An architecture for autonomic security adaptation

Une architecture pour 1’adaptation autonome de
sécurité

Andreas Klenk, Heiko Niedermayer, Marcus Masekowsky, Georg Carle
Computer Networks and Internet, University of Tiibingen, Germany

Abstract

Abstract - Communication is the grounding principle of nowadays complex applications where the functionalities
of the overall system are much more powerful then the ones of the isolated components. The task of keeping the
communication system operable is highly critical due to the configuration complexity and the need for manual
administration. Autonomous configuration mechanisms offer a compelling solution for the communication problem.
We present an architecture for the autonomous configuration of secure, layer independent, end-to-end connections
in this paper. The Extensible Security Adaptation Framework (ESAF) separates the particularities of communication
setups strictly from the communication usage by the applications. Applications are unaware of the utilized security
mechanisms and the complex configuration thereof. Protocols and security primitives can be easily introduced into
the system whereas others might be disabled due to vulnerabilities without the need to modify existing programs.
Moreover the setup can adapt to changing environments dynamically during runtime.

Keywords - Security Adaptation, Autonomous Configuration, Virtualization.

Résumé - La communication est I’élément de base des applications complexes d’aujourd’hui, dans lesquels
des fonctionnalités du systeme entier ont une puissance beaucoup plus grande que celle des composants isolés. A
cause de la complexité de la configuration et la nécessité d’administration manuelle, la tiche de tenir le systeme de
communication en fonction est hautement critique. Une solution impérative pour le probleme de communication est
offert par des méchanismes de configuration autonome. Dans cette publication, nous présentons une architecture pour
la configuration autonome des connexions fin-fin sécurisées et indépendantes de la couche. L’Extensible Security
Adaptation Framework (ESAF) sépare strictement les particularités des environnements de communication et 1’'usage
par les applications. Les applications sont ignorantes des méchanismes de sécurité utilisés et leur configuration
complexe. Des protocoles et des primitives de sécurité peuvent étre facilement introduits dans le systéme, tandis
que d’autres pourraient étre désactivés a cause des vulnerabilités, sans la nécessité de modifier des programmes
existants. En outre, I'installation est capable de s’adapter dynamiquement aux environnements modifiants pendant
le temps d’execution.

Mots clés - Adaptation de sécurité, configuration autonome, virtualisation.

I INTRODUCTION

During the last decade the number of computers drastically increased as well as the demand for communication.

This trend raises the issue how to handle and guarantee security in those systems, considering their vast complexity.
Manual configuration approaches reach their limit of applicability as the number of computer and the possible
network interconnections rapidly grow. Hence security must be as easy to enforce as connecting a computer to the
network.
With the introduction of innovative network concepts new challenges arise as more devices will be part of
the network and network components will change more frequently. Sometimes the devices must act completely
autonomic with little to none further administration, for example, in ubiquitous scenarios where computers and
other electronic helpers are employed once and must operate autonomously further on. In such settings manual
configuration is not feasible anymore. Thus, traditional manual security management approaches reach their limit
of applicability.

The driving force for change is now the user with her needs and her fascination for new and innovative products.
The complexity and the unforeseeable number of possible interactions and communication interfaces requires a self-
configuration capability for the security and communication functions of the devices. A solution to this problem is
offered by the introduction of autonomic communication.

1.1 The non-autonomic use of current technologies

Current security technologies are either integrated into the system (like IPSec) or into the application (like
SSL/TLS). An example for security configuration at system level is the management of security policies or
associations for IPSec. Configuration at the system level usually reflects the highest demand for security and
therefore uses the protocol and cryptographic algorithm which offers the best security guarantees. The choