
Chair for Network Architectures and Services
Institute for Informatics
TU München – Prof. Carle, Dr. Fuhrmann

Master Kurs
Rechnernetze

Computer Networks
IN2097

Prof. Dr.-Ing. Georg Carle
Dr. Thomas Fuhrmann

Institut für Informatik
Technische Universität München

http://www.net.in.tum.de

Chair for Network Architectures and Services
Institute for Informatics
TU München – Prof. Carle, Dr. Fuhrmann

Architecture: the big picture

IN2097, WS 2008/09 3

Architecture: the big picture

Goals:
identify, study principles that
can guide network
architecture
“bigger” issues than specific
protocols or implementation
wisdom,
synthesis: the really big
picture

Overview:
Internet design principles
rethinking the Internet design
principles
packet switching versus
circuit switching revisited

IN2097, WS 2008/09 4

Key questions

How to decompose the complex system functionality into protocol
layers?
Which functions placed where in network, at which layers?
Can a function be placed at multiple levels?

Answer these questions in context of
Internet
Telephone network
(Nickname 1: Telco — telecommunications provider)
(Nickname 2: POTS — “plain old telephone system”)

IN2097, WS 2008/09 5

Common View of the Telco Network

brick (dumb)

brain (smart)

lock (you can’t get in)

IN2097, WS 2008/09 6

Common View of the IP Network

The Internet End-to-End principle

IN2097, WS 2008/09 7

Internet End-to-End Principle

“…functions placed at the lower levels may be redundant or of little
value when compared to the cost of providing them at the higher
level…”

“…sometimes an incomplete version of the function provided by the
communication system (lower levels) may be useful as a
performance enhancement…”

This leads to a philosophy diametrically opposite to the telephone
world of dumb end-systems (the telephone) and intelligent networks.

IN2097, WS 2008/09 8

Example: Reliable File Transfer

Solution 1: make each step reliable, and then concatenate them

OS

Appl.

OS

Appl.

Host A Host B

OK

Solution 2: each step unreliable: end-to-end check and retry

checksum

IN2097, WS 2008/09 9

Discussion

Is solution 1 good enough?
No — what happens if components on path
fail or misbehave (bugs)?

Is reliable communication sufficient:
No — what happens if disk errors?

so need application to make final correctness check anyway
Thus, full functionality can be entirely implemented at application
layer; no need for reliability from lower layers

IN2097, WS 2008/09 10

Discussion

Q: Is there any reason to implement reliability at lower layers?

A: YES: “easier” (and more efficient) to check and recovery from
errors at each intermediate hop
e.g.: faster response to errors, localized retransmissions

IN2097, WS 2008/09 11

Trade-offs

application has more information about the data and semantics of
required service (e.g., can check only at the end of each data unit)

lower layer has more information about constraints in data
transmission (e.g., packet size, error rate)

Note: these trade-offs are a direct result of layering!

IN2097, WS 2008/09 12

Internet & End-to-End Argument

network layer provides one simple service: best effort datagram
(packet) delivery
transport layer at network edge (TCP) provides end-end error control

performance enhancement used by many applications
(which could provide their own error control)

all other functionality …
all application layer functionality
network services: DNS
implemented at application level

IN2097, WS 2008/09 15

E2E Argument: Interpretations

One interpretation:
A function can only be completely and correctly implemented with
the knowledge and help of the applications standing at the
communication endpoints

Another: (more precise…)
A system (or subsystem level) should consider only functions that
can be completely and correctly implemented within it.

Alternative interpretation: (also correct …)
Think twice before implementing a functionality that you believe
that is useful to an application at a lower layer
If the application can implement a functionality correctly,
implement it a lower layer only as a performance enhancement

IN2097, WS 2008/09 16

End-to-End Argument: Critical Issues

End-to-end principle emphasizes:
function placement
correctness, completeness
overall system costs

Philosophy: if application can do it, don’t do it at a lower layer —
application best knows what it needs

add functionality in lower layers iff
(1) used by and improves performances of many applications,
(2) does not hurt other applications

allows cost-performance tradeoff

IN2097, WS 2008/09 19

Internet Design Philosophy (Clark’ (88

0. Connect existing networks
initially ARPANET, ARPA packet radio, packet satellite network

1. Survivability
ensure communication service even with network and router failures

2. Support multiple types of services
3. Must accommodate a variety of networks
4. Allow distributed management
5. Allow host attachment with a low level of effort
6. Be cost effective
7. Allow resource accountability

In order of importance: Different ordering of priorities would

make a different architecture!

IN2097, WS 2008/09 20

1. Survivability

Continue to operate even in the presence of network failures
(e.g., link and router failures)

as long as network is not partitioned, two endpoints should be
able to communicate
any other failure (excepting network partition) should be
transparent to endpoints

Decision: maintain end-to-end transport state only at end-points
eliminate the problem of handling state inconsistency and
performing state restoration when router fails

Internet: stateless network-layer architecture
No notion of a session/call at network layer
Example: Your TCP connection shouldn’t break when a router
along the path fails

Assessment: ??

IN2097, WS 2008/09 21

2. Types of Services

Add UDP to TCP to better support other apps
e.g., “real-time” applications

arguably main reason for separating TCP, IP
datagram abstraction: lower common denominator on which other
services can be built

service differentiation was considered (remember ToS field in IP
header?), but this has never happened on the large scale (Why?)

Assessment: ?

IN2097, WS 2008/09 22

3. Variety of Networks

Very successful (why?)
because the minimalist service; it requires from underlying network
only to deliver a packet with a “reasonable” probability of success

…does not require:
reliability
in-order delivery

The mantra: IP over everything
Then: ARPANET, X.25, DARPA satellite network..
Subsequently: ATM, SONET, WDM…

Assessment: ?

IN2097, WS 2008/09 23

Other Goals

Allow distributed management
Administrative autonomy: IP interconnects networks
• each network can be managed by a different

organization
• different organizations need to interact only at the

boundaries
• … but this model complicates routing

Assessment: ?

Cost effective
sources of inefficiency
• header overhead
• retransmissions
• routing

…but “optimal” performance never been top priority
Assessment: ?

IN2097, WS 2008/09 24

Other Goals (Cont)

Low cost of attaching a new host
not a strong point higher than other architecture because the
intelligence is in hosts (e.g., telephone vs. computer)
bad implementations or malicious users can produce considerably
harm (remember fate-sharing?)
Assessment: ?

Accountability
Assessment: ?

IN2097, WS 2008/09 25

What About the Future?

Datagram not the best abstraction for:
resource management, accountability, QoS

new abstraction: flow (see IPv6)
Typically: (src, dst, #bytes) tuple
But: “flow” not precisely defined

• when does it end? Explicit connection teardown? Timeout?
• src and dst =...? ASes? Prefixes? Hosts? Hosts&Protocol?

IPv6: difficulties to make use of flow IDs
routers require to maintain per-flow state
state management: recovering lost state is hard
in context of Internet (1988) we see the first proposal of “soft state”!

soft-state: end-hosts responsible to maintain the state

IN2097, WS 2008/09 26

Summary: Internet Architecture

packet-switched datagram network
IP is the glue (network layer overlay)
IP hourglass architecture

all hosts and routers run IP
stateless architecture

no per flow state inside network
IP

TCP UDP

ATM

Satellite

Ethernet

IP hourglass

IN2097, WS 2008/09 27

Summary: Minimalist Approach

Dumb network
IP provide minimal functionalities to support connectivity
addressing, forwarding, routing

Smart end systems
transport layer or application performs more sophisticated
functionalities
flow control, error control, congestion control

Advantages
accommodate heterogeneous technologies (Ethernet, modem,
satellite, wireless, ...)
support diverse applications (telnet, ftp, Web, X windows)
decentralized network administration

IN2097, WS 2008/09 28

But that was yesterday

……. what about tomorrow?

IN2097, WS 2008/09 29

Rethinking Internet Design

What’s changed?
operation in untrustworthy world

endpoints can be malicious: Spam, Worms, (D)DoS, ...
If endpoint not trustworthy, but want trustworthy network

more mechanisms in network core

more demanding applications
end-to-end best effort service not enough
new service models in network (IntServ, DiffServ)?
new application-level service architecture built on top of network
core (e.g., CDN, P2P)?

IN2097, WS 2008/09 30

Rethinking Internet Design

What’s changed (cont.)?
ISP service differentiation

ISP doing more (than other ISPs) in core is competitive advantage

Rise of third party involvement
interposed between endpoints (even against will)
e.g., Chinese government, recording industry,
Vorratsdatenspeicherung

less sophisticated users

All five changes motivate shift away from end-to-end!

IN2097, WS 2008/09 31

What’s at stake?

“At issue is the conventional understanding of the “Internet philosophy”
freedom of action
user empowerment
end-user responsibility for actions taken
lack of control “in” the net that limit or regulate what users can do

The end-end argument fostered that philosophy because they enable the
freedom to innovate, install new software at will, and run applications
of the users choice.”

[Blumenthal and Clark, 2001]

IN2097, WS 2008/09 32

Technical response to changes

Trust: emerging distinction between what is “in” network (us,
trusted) and what is not (them, untrusted).

ingress filtering
emergence of Internet UNI (user network interface, as in
ATM)?

Modify endpoints
harden endpoints against attack
endpoints/routers do content filtering: Net-nanny
CDN, ASPs: rise of structured, distributed applications in
response to inability to send content (e.g., multimedia, high
bw) at high quality

IN2097, WS 2008/09 33

Technical response to changes

Add functions to the network core:
filtering firewalls
application-level firewalls
NAT boxes
active networking

… All operate within network, making use of application-level
information

which addresses can do what at application level?
If addresses have meaning to applications, NAT must
“understand” that meaning

IN2097, WS 2008/09 37

Epilogue: will IP take over the world?

Reasons for success of IP:
reachability: reach every host; adapts topology when links fail.
heterogeneity: single service abstraction (best effort) regardless
of physical link topology

many other claimed (or commonly accepted) reasons for IP’s
success may not be true
…. let’s take a closer look

IN2097, WS 2008/09 38

1. IP already dominates global communications?

business revenues
(in US$, 2007):

ISPs: 13B
Broadcast TV: 29B
Cable TV: 29.8B
Radio broadcast: 10.6B
Phone industry: 268B

Router/telco switch markets:
Core router: 1.7B; edge
routers: 2.4B
SONET/SDH/WDM: 28B,
Telecom MSS: 4.5B

Q: IP equipment cheaper?
Economies of scale?
(lots of routers?)

Q: per-device, IP is cheaper
(one line into house, multiple devices)

Q: # bits carried in each network?

Q: Internet, more traffic and congestion
is spread among all users (bad?)

IN2097, WS 2008/09 39

2. IP is more efficient?

Statistical multiplexing versus circuit switching
Link utilization:

Avg. link utilization in Internet core: 3% to 30%
(ISPs: never run above 50%!)
Avg. utilization of Ethernet is currently 1%
Avg. link utilization of long distance phone lines: 33%

low IP link utilization: purposeful!
predictability, stability, low delay, resilience to failure
at higher utilization: traffic spikes induce short congestion
periods → deterioration of QoS

At low utilization, we loose benefits of statistical multiplexing!

IN2097, WS 2008/09 40

3. IP is more robust?

“Internet was built to sustain a nuclear war” — marketing vapor!
• Remember large-scale network outages, e.g. on Sep 11th 2001?

Median IP network availability: downtime: 471 min/yr
Avg. phone network downtime: 5 min/yr

Convergence time with link failures:
BGP: ≈ 3–15 min,

intra-domain: ≈ 0.1–1 s (e.g., OSPF)
SONET: 50 ms

Inconsistent routing state
human misconfigurations
in-band signaling (signaling and data share same network)
routing computation “complex”

IN2097, WS 2008/09 41

4. IP is simpler?

Intelligence at edge, simplicity in core
Cisco IOS: 8M lines of code
Telephone switch: 3M lines of code

Linecard complexity:
Router: 30M gates in ASICs, 1 CPU, 300M packet buffers
Switch: 25% of gates, no CPU, no packet buffers

IN2097, WS 2008/09 42

Discussion: benefits of IP?

