
Ecole Nationale Supérieure des Télécommunications

Département Informatique et Réseaux

Student’s Project

OSPF Link-State Database

in GNU Zebra

Gerhard Münz

muenz@enst.fr

Tutor: Jean-Louis Rougier

1 July 2002

Abstract

OSPF (Open Shortest Path First) is a widely used link-state routing protocol for

intra-domain routing, a so-called Interior Gateway Protocol (IGP). As each OSPF

router takes his routing decisions on the basis of its link-state database reflecting the

network topology, timeliness of this database is essential for network stability and

fast convergence in case of topology changes. Present development of OSPF aims at

accelerating the exchange of link-state information, which will cause an increasing

number of OSPF messages received and sent by the routers. A generator of Link

State Advertisements (LSAs) is needed to examine the behavior of OSPF routers

under such conditions.

Within this project, the code of the free routing software GNU Zebra was exam-

ined with respect to link-state related functionality, such as originating and refresh-

ing LSAs. The results can be used to build a Zebra based LSA generator. Moreover,

a patch is presented that inserts fake AS-external-LSAs into the link-state database.

1

Contents

1 Introduction 2

2 GNU Zebra 3

2.1 General Description . 3

2.2 Implementation Features . 3

2.3 Installation and Configuration . 3

3 Zebra’s OSPF daemon 4

3.1 Source Files . 4

3.2 Router-LSAs and Network-LSAs . 5

3.3 AS-external-LSAs . 6

3.4 Summary-LSAs and ASBR-summary-LSAs 8

3.5 LSA Refresh Mechanisms . 8

4 Faking AS-external-LSAs 14

4.1 Installation of the Patch . 14

4.2 Command Description . 14

4.3 Implementation . 15

5 Conclusion 16

A Source Code of the Patch 17

Abbreviations and References 22

2

1 Introduction

OSPF (Open Shortest Path First) is a widely used link-state routing protocol for

intra-domain routing, which has been developed by the IETF since 1988. OSPFv2,

the current version for IPv4 routing, dates back to 1991, and RFC 2328 of 1998

represents the latest revision. An OSPF version for IPv6 (OSPFv3) is described in

RFC 2740. These RFCs are written in an all-embracing and very comprehensible

way, such that, in addition to being the standard reference, they can serve as OSPF

tutorials. Within this report, only OSPFv2 is considered, i.e. the term OSPF refers

to this version only.

In practice, OSPF proved to be robust and stable under most conditions, i.e.

it copes well with changes in the network topology. Though, a proof of general

stability cannot generally be given.

According to the link-state principle, OSPF routers exchange messages, so-called

Link State Advertisements (LSAs), in order to keep up-to-date their view of the net-

work topology that is stored in the link-state databases. Routing stability depends

on how reliable and fast the routers process the exchanged messages. Some messages

have to be acknowledged, others to be “flooded” out of the other interfaces. If a

topology change is signaled, the database has to be updated and the routing tables

have to be recalculated by applying a shortest path algorithm.

The present development aims at speeding up convergence of the link-state

databases (e.g. fast hellos [1, 2]) and extending OSPF with regard to traffic en-

gineering [3, 4]. This will significantly increase the number of OSPF messages

exchanged between the routers, resulting in higher processor loads. LSA storms

can already occur under normal conditions, as each router periodically floods Link

State Update packets throughout the network, and the triggering time-outs might

coincide. To test the routers’ behavior under such “stress” conditions, an OSPF

message generator is needed.

The purpose of this project was to understand the update and refresh mecha-

nisms of the OSPF link-state database, and to examine how theses mechanisms are

implemented in GNU Zebra. Finally, a patch was to be developed that would allow

to manipulate the link-state database and send out fake OSPF messages.

This report is divided into a short introduction to GNU Zebra, a section about

the implementation of OSPF with focus on the link-state database, the presentation

of a patch originating arbitrary AS-external-LSAs, and a final conclusion.

3

2 GNU Zebra

2.1 General Description

GNU Zebra [5] is a free routing software (distributed under GNU Generic Public

License). It supports TCP/IP based routing protocols like RIP, BGP and OSPF.

At this time, the last release is the beta version 0.92a, 0.93 is available via the Zebra

CVS repository. A commercial version of Zebra exists, that is distributed by IP

Infusion Inc. [6] under the name of “ZebOS Advanced Routing Suite”. Moreover,

GNU Zebra is deployed in some Linux based routers [7, 8]. This shows the maturity

the software project has reached, and a non-beta release can soon be expected.

2.2 Implementation Features

The Zebra code is characterized by high modularity; it consists of several daemons,

one for each supported routing protocol, and one main daemon managing the trans-

fer of routing information from one routing protocol to another. The main daemon

also updates the kernel routing table to adapt the IP packet forwarding. Thanks to

this implementation design, new routing protocols can be integrated very easily and

existing ones can be developed separately.

2.3 Installation and Configuration

Installation notes describe how to build an executable version of Zebra. By default,

the executable files are saved in /usr/local/sbin. There, you will find the main

daemon zebra and the protocol daemons like ripd, ospfd, bgpd etc.

Before starting the daemons, the configuration files in /usr/local/etc must be

adapted. Most important are the password settings for “view” and “enable” mode.

The main daemon zebra has to be started before any other protocol daemon. The

command line parameter -d starts the executables as daemon background processes.

All running daemons are accessible through a virtual terminal interface called

“vty” (Virtual TeletYpe interface), which provides Cisco-style commands to check

and change current router settings. Therefore, Zebra can be configured without

having user or super-user rights on the Zebra running machine. A connection to

the vty is established via telnet, the default ports are 2601 for the main daemon

zebra and 2604 for the OSPF daemon ospfd.

4

3 Zebra’s OSPF daemon

I wrote the following code description in accordance to

my understanding; there is no warranty of correctness.

3.1 Source Files

Zebra’s RFC 2328 conform OSPF daemon is called OSPFD; its source code is sit-
uated in the subdirectory ./ospfd of Zebra’s source directory. Table 1 gives a short
description for each source file of OSPFD.

Table 1: OSPFD source files

ospf abr.c ABR related functions

ospf asbr.c some ASBR functions, database for external information

ospf ase.c algorithm for AS-external route calculation

ospf dump.c log file output

ospf flood.c LSA flooding

ospf ia.c inter-area routing

ospf interface.c interface related functions

ospf ism.c interface state machine

ospf lsa.c most LSA related functions: look up, generate, originate, refresh,
age, and flush router, network, AS-external, and summary LSAs

ospf lsdb.c link-state database

ospf main.c daemon main routine, initialization

ospf neighbor.c neighbor related data, link-state retransmission and request lists

ospf network.c socket calls to join and quit multicast groups

ospf nsm.c neighbor state machine

ospf packet.c receiving, queuing, and sending OSPF packets, various timers

ospf route.c routing table

ospf routemap.c functions for exchange of routing information (route map) with
other Zebra components

ospf snmp.c SNMP support

ospf spf.c shortest path algorithm

ospf zebra.c interface (API) between OSPFD and the Zebra main daemon

ospfd.c several functions concerning areas, virtual links, vty commands

3 ZEBRA’S OSPF DAEMON 5

3.2 Router-LSAs and Network-LSAs

OSPF routers originate a router-LSA for each area they belong to. Router-LSAs are

flooded throughout a single area only. They contain information about the router

and its interfaces, including the connected subnets.

Network-LSAs are originated by the Designated Router (DR) of a broadcast

network and also flooded throughout a single area. The DR does not generate any

network-LSA, if there is not at least one full adjacency to another router in the

network. The network-LSA lists those routers that are fully adjacent to the DR.

Router-LSAs in OSPFD

ospf lsa.c:ospf router lsa originate(...) originates new router-LSAs, triggered by the

timer thread ospf lsa.c:ospf router lsa timer(...). This timer is activated by the func-

tion ospf lsa.c:ospf router lsa timer add(struct ospf area*), which is called by:

ospf flood.c:ospf process self originated lsa(...)

when a self-originated router-LSA has been received,

ospf interface.c:ospf if recalculate output cost(...)

when the cost associated with a router’s interface has changed,

ospf ism.c:ism change status(...)

when the status of the interface state machine has changed,

ospf lsa.c:ospf router lsa update timer(...)

when router related information has changed,

ospf nsm.c:nsm change status(...)

when the status of the neighbor state machine has changed,

ospfd.c:[no]area shortcut cmd

when the shortcut propriety of an area has been changed,

ospfd.c:ospf area type set(...)

when the area type is set (default, stub, NSSA).

Figure 1 on page 9 shows the dependencies of the origination and refreshing of

router-LSAs.

3 ZEBRA’S OSPF DAEMON 6

ospf lsa.c:ospf router lsa body set(...) fills the generated router-LSA with infor-

mation extracted from the corresponding ospf area structure. This structure con-

tains a list of all interfaces of the router that participate in this area. Thus, manipu-

lating router-LSAs requires changes in area data, or more precisely in the associated

interface data; they cannot be faked directly without substantial changes in the

OSPFD code.

Network-LSAs in OSPFD

ospf lsa.c:ospf network lsa originate(...) originates new network-LSAs, triggered by

the timer thread ospf lsa.c:ospf network lsa refresh timer(...). This timer is activated

by the function ospf lsa.c:ospf network lsa timer add(struct ospf interface*), which is

called by:

ospf flood.c:ospf process self originated lsa(...)

when a self-originated network-LSA has been received,

ospf ism.c:ism change status(...)

when the status of the interface state machine has changed,

ospf nsm.c:nsm change status(...)

when the status of the neighbor state machine has changed.

Figure 2 on page 11 shows the dependencies of the origination and refreshing of

network-LSAs.

ospf lsa.c:ospf network lsa body set(...) generates a list of all routers in the net-

work that are fully adjacent to the designated router. Therefore, it scans the neigh-

bor list associated to the data structure of the interface that is connected to the

network. Thus, manipulating network-LSAs requires changes in the neighbor list

of the corresponding interface, or a fake interface has to be created. Furthermore,

the router originating the network-LSA is always the Designated Router of the net-

work that keeps up adjacencies to all other routers in the network. This has to be

considered in any manipulation.

3.3 AS-external-LSAs

Autonomous System Boundary Routers (ASBRs) announce routes to destinations

outside the Autonomous System (AS). There are several sources of information

about external destinations: the ASBR might belong to another OSPF AS or it

3 ZEBRA’S OSPF DAEMON 7

uses information of other routing protocols. Routes to AS-external destinations can

also be based on static routes. An ASBR does not have to be part of the backbone,

and it does not have to be Area Border Router (ABR) either. Nevertheless, it must

not be placed internal to “stub” areas.

Each AS-external destination is announced by an AS-external-LSA, which is

flooded throughout the entire AS except for “stub” areas. The other routers then

use the AS-external-LSA to calculate the shortest path to this AS-external destina-

tion. Intra-area and inter-area paths are always preferred over AS-external paths.

Therefore, AS-external-LSAs announcing destinations within the AS would be ig-

nored during the shortest path calculation.

AS-external-LSAs in OSPFD

AS-external-LSAs are originated by ospf lsa.c:ospf external lsa originate(struct exter-

nal info*). The following list shows where this function is called:

ospf lsa.c:ospf external lsa originate timer(...)

when the router ID has changed, this timer is activated by ospfd.c:ospf rou-

ter id update() to adapt AS-external-LSAs (non-default routes only),

ospf lsa.c:ospf default originate timer(...)

when the router ID has changed, this timer is activated by ospfd.c:ospf rou-

ter id update() to adapt AS-external-LSAs announcing default routes,

when the configuration concerning the redistribution of default information has

changed, this timer is activated by ospf zebra.c:ospf redistribute default set(...),

ospf lsa.c:ospf external lsa refresh default()

when a non-existent default AS-external-LSA is to be refreshed,

ospf lsa.c:ospf external lsa refresh type(...)

when a non-existent AS-external-LSA of a given type (= source of external

information) is to be refreshed,

ospf zebra.c:ospf zebra read ipv4(...)

when the Zebra daemon provides external information,

ospf zebra.c:ospf distribute list update timer(...)

when a distribution list (= set of external information sources) for redistribu-

tion of external information has been set or unset,

3 ZEBRA’S OSPF DAEMON 8

ospfd.c:no network area cmd

when a network has been removed (concerns AS-external-LSAs to “connected”

destinations).

ospf lsa.c:ospf external lsa body set(...) transfers the external information from a

given external info structure into AS-external-LSA data. No information of the

OSPF database is used. Moreover, AS-external-LSAs only affect the link-state

database (LSDB) and the routing table. This makes it easy to insert fake AS-

external-LSAs in the LSDB without disturbing any OSPF mechanisms.

3.4 Summary-LSAs and ASBR-summary-LSAs

Summary-LSAs and ASBR-summary-LSAs are originated by Area Border Routers

(ABR) and flooded through a single area only. Summary-LSAs describe routes to

networks situated in other areas of the Autonomous System (AS), whereas ASBR-

summary-LSAs indicate routes to AS Boundary Routers (ASBR).

The implementation of these LSAs in OSPFD is not followed up as they are

originated on the basis of other LSAs.

3.5 LSA Refresh Mechanisms

Link states are soft states, i.e. they have to be refreshed periodically. When the age

of a LSA reaches the value MaxAge without being refreshed, the LSA is removed

from the link-state database and flushed from the routing domain.

It is evident that a LSA has to be refreshed by its originating router, which has

to check before if the information is still valid. This refresh mechanism has to take

place before the LSA’s age reaches MaxAge.

LSA refresh mechanisms in OSPFD

OSPFD refreshes LSAs using timers. However, the LSA refresh mechanisms are

different for router-LSAs, network-LSAs and other LSAs.

Refreshing router-LSAs

ospf lsa.c:ospf router lsa refresh(...) is the refresh function for router-LSAs which is

triggered by the timer thread ospf lsa.c:ospf router lsa timer(...) only. This timer is

attached to the data structure of the area the router-LSA is dedicated to, and it is

activated by the following functions:

3 ZEBRA’S OSPF DAEMON 9

ospf lsa.c:ospf router lsa install(...)

after having originated or refreshed the LSA (ensures periodical refreshing),

ospf lsa.c:ospf router lsa timer add(...)

which first stops an already running timer if existent. This function is called

if router-LSA related information has changed.

Figure 1 shows the dependencies between all functions and timers involved in router-

LSA origination and refreshing.

ospf_lsa.c:
ospf_router_lsa_update_timer

ospf_abr.c:
ospf_check_abr_status

ospf_asbr.c:
ospf_asbr_status_update

ospfd.c:
ospf_router_id_update

ospf_flood.c:
ospf_process_self_originated_lsa

ospf_interface.c:
ospf_if_recalculate_output_cost

ospf_ism.c:
ism_change_status

ospf_nsm.c:
nsm_change_status

ospfd.c:
[no_]area_shortcut_cmd
ospf_area_type_set

ospf_lsa.c:
ospf_router_lsa_timer_add

ospf_lsa.c:
ospf_router_lsa_timer

ospf_lsa.c:
ospf_router_lsa_originate

ospf_lsa.c:
ospf_router_lsa_refresh

ospf_lsa.c:
ospf_lsa_install

ospf_lsa.c:
ospf_router_lsa_install

Refresh

Mechanism

function call

start

timer thread

Figure 1: Origination and Refreshing of Router-LSAs

3 ZEBRA’S OSPF DAEMON 10

Refreshing network-LSAs

ospf lsa.c:ospf network lsa refresh(...) is the refresh function for network-LSAs which

is triggered by the timer thread ospf lsa.c:ospf network lsa refresh timer(...) only.

This timer is attached to the data structure of the interface the network is connected

to, and it is activated by the following functions:

ospf lsa.c:ospf network lsa install(...)

after having originated or refreshed the LSA (ensures periodical refreshing),

ospf lsa.c:ospf network lsa timer add(...)

which first stops an already running timer if existent. This function is called

if network-LSA related information has changed.

Figure 2 shows the dependencies between all functions and timers involved in net-

work-LSA origination and refreshing.

Refreshing AS-external-LSAs, summary-LSAs, ASBR-summary-LSAs

A common refresh mechanism called ospf lsa.c:ospf lsa refresh walker(...) is respon-

sible for all these LSA types. This timer thread is started during the initializa-

tion of OSPFD. For each LSA that has to be refreshed, it calls ospf lsa.c:ospf

lsa refresh(...) which passes on to ospf lsa.c:ospf external lsa refresh(...), ospf lsa.c:

ospf summary lsa refresh(...) or ospf lsa.c:ospf summary asbr refresh(...), according to

LSA type.

A LSA has to be registered by ospf lsa.c:ospf refresher register lsa(...) to be taken

into account by the “refresh walker”. The registration takes place when ospf lsa.c:

ospf external lsa install(...), ospf lsa.c:ospf summary lsa install(...), or ospf lsa.c:ospf

summary asbr lsa install(...) respectively is called in the originate or refresh pro-

cedure.

ospf lsa.c:ospf refresher unregister lsa(...) unregisters a LSA that is discarded

from the link-state data base by ospf lsa.c:ospf discard from db(...) (concerns sum-

mary-LSAs and ASBR-summary-LSAs) or flushed by ospf lsa.c:ospf external lsa

flush(...) (AS-external-LSAs only).

In addition and in my opinion without any necessity, ospf lsa.c:ospf exter-

nal lsa refresh(...) unregisters AS-external-LSAs before calling ospf lsa.c:ospf lsa re-

fresh(...), and registers them again afterwards.

Apart from the refresh walker, the refresh mechanism for AS-external-LSAs

ospf lsa.c:ospf external lsa refresh(...) is also triggered by the following functions:

3 ZEBRA’S OSPF DAEMON 11

ospf_flood.c:
ospf_process_self_originated_lsa

ospf_ism.c:
ism_change_status

ospf_nsm.c:
nsm_change_status

ospf_lsa.c:
ospf_network_lsa_timer_add

ospf_lsa.c:
ospf_network_lsa_refresh_timer

ospf_lsa.c:
ospf_network_lsa_originate

ospf_lsa.c:
ospf_network_lsa_refresh

ospf_lsa.c:
ospf_lsa_install

ospf_lsa.c:
ospf_network_lsa_install

Refresh

Mechanism

function call

start

timer thread

Figure 2: Origination and Refreshing of Network-LSAs

ospf lsa.c:ospf external lsa refresh type()

to refresh all AS-external-LSAs of a certain type (= source of external infor-

mation),

ospf lsa.c:ospf external lsa refresh default(...)

to refresh an AS-external-LSA announcing an external default route,

ospf flood.c:ospf process self originated lsa(...)

after having received the same LSA,

ospf zebra.c:ospf zebra read ipv4(...)

if Zebra updates an already existing external route,

3 ZEBRA’S OSPF DAEMON 12

ospf zebra.c:ospf distribute list update timer(...)

when other settings concerning the redistribution of external information have

changed.

Figure 3 shows the dependencies between all functions and timers involved in AS-

external-LSA origination and refreshing.

Before refreshing an AS-external-LSA, ospf flood.c:ospf process self originated

lsa(...) and ospf lsa.c:ospf lsa refresh walker(...) check with ospf flood.c:ospf external

info check(...) if the underlying external information still exists (external informa-

tion is stored separately from the link-state database) and if external information

from the issuing source is still to be redistributed. Otherwise, the AS-external-LSA

will be flushed from the AS instead of being refreshed.

The refresh mechanism for summary-LSAs is also triggered by ospf abr.c:ospf

abr announce network to area(...), those for ASBR-summary-LSAs by ospf abr.c:

ospf abr announce rtr to area(...).

3 ZEBRA’S OSPF DAEMON 13

ospf_flood.c:
ospf_process_self_originated_lsa

ospf_lsa.c:
ospf_external_lsa_originate

ospf_lsa.c:
ospf_external_lsa_refresh

ospf_lsa.c:
ospf_lsa_install

ospf_lsa.c:
ospf_external_lsa_install

ospf_lsa.c:
ospf_refresher_register_lsa

ospf_lsa.c:
ospf_external_lsa_refresh_default

ospf_zebra.c:
ospf_zebra_read_ipv4
ospf_distribute_list_update_timer

ospf_zebra.c:
ospf_redistribute_default_set

ospf_lsa.c:
ospf_external_lsa_refresh_type

ospf_zebra.c:
ospf_redistribute_default_set

ospf_lsa.c:
ospf_lsa_refresh

ospf_lsa.c:
ospf_lsa_refresh_walker

ospf_lsa.c:
ospf_default_originate_timer

function call

start

timer thread

ospf_lsa.c:
ospf_external_lsa_originate_timer

ospfd.c:
ospf_router_id_update

ospf_zebra.c:
ospf_redistribute_set

ospfd.c:
no_network_area_cmd

Figure 3: Origination and Refreshing of AS-external-LSAs

14

4 Faking AS-external-LSAs

Section 3.3 has shown that manipulating AS-external entries in the link-state

database is feasible without making substantial changes in the original source code

of OSPFD. That is due to the fact that AS-external-LSAs do not depend on areas,

interface states, neighbor adjacencies etc. In the following, a patch for OSPFD is

presented that allows inserting arbitrary external information in order to generate

fake AS-external-LSAs.

4.1 Installation of the Patch

The patch has been conceived for GNU Zebra 0.92a. However, it should work with

new versions as well, since only small changes are supposed to be made in the existing

code. The patch consists of the following files:

ospf lsa patch.c: the source file of the patch.

ospf lsa patch.h: the corresponding header file.

ospf main.c: the modified main source file of OSPFD.

ospf zebra.h: a modified header file of OSPFD.

Makefile.am: the modified Makefile of OSPFD.

For use with GNU Zebra 0.92a, just copy all these files to the OSPFD directory

ospfd/ by overwriting the existing ones. Then follow the regular Zebra install in-

structions (configure, make, make install).

If the patch is to be used with another version of Zebra, try out the modifications

described in the README file of the patch.

4.2 Command Description

The patch adds two vty commands to the “router ospf” configuration mode. Starting

from enable mode, you access this mode with:

configure terminal

router ospf

The first patch command is:

lsa-patch external-info add (kernel|connected|static|rip|bgp) \

A.B.C.D/M [forward A.B.C.D]

4 FAKING AS-EXTERNAL-LSAS 15

It adds an external information to the external information database. The informa-

tion is defined by the type of the issuing source (kernel, connected, static, RIP or

BGP) and the IP destination prefix. In addition, an optional forward address can

be given to indicate another non-OSPF router as gateway (see RFC 2328).

On the basis of the external information, an AS-external-LSA is originated, even

if redistribution is currently not enabled for the given source type. However, when

reaching MaxAge for the first time, the AS-external-LSA will not be refreshed but

flushed instead, unless redistribution is enabled.

The redistribute settings can be changed with:

[no] redistribute (kernel|connected|static|rip|bgp)

The second patch command

lsa-patch external-info delete (kernel|connected|static|rip|bgp) \

A.B.C.D/M [forward A.B.C.D]

deletes the given external information from the database and flushes the correspond-

ing AS-external-LSA immediately.

Remember that only destinations outside the AS are considered during the short-

est path calculation.

4.3 Implementation

The patch does quite the same as the API function ospf zebra.c:ospf

zebra read ipv4(...). The principal difference is that the external information is not

read from a stream, but entered through the new vty commands. The source code

of ospf lsa patch.c can be found in appendix A.

16

5 Conclusion

With the presented Zebra patch, arbitrary AS-external-LSAs can be originated.

These LSAs are flooded throughout the whole AS (except for stub areas) and stored

in the link-state databases of all routers. However, only packet routing to destina-

tions outside the AS is affected. Provided that the announced route is convenient,

packets sent within the AS to the external destinations will be forwarded to the

router that has originated the fake AS-external-LSA, or to the given next hop ad-

dress respectively. Since the external route does not exist, the packets will not reach

their destination.

Routing inside the AS is mostly based on router-LSAs, since they inform about

IP subnets connected to the routers, the principal information needed for routing

decisions. Thus, subnet changes could be simulated by originating fake router-LSAs.

In contrast, manipulating network-LSAs is less interesting, because they only contain

information about OSPF routers connected to a common broadcast network.

A desirable experiment might be the false advertisement of a subnet connected

to an existing or non-existing router interface by originating a fake router-LSA.

However, as shown in section 3.2, the necessary changes in the OSPFD code are

substantial and tricky, because the router-LSA information is gathered directly from

the current interface configuration.

Beyond originating LSAs, a LSA generator should also control LSA flooding, i.e.

when and where LSAs are sent out. Usually, OSPF routers flood LSAs that have

changed or that have to be refreshed because of their age. Flooding is throttled by

various timers in order to avoid high routing traffic, e.g. two instances of the same

LSA may not be originated within the time period MinLSInterval (see RFC 2428).

These protection mechanisms have to be bypassed if high LSA traffic is needed.

17

A Source Code of the Patch

ospf lsa patch.c:

#include <zebra.h>

#include ”command.h”
#include ”vty.h”
#include ”prefix.h”
#include ”log.h”

#include ”ospfd/ospfd.h”
#include ”ospfd/ospf asbr.h”
#include ”ospfd/ospf lsa.h”
#include ”ospfd/ospf zebra.h”

#define LSA PATCH STR ”Patch for LSA manipulation\n”

/∗ Add AS−external−LSA to LSDB ∗/
int

ospf lsa patch external add (u char type , struct prefix ipv4 p,
unsigned int ifindex , struct in addr nexthop)

{
struct external info ∗ ei ;

/∗ Create external information and
store it in external info list ospf top−>external info[type] ∗/

ei = ospf external info add (type , p , ifindex , nexthop);

if (ospf top−>router id.s addr == 0)
/∗ no router ID assigned yet ,

set flags to generate AS−external−LSA originate event
for each redistributed protocols later . ∗/

ospf top−>external origin |= (1 << type);
else

{
if (ei)
/∗ external information is valid ∗/
{

if (is prefix default (&p))
{

/∗ generate AS−external−LSA for default route ∗/
zlog info (”LSA patch: adding/refreshing external default route”);
ospf external lsa refresh default ();

}
else

{
struct ospf lsa ∗current ;

/∗ look for old LSA to same destination ∗/
current = ospf external info find lsa (&ei−>p);
if (! current)

