
Chair for Network Architectures and Services
Institute for Informatics
TU München – Prof. Carle, Dr. Fuhrmann

Master Kurs
Rechnernetze

Computer Networks
IN2097

Prof. Dr.-Ing. Georg Carle
Dr. Thomas Fuhrmann

Institut für Informatik
Technische Universität München

http://www.net.in.tum.de

Chair for Network Architectures and Services
Institute for Informatics
TU München – Prof. Carle, Dr. Fuhrmann

Maintaining network state

IN2097, WS 2008/09 100

2: Maintaining network state

updated when network “conditions” change
stored in multiple nodes
often associated with end-system generated call or session
examples:

RSVP routers maintain lists of upstream sender IDs, downstream
receiver reservations
ATM switches maintain lists of VCs: bandwidth allocations,
VCI/VPI input-output mappings
TCP: Sequence numbers, timer values, RTT estimates

state: information stored in network
nodes by network protocols

IN2097, WS 2008/09 101

Soft-state

state installed by receiver on receipt of setup (trigger) message from
sender (typically, an endpoint)

sender also sends periodic refresh message: indicating receiver
should continue to maintain state

state removed by receiver via timeout, in absence of refresh message
from sender
default assumption: state becomes invalid unless refreshed

in practice: explicit state removal (teardown) messages also used
examples:

RSVP, RTP, IGMP

IN2097, WS 2008/09 102

Hard-state

state installed by receiver on receipt of setup message from
sender
state removed by receiver on receipt of teardown message from
sender
default assumption: state valid unless told otherwise

in practice: failsafe-mechanisms (to remove orphaned state) in
case of sender failure e.g., receiver-to-sender “heartbeat”: is
this state still valid?

examples:
Q.2931 (ATM Signaling)
ST-II (Internet hard-state signaling protocol - outdated)
TCP

IN2097, WS 2008/09 103

State: senders, receivers

sender: network node that (re)generates signaling (control)
messages to install, keep-alive, remove state from other nodes

receiver: node that creates, maintains, removes state based on
signaling messages received from sender

IN2097, WS 2008/09 104

Let’s build a signaling protocol

S: state Sender (state installer)
R: state Receiver (state holder)
desired functionality:

S: set values in R to 1 when “installed”, set to 0 when not installed
if other side is down, state is not installed (0)
initial condition: state not installed

S R

0

installed state value
0

S’s local view of
installed state at R

network

IN2097, WS 2008/09 105

Let’s build signaling protocol

Now: design and specification

Later: performance model

IN2097, WS 2008/09 106

Hard-state signaling

Signaling
plane

Communication
plane

Sender ReceiverInstall

ack

reliable signaling
state removal by request
requires additional error handling

e.g., sender failure

removal

error

IN2097, WS 2008/09 107

Soft-state signaling

Signaling
plane

Communication
plane

Install

Sender Receiver

best effort signaling

IN2097, WS 2008/09 108

Soft-state signaling

Signaling
plane

Communication
plane

Sender Receiver

best effort signaling
refresh timer, periodic refresh

IN2097, WS 2008/09 109

Soft-state signaling

Signaling
plane

Communication
plane

Sender Receiver

best effort signaling
refresh timer, periodic refresh
state time-out timer, state removal only by time-out

IN2097, WS 2008/09 110

Soft-state: claims

“Systems built on soft-state are robust” [Raman 99]
“Soft-state protocols provide .. greater robustness to changes in the
underlying network conditions…” [Sharma 97]
“obviates the need for complex error handling software”
[Balakrishnan 99]

What does this mean?

IN2097, WS 2008/09 111

Soft-state: “easy” handling of changes

Periodic refresh: if network “conditions” change, refresh will re-
establish state under new conditions
example: RSVP/routing interaction: if routes change (nodes fail)
RSVP PATH refresh will re-establish state along new path

in
out

H2

H5

H3

H4
H1

R1 R2 R3
L1

L2 L3

L4
L5

L6 L7

L5 L7
L6

in
out

L1
L2 L6

in
out L3

L7
L4

unused by
multicast routing

L8

What happens if L6 fails?

IN2097, WS 2008/09 112

in
out L3

L7
L4

in
out L3

L8
L4 L7

in
out

L1
L2 L6

Soft-state: “easy” handling of changes

L6 goes down, multicast routing reconfigures but…
H1 data no longer reaches H3, H4, H5 (no sender or receiver state
for L8)
H1 refreshes PATH, establishes new state for L8 in R1, R3
H4 refreshes RESV, propagates upstream to H1, establishes new
receiver state for H4 in R1, R3

H2

H5

H3

H4
H1

R1 R2 R3
L1

L2 L3

L4
L5

L6 L7

in
out

L1
L2 L8

L8

really, L7 state stays in R3
until it times out.

H5

IN2097, WS 2008/09 113

“recovery” performed transparently to end-system by normal refresh
procedures
no need for network to signal failure/change to end system, or end
system to respond to specific error
less signaling (volume, types of messages) than hard-state from
network to end-system but…
more signaling (volume) than hard-state from end-system to network
for refreshes

Soft-state: “easy” handling of changes

IN2097, WS 2008/09 114

refresh messages serve many purposes:
trigger: first time state-installation
refresh: refresh state known to exist (“I am still here”)
<lack of refresh>: remove state (“I am gone”)

challenge: all refresh messages unreliable
would like triggers to result in state-installation a.s.a.p.
enhancement: add receiver-to-sender refresh_ACK for triggers
e.g., see “Staged Refresh Timers for RSVP”

Soft-state: refreshes

IN2097, WS 2008/09 115

Soft-state Hard-state

Signaling spectrum

• best effort periodic state
installation/refresh

• state removal by time out
• RSVP, IGMPv1

• reliable signaling
• explicit state removal
• requires additional mechanism to
remove orphan state

• Q2931b

SS + explicit removal
IGMPv2/v3

SS + reliable trigger
RSVP new version

SS + reliable
trigger/removal
ST-II

periodic refresh

