

Chair for Network Architectures and Services Institute for Informatics TU München – Prof. Carle, Dr. Fuhrmann

Master Kurs Rechnernetze Computer Networks IN2097

Prof. Dr.-Ing. Georg Carle Dr. Thomas Fuhrmann

Institut für Informatik Technische Universität München http://www.net.in.tum.de

Chair for Network Architectures and Services Institute for Informatics TU München – Prof. Carle, Dr. Fuhrmann

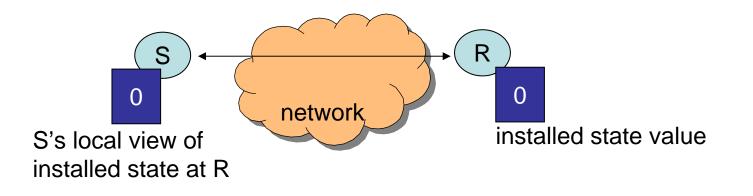
Maintaining network state

state: information stored in network nodes by network protocols

- updated when network "conditions" change
- □ stored in multiple nodes
- □ often associated with end-system generated call or session
- □ examples:
 - RSVP routers maintain lists of upstream sender IDs, downstream receiver reservations
 - ATM switches maintain lists of VCs: bandwidth allocations, VCI/VPI input-output mappings
 - TCP: Sequence numbers, timer values, RTT estimates

- state *installed* by receiver on receipt of setup (trigger) message from sender (typically, an endpoint)
 - sender also sends periodic *refresh* message: indicating receiver should continue to maintain state
- state removed by receiver via timeout, in absence of refresh message from sender
- □ default assumption: state becomes invalid unless refreshed
 - in practice: explicit state removal (*teardown*) messages also used
- □ examples:
 - RSVP, RTP, IGMP

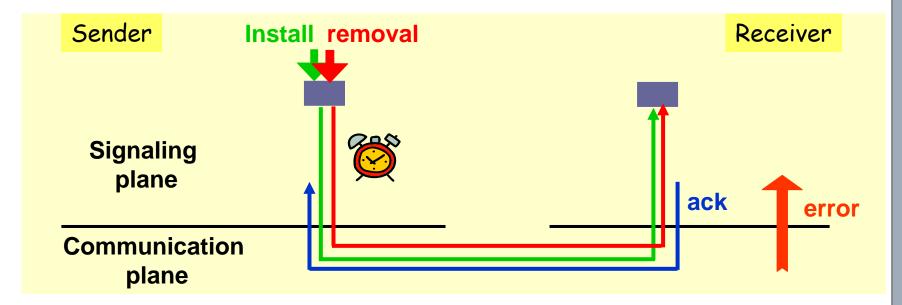
- state installed by receiver on receipt of setup message from sender
- state removed by receiver on receipt of teardown message from sender
- default assumption: state valid unless told otherwise
 - in practice: failsafe-mechanisms (to remove orphaned state) in case of sender failure e.g., receiver-to-sender "heartbeat": is this state still valid?
- □ examples:
 - Q.2931 (ATM Signaling)
 - ST-II (Internet hard-state signaling protocol outdated)
 - TCP



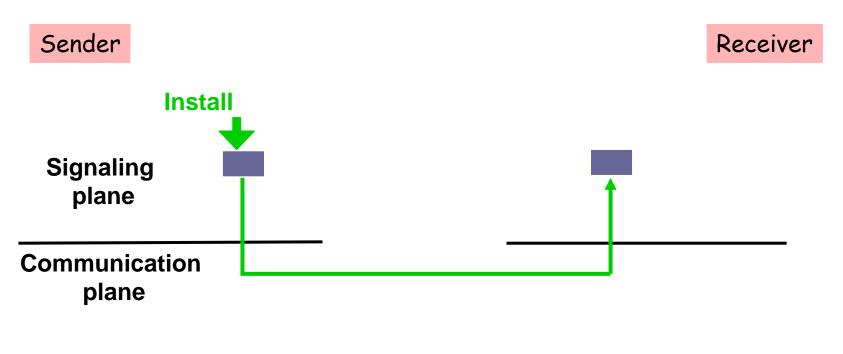
- sender: network node that (re)generates signaling (control) messages to install, keep-alive, remove state from other nodes
- receiver: node that creates, maintains, removes state based on signaling messages received from sender