A SOURCE CODE OF THE PATCH 18

{
/∗ no old LSA found, originate new LSA ∗/
zlog info (”LSA patch: adding external route %s/%d”,

inet ntoa (p. prefix), p. prefixlen);
ospf external lsa originate (ei);

}
else /∗ if (IS LSA MAXAGE (current)) ∗/
{

/∗ old LSA found, refresh it ∗/
zlog info (”LSA patch: refreshing external route %s/%d”,

inet ntoa (p. prefix), p. prefixlen);
ospf external lsa refresh (current , ei , LSA REFRESH FORCE);

}
}

}
}
return 0;

}

/∗ Delete AS−external−LSA from LSDB ∗/
int

ospf lsa patch external delete (u char type , struct prefix ipv4 p,
unsigned int ifindex , struct in addr nexthop)

{
zlog info (”LSA patch: deleting external route %s/%d”,

inet ntoa (p. prefix), p. prefixlen);

/∗ Delete external info from ospf top−>external info[type] ∗/
ospf external info delete (type , p);

/∗ Flush LSA ∗/
if (! is prefix default (&p))

ospf external lsa flush (type, &p, ifindex , nexthop);
else

ospf external lsa refresh default ();
return 0;

}

/∗ Manipulate external info ∗/
int

ospf lsa patch external route (struct vty ∗vty , int add cmd,
char ∗ dest str , char ∗mask str , char ∗nexthop str , char ∗ type str)

{
int ret ;
struct prefix ipv4 p;
struct in addr mask;
struct in addr nexthop;
unsigned long ifindex ;
int type;

char buf[BUFSIZ];

A SOURCE CODE OF THE PATCH 19

/∗ Get destination address/mask ∗/
ret = str2prefix ipv4 (dest str , &p);
if (ret <= 0)
{

vty out (vty , ”%% Malformed address%s”, VTY NEWLINE);
return CMD WARNING;

}

/∗ Cisco like mask notation. ∗/
if (mask str)
{

ret = inet aton (mask str, &mask);
if (ret == 0)
{

vty out (vty , ”%% Malformed address%s”, VTY NEWLINE);
return CMD WARNING;

}
p. prefixlen = ip masklen (mask);

}

/∗ Apply mask for given prefix . ∗/
apply mask ipv4 (&p);

/∗ If nexthop is not specified , nexthop is 0.0.0.0 ∗/
if (nexthop str)
{

if (! inet aton (nexthop str, &nexthop)) return CMD WARNING;
}
else inet aton (”0.0.0.0” , &nexthop);

/∗ Take first interface as default ∗/
ifindex = 0;

/∗ Get route type (=source of external info) ∗/
if (! str2distribute source (type str , &type))

return CMD WARNING;

/∗ Trigger action : add or delete external info ∗/
if (add cmd)

ospf lsa patch external add (type , p , ifindex , nexthop);
else

ospf lsa patch external delete (type , p , ifindex , nexthop);

vty out (vty , ”%s %s/%d”, LOOKUP (ospf redistributed proto, type),
inet ntoa (p. prefix), p. prefixlen);

vty out (vty , ” %s %s”, inet ntoa (nexthop), VTY NEWLINE);

return CMD SUCCESS;
}

/∗ VTY Commands ∗/

/∗ lsa−patch command without next hop ∗/

A SOURCE CODE OF THE PATCH 20

DEFUN (ospf lsa patch add external route ,
ospf lsa patch add external route cmd ,
”lsa−patch external−info add (kernel |connected| static | rip |bgp) A.B.C.D/M”,
LSA PATCH STR
”Manipulate external info\n”
”Add external info , originate AS−external−LSA\n”
”Kernel routes\n”
”Connected\n”
”Static routes\n”
”Routing Information Protocol (RIP)\n”
”Border Gateway Protocol (BGP)\n”
”IP destination prefix (e.g . 10.0.0.0/8)\ n”)

{
char ∗nexthop str = NULL;

/∗ Get next hop string if available ∗/
if (argc >= 3) nexthop str = argv [2];

return ospf lsa patch external route (vty , 1, argv [1], NULL, nexthop str, argv [0]);
}

/∗ lsa−patch command with next hop ∗/
ALIAS (ospf lsa patch add external route ,

ospf lsa patch add external route forward cmd ,
”lsa−patch external−info add (kernel |connected| static | rip |bgp) A.B.C.D/M forward A.B.C.D”,
LSA PATCH STR
”Manipulate external info\n”
”Add external info , originate AS−external−LSA\n”
”Kernel routes\n”
”Connected\n”
”Static routes\n”
”Routing Information Protocol (RIP)\n”
”Border Gateway Protocol (BGP)\n”
”IP destination prefix (e.g . 10.0.0.0/8)\ n”
”Forward to another OSPF router\n”
”IP forward address\n”)

