this router to candidate list
    - If not yet on it
    - If cost smaller
  - Continue until candidate list empty

# **OSPF: Summary**

Neighbors Discovery • Maintenance Database • Granularity • Maintenance Synchronization Routing table • Metric O Calculation

Multicast group Hello protocol

Link state advertisements (LSA) LSA-updates flooding protocol Synchronization protocol

Fixed values Local shortest path calculation

## **BGP Configuration**

#### "Let's use BGP rather than OSPF"

# **Current Internet Architecture**



approximately 30,000 ASs

routing policy

## Why Different Intra- and Inter-AS Routing?

#### Policy:

- Inter-AS: admin wants control over how its traffic routed, who routes through its net.
- Intra-AS: single admin, so no policy decisions needed Scale:
- hierarchical routing saves table size, reduced update traffic

#### Performance:

- □ Intra-AS: can focus on performance
- Inter-AS: policy may dominate over performance

## We need BOTH!

## Internet Inter-AS Routing: BGP

#### BGP (Border Gateway Protocol): the de facto standard

- **BGP** provides each AS a means to:
  - 1. Obtain subnet reachability information from neighboring ASs.
  - 2. Propagate the reachability information to all routers internal to the AS.
  - 3. Determine "good" routes to subnets based on reachability information and **policy**.
- Allows a subnet to advertise its existence to rest of the Internet: "I am here"



## **BGP Messages**

Peers exchange BGP messages using TCP BGP messages:

• OPEN:

- opens TCP conn. to peer
- authenticates sender
- UPDATE:
  - advertises new path (or withdraws old)
- KEEPALIVE:
  - keeps conn alive in absence of UPDATES
  - serves as ACK to an OPEN request

• NOTIFICATION:

- reports errors in previous msg;
- closes a connection

## Path Attributes & BGP Routes

- When advertising a prefix, advertisement/update includes BGP attributes.
  - prefix + attributes = "route"
- **Two important attributes:** 
  - AS-PATH: contains the ASs through which the advertisement for the prefix passed: AS 67 AS 17
    - used for loop detection / policies
  - NEXT-HOP: Indicates the specific internal-AS router to next-hop AS. (There may be multiple links from current AS to next-hop-AS.)
- When gateway router receives route advertisement, uses import policy to accept/decline.

## **AS Path Attribute**



## Next Hop Attribute





## **Demo: BGP Routing Table**

Routing Table at muc-rj1

```
root@muc-rjl# run show route
inet.0: 3 destinations, 4 routes (3 active,
            0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
22.22.22.0/24 *[BGP/170] 00:00:08,
            MED 0, localpref 100
            AS path: 3320 I
            > to 11.11.11.1 via ge-0/0/1.0
```

## **BGP Route Selection**

- Router may learn about more than one route to some prefix.
- Router must select route.
- **Elimination rules**:
  - 1. Highest local preference wins
  - 2. Shortest AS-PATH
  - 3. ... (many other criteria) ...
  - 4. Tie-breaking
    - E.g., pick route from router with lowest IP address

## Local Preference Attribute



Path with highest local preference wins although longer

# **Routing Policy**

Reflects goals of network provider

- Which routes to accept from other ASes
- How to manipulate the accepted routes
  - E.g., local preferences
- How to propagate routes through network
- How to manipulate routes before they leave the AS

• which routes to send to another AS

## Policy Example – Business Relationships

**Types of relationships** 

- Customer-provider: Customer pays for connectivity
- Peer-to-peer (p2p): Costs are shared
- **Consequences** for routing
  - Prefer customer routes over p2p over provider routes
  - No export of provider routes to other providers



## Policy Example – Backup Path

 AS 3 is backup provider (only used if AS 2 fails)
 It prepends its AS number 3 times and thus makes AS path artificially longer





• AS 3320 prepends its AS number twice Router bgp 3320 neighbor 11.11.11.2 route-map prepend out

route-map prepend permit 10 set as-path prepend 3320 3320

#### Result at muc-rj1

• 22.22.22.0/24 AS path: 3320 3320 3320

## **Literature**

- Andrew S. Tanenbaum, *Computer Networks*, 4th edition, 2003, Prentice Hall
- J.F. Kurose, K.W. Ross, Computer Networking: A Top-Down Approach Featuring the Internet, 4th edition, 2007, Addison Wesley
- Further reading (if you want to know more)
  - John T. Moy, OSPF Anatomoy of an Internet Routing Protocol, 1998, Addison-Wesley
  - John Stewart, BGP Inter-Domain Routing in the Internet, 1998, Addison-Wesley

# <u>Summary</u>

Routing protocols

- Open Shortest Path First (OSPF)
- Border Gateway Protocol (BGP)
- Demos
  - IP configuration
  - OSPF configuration
  - BGP configuration
- Questions?

#### □ End title: ... show tech ... ☺