IN2097, WS 2008/09 43

Big picture: supporting new applications
– losing the IP hour glass figure?

IP

TCP UDP

Applications

token

radio, copper, fiber

802.11 PPP
Eth

IP

TCP UDP

Applications

token

radio, copper, fiber

802.11 PPP
Eth

diffserv

intserv
mcastmobile

IP
“love handles” NAT IPSEC

IP “hourglass” Middle-age IP “hourglass” ?

IN2097, WS 2008/09 44

IP

TCP UDP

Applications

token

radio, copper, fiber

802.11 PPP
Eth

IP “hourglass”

IP

TCP UDP

overlay
services

token

radio, copper, fiber

802.11 PPP
Eth

client
server

apps

application overlays

Big picture: supporting new applications
– losing the IP hour glass figure?

Chair for Network Architectures and Services
Institute for Informatics
TU München – Prof. Carle, Dr. Fuhrmann

Some advice on protocol design

A loose collection of important thoughts
related to protocol design
... actually, not only protocol design, but also

• Programming in general
• Systems in general (e.g., workflows in

companies)
• Life :)

IN2097, WS 2008/09 64

Thought-triggering questions (1)

What problem am I trying to solve?
have at least one well-defined
problem in mind
solve other problems without
complicating solution?

Will my solution scale?
Think about what happens
if you’re successful:
protocol is used by millions
Does the protocol make
sense in small situations as
well?

IN2097, WS 2008/09 65

Thought-triggering questions (2)

How “robust” is my solution?
adapt to failure/change

self-stabilization: eventually adapt to failure/change
Byzantine robustness: will work in spite of malicious users

What are the underlying assumptions?
What if they are not true? catastrophe?

maybe better to crash than degrade when problems occur: signal
problem exists
techniques for limited spread of failures
protocol should degrade gracefully in overload, at least detect
overload and complain

IN2097, WS 2008/09 66

Forward compatibility
think about future changes,
evolution
make fields large enough
reserve some spare bits
specify an options field that
can be used/augmented
later

Further thoughts

Parameters...
Protocol parameters can be
useful

designers can’t determine
reasonable values
tradeoffs exist: leave
parameter choice to users

Parameters can be bad
users (often not well
informed) will need to
choose values
try to make values plug-and-
play

IN2097, WS 2008/09 67

Simplicity vs Flexibility versus optimality

Is a more complex protocol
reasonable?
Is “optimal” important?
KISS: “The simpler the protocol,
the more likely it is to be
successfully implemented and
deployed.”
80:20 rule:
80% of gains achievable with 20%
of effort

Why are protocols overly complex?
design by committee
backward compatibility
flexibility: heavyweight swiss
army knife
unreasonble stiving for optimality
underspecification
exotic/unneeded features

IN2097, WS 2008/09 68

Trading accuracy for time

If computing the exact result is too slow, maybe an
approximate solution will do

optimal solutions may be hard: heuristics will do
(e.g., optimal multicast routing is a Steiner tree problem)
faster compression using “lossy” compression

• lossy compression: decompression at receiver will not
exactly recreate original signal

Real-world examples?
games like chess: can’t compute an exact solution

IN2097, WS 2008/09 69

Don’t confuse specification with implementation

A general problem of computer scientists!
Specifications indicate external effects/interaction of protocol.
How protocol is implemented is up to designer
Programming language specifications: in addition to specifying
what, tend to suggest how.

real-world example: recipe
1. Cut onions
2. Cut potatoes
3. Put onion and potatoes into pot and boil

steps 1 and 2 can obviously be interchanged……

Chair for Network Architectures and Services
Institute for Informatics
TU München – Prof. Carle, Dr. Fuhrmann

Network Simulation

IN2097, WS 2008/09 80

Network Simulation

Motivation:
Learn fundamentals of
evaluating network
performance via simulation

Overview:
fundamentals of discrete event
simulation
analyzing simulation outputs

IN2097, WS 2008/09 81

What is simulation?

system under study
(has deterministic rules
governing its behavior)

exogenous inputs
to system

(the environment)

system boundary

observer

“real” life

computer program
simulates deterministic
rules governing behavior

pseudo random inputs
to system

(models environment)

program boundary

observer

“simulated” life

IN2097, WS 2008/09 82

Why Simulation?

goal: study system performance, operation
real-system not available, is complex/costly or dangerous
(e.g.: space simulations, flight simulations, network with 1000s of routers)
quickly evaluate design alternatives
(e.g.: different system configurations)
evaluate complex functions for which closed form formulas or numerical
techniques not available

IN2097, WS 2008/09 83

Simulation: Advantages/Drawbacks

advantages:
save lives, money
find bugs (in design!) in advance
generality: over analytic/numerical techniques
detail: can simulate system details at arbitrary level

drawbacks:
caution: does model reflect reality?
large scale systems: lots of resources to simulate (especially
accurrately simulate)
may be slow (computationally expensive – 1 min real time could be
hours of simulated time)
art: determining right level of model complexity
statistical uncertainty in results

IN2097, WS 2008/09 84

The Evaluation Spectrum

Numerical models
Simulation
Emulation
Prototype
Operational system

IN2097, WS 2008/09 85

Programming a Simulation

What’s in a simulation program?
simulated time: internal (to simulation program) variable that keeps
track of simualted time
system “state”: variables maintained by simulation program define
system “state”

e.g., may track number (possibly order) of packets in queue,
current value of retransmission timer

events: points in time when system changes state
each event has associate event time

• e.g., arrival of packet to queue, departure from queue
• precisely at these points in time that simulation must take

action (change state and may cause new future events)
model for time between events (probabilistic) caused by
external environment

IN2097, WS 2008/09 86

Discrete Event Simulation

simulation program maintains and updates list of future events:
event list
simulator structure:

initialize event list

get next (nearest future)
event from event list

time = event time

process event
(change state values, add/delete

future events from event list

update statistics

done?n

Need:
well defined set of events
for each event: simulated
system action, updating of
event list

IN2097, WS 2008/09 87

Simulation time, real time

Real time (CPU time) does not depend on simulated time, but:
of events to process:
No difference if 1 ms or 1 year between two subsequent events
computational cost to process an event:
e.g., forwarding IP packet at router a lot easier than
receiving TCP segment that finishes an HTTP request

How does it scale?
events linear with # involved routers/switches (path length)
events linear with # end hosts producing workload packets
May be super-linear with # of nodes! (depends on topology)

IN2097, WS 2008/09 88

Simulators can “cheat”

Simulate every bit and byte in a packet?
Time consuming
Level of detail really needed?

Probably not!
Packet content doesn’t matter for transmission delay, link delay,
queueing delay
of bytes in packet → time for sending this packet (transmission
delay)

Capture additional data in simpler form
e.g., store packet content conveniently as Java/C++/... object
→ no need to pack/unpack, encode/decode, parse, ...
“Cheating”? — Only if you simulate the impossible, e.g., entire
Wikipedia in one Ethernet packet

IN2097, WS 2008/09 89

Simulator must be trustworthy!

“In our simulations, the plane wing never broke off...”
Specify correct behaviour in advance

Which aspects do we want to simulate
Which ones not?

Devise test scenarios, perform test simulations to check correct
implementation of protocol(s)
Important implementation rule:
If illegal state is reached, print debug message and abort simulation
(Recovery attempts do not make sense!)

IN2097, WS 2008/09 95

Analyzing Output Results

Each time we run the simulation, we will get different output results!
(... only if we use different random number seeds each time)
(... which we should do!)

distribution of random numbers
to be used during simulation
(interarrival, service times)

random number sequence 1 simulation output results 1input output

random number sequence 2 simulation output results 2input output

random number sequence M simulation output results Minput output
… … … … … …

IN2097, WS 2008/09 96

Setting up a simulation

Always in this order:
What do I want to show?
How?

Which are important parameters, which are not?
Realistic simulation set-up vs. computation time

network size: # of end hosts, # of routers
network topology
link speeds, queue lengths
simulation duration
workload / background noise

• statistic generator?
• replay tcpdump traces from real network?

IN2097, WS 2008/09 97

Analyzing simulation results

1. Devise simulation model
2. Implement model description for simulator program
3. Run simulator program

...and again (with different random seed)

...and again, etc. etc.
4. “Average” different outputs (← Gigabytes and more!)
5. Statistical analysis of simulator output(s)
6. Swear and go back to step 1 or 2

IN2097, WS 2008/09 98

Speaking of “realistic traffic”

Internet traffic: very bursty, frequent statistical spikes → nasty!
Consistent with self-similar behaviour:

time → look the same on all time scales!

↑
packets

IN2097, WS 2008/09 102

Effect of initial conditions

Histogram of delay of 20th customer,
given initially empty (1000 runs)

Histogram of delay of 20th customer,
given non-empty conditions

IN2097, WS 2008/09 104

Steady state behavior

Output results may converge to limiting “steady state” value if simulation run
“long enough”

Want to discard statistics gathered during transient phase, e.g., ignore first
n0 measurements:

�T i=
∑
j=n0

N i

Dij

N i− n0

Pick n0 so that statistic is “approximately
the same” for different random number
streams and remains same as n increases

IN2097, WS 2008/09 105

Confidence Intervals

run simulation: get estimate V1 as estimate of performance metrics
of interest
repeat simulation M times (each with new set of random numbers),
get V2, … VM — all different!
which of V1, … VM is “right”?

intuitively, average of M samples should be “better” than choosing
any one of M samples:

�V =
∑
j=1

M

V j

M

How “confident”
are we in V?

IN2097, WS 2008/09 106

Confidence Intervals

Can not get perfect estimate of true mean, m, with finite # samples
Look for bounds: find c1 and c2 such that:

Probability(c1 < m < c2) = 1 – α
[c1,c2]: confidence interval
100(1-α): confidence level

One approach for finding c1, c2 (suppose α=0.1)
take k samples (e.g., k independent simulation runs)
sort
find largest value is smallest 5% → c1
find smallest value in largest 5% → c2

IN2097, WS 2008/09 107

Confidence Intervals: Central Limit Theorem

Central Limit Theorem: If samples V1, … VM independent (e.g., having
repeated same simulation M times with different random numbers, and taken the
average each time) and from same population with population mean m and
standard deviation s, then

�V =
∑
j=1

M

V j

M

is approximately normally distributed with mean u and standard deviation

sample mean:

σ
�M

IN2097, WS 2008/09 108

Confidence Intervals .. more

Still don’t know population standard deviation. So we estimate it using
sample (observed) standard deviation:

σ v2=
1

M− 1 ∑m=1
M

�V m− �V �2

Given we can now find upper and lower tails of normal distributions
containing α · 100% of the mass

�V ,σ v2

IN2097, WS 2008/09 109

Confidence Intervals .. the recipe

σ v2=
1

M− 1 ∑m=1
M

�V m− �V �2

Given samples V1, … VM, (e.g., having repeated simulation M times),
compute

�V =
∑
j=1

M

V j

M

95% confidence interval: �V ±
1.96σ v
�M

IN2097, WS 2008/09 110

Interpretation of Confidence Interval

If we calculate confidence
intervals as in recipe,
95% of the confidence
intervals thus computed will
contain the true (unknown!)
population mean.

Actually, a bit more complex
maths than shown:
t distribution,
χ2 distribution, ...

Here: Use large M > 30 to
be on safe side

IN2097, WS 2008/09 111

Roundup: Can you trust their simulation result?

Given a paper containing simulation-based evaluation, can you trust it?
Realistic network set-up? (size, topology, speed, ...)
Realistic traffic? (keywords: self-similar, fractal, heavy-tailed, bursty)
Statistic relevance?

Simulation duration
Number of independent simulation runs
Confidence intervals