/∗ lsa−patch command without next hop ∗/
DEFUN (ospf lsa patch delete external route ,

ospf lsa patch delete external route cmd ,
”lsa−patch external−info delete (kernel |connected| static | rip |bgp) A.B.C.D/M”,
LSA PATCH STR
”Manipulate external info\n”
”Delete external info , flush AS−external−LSA\n”
”Kernel routes\n”
”Connected\n”
”Static routes\n”
”Routing Information Protocol (RIP)\n”
”Border Gateway Protocol (BGP)\n”
”IP destination prefix (e.g . 10.0.0.0/8)\ n”)

{
char ∗nexthop str = NULL;

A SOURCE CODE OF THE PATCH 21

/∗ Get next hop string if available ∗/
if (argc >= 3) nexthop str = argv [2];

return ospf lsa patch external route (vty , 0, argv [1], NULL, nexthop str, argv [0]);
}

/∗ lsa−patch command with next hop ∗/
ALIAS (ospf lsa patch delete external route ,

ospf lsa patch delete external route forward cmd ,
”lsa−patch external−info delete (kernel |connected| static | rip |bgp) A.B.C.D/M forward A.B.C.D”,
LSA PATCH STR
”Manipulate external info\n”
”Delete external info , flush AS−external−LSA\n”
”Kernel routes\n”
”Connected\n”
”Static routes\n”
”Routing Information Protocol (RIP)\n”
”Border Gateway Protocol (BGP)\n”
”IP destination prefix (e.g . 10.0.0.0/8)\ n”
”Forward to another OSPF router\n”
”IP forward address\n”)

/∗ Initialization ∗/
void

ospf lsa patch init ()
{

install element (OSPF NODE, &ospf lsa patch add external route cmd);
install element (OSPF NODE, &ospf lsa patch add external route forward cmd);
install element (OSPF NODE, &ospf lsa patch delete external route cmd);
install element (OSPF NODE, &ospf lsa patch delete external route forward cmd);

}

ABBREVIATIONS AND REFERENCES 22

Abbreviations

ABR Area Border Router

AS Autonomous System

ASBR Autonomous System Boundary Router

BGP Border Gateway Protocol

DR Designated Router

IETF Internet Engineering Task Force

IGP Interior Gateway Protocol

LSA Link State Advertisement

LSDB Link-State Database

OSPF Open Shortest Path First

RFC Request For Comment

RIP Routing Information Protocol

SNMP Simple Network Management Protocol

References

[1] Gagan L. Choudhury, Anurag S. Maunder, Vera D. Sapozhnikova, “Faster Link-

State IGP Convergence and Improved Network Scalability and Stability”, IEEE

Conference on Local Computer Networks (LCN) 2001

[2] Gagan L. Choudhury, Anurag S. Maunder, Vera D. Sapozhnikova,

IETF draft-ietf-ospf-scalability-01.txt

[3] Dave Katz, Derek Yeung, Kireeti Kompella,

IETF draft-katz-yeung-ospf-traffic-06.txt

[4] Anindya Basu, Jon G. Riecke, “Stability Issues in OSPF Routing”, ACM SIG-

COMM 2001

[5] GNU Zebra Homepage: www.zebra.org

Zebra 0.91a Manual: dc.qut.edu.au/usr/share/doc/zebra-0.91a/zebra.html

Zebra for Dummies: wwwstud.informatik.uni-karlsruhe.de/∼s uriart/zhh.txt

API for opaque LSA origination: www.tik.ee.ethz.ch/∼keller/ospfapi/

[6] IP Infusion Inc., www.ipinfusion.com

[7] GCT-AllWell, www.gctglobal.com

[8] Tisya Microsystems, www.tisya.co.in

	1 Introduction
	2 GNU Zebra
	2.1 General Description
	2.2 Implementation Features
	2.3 Installation and Configuration

	3 Zebra's OSPF daemon
	3.1 Source Files
	3.2 Router-LSAs and Network-LSAs
	3.3 AS-external-LSAs
	3.4 Summary-LSAs and ASBR-summary-LSAs
	3.5 LSA Refresh Mechanisms

	4 Faking AS-external-LSAs
	4.1 Installation of the Patch
	4.2 Command Description
	4.3 Implementation

	5 Conclusion
	A Source Code of the Patch
	Abbreviations and References