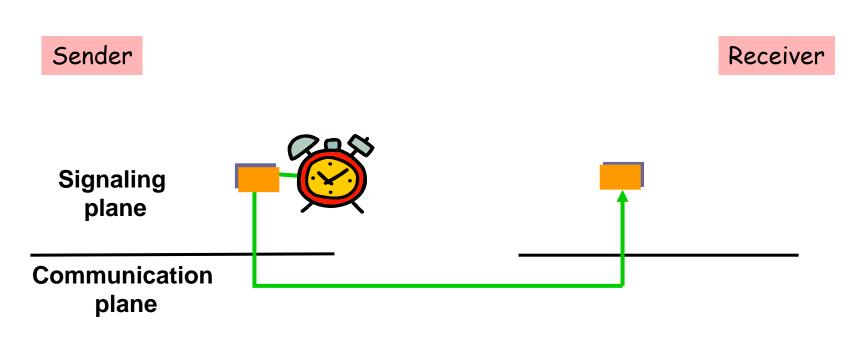
Let's build a signaling protocol

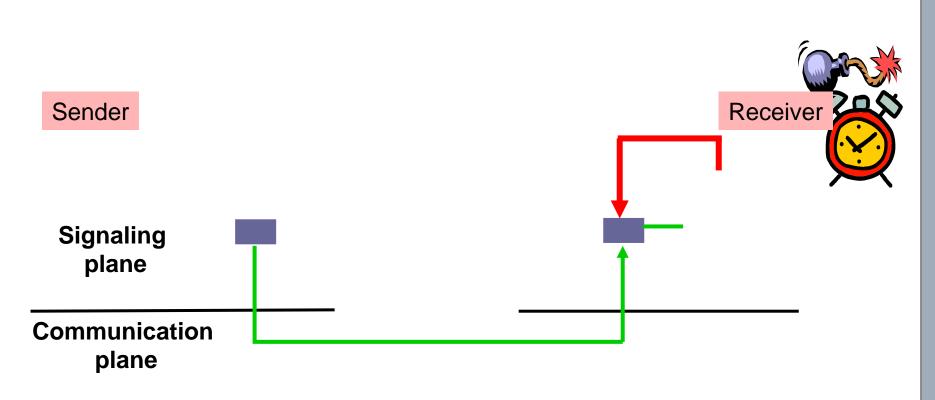
- **S**: state **S**ender (state installer)
- R: state Receiver (state holder)
- □ desired functionality:
 - S: set values in R to 1 when "installed", set to 0 when not installed
 - if other side is down, state is not installed (0)
 - initial condition: state not installed



Now: design and specification

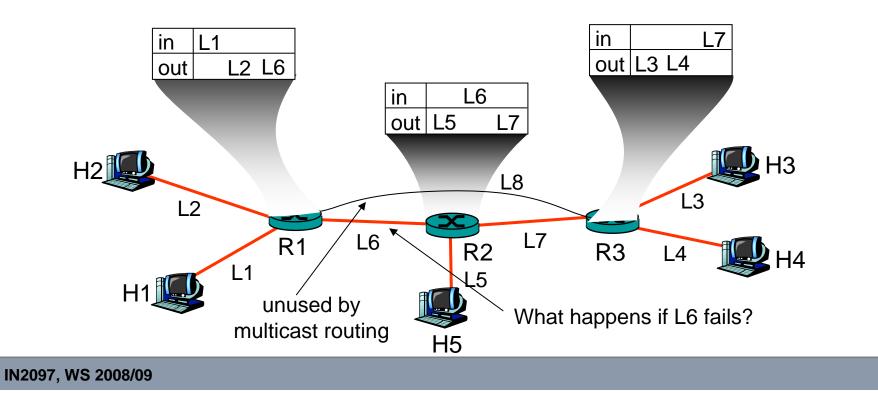

Later: performance model


- □ reliable signaling
- □ state removal by request
- requires additional error handling
 - e.g., sender failure


□ best effort signaling

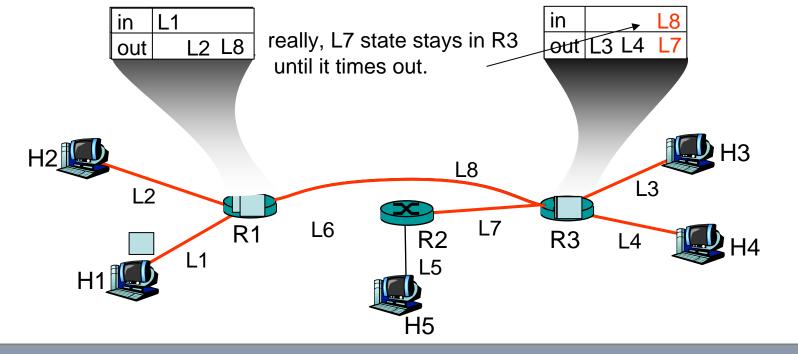
- □ best effort signaling
- □ refresh timer, periodic refresh

- best effort signaling
- refresh timer, periodic refresh
- □ state time-out timer, state removal only by time-out



- □ "Systems built on soft-state are robust" [Raman 99]
- "Soft-state protocols provide .. greater robustness to changes in the underlying network conditions..." [Sharma 97]
- "obviates the need for complex error handling software" [Balakrishnan 99]

What does this mean?



- Periodic refresh: if network "conditions" change, refresh will reestablish state under new conditions
- example: RSVP/routing interaction: if routes change (nodes fail)
 RSVP PATH refresh will *re-establish* state along new path

- □ L6 goes down, multicast routing reconfigures but...
- H1 data no longer reaches H3, H4, H5 (no sender or receiver state for L8)
- □ H1 refreshes PATH, establishes *new* state for L8 in R1, R3
- H4 refreshes RESV, propagates upstream to H1, establishes new receiver state for H4 in R1, R3

Soft-state: "easy" handling of changes

- "" "recovery" performed transparently to end-system by normal refresh procedures
- no need for network to signal failure/change to end system, or end system to respond to specific error
- less signaling (volume, types of messages) than hard-state from network to end-system but...
- more signaling (volume) than hard-state from end-system to network for refreshes

- □ refresh messages serve many purposes:
 - trigger: first time state-installation
 - refresh: refresh state known to exist ("I am still here")
 - <lack of refresh>: remove state ("I am gone")
- □ challenge: all refresh messages unreliable
 - would like triggers to result in state-installation a.s.a.p.
 - enhancement: add receiver-to-sender refresh_ACK for triggers
 - e.g., see "Staged Refresh Timers for RSVP"

periodic refresh				
Soft-state	SS + explicit removal IGMPv2/v3	SS + reliable trigger/removal ST-II	Hard-state	
	SS + reliable trigger RSVP new version			
 best effort periodic state installation/refresh state removal by time out RSVP, IGMPv1 		 requires additional 	 explicit state removal requires additional mechanism to remove orphan state 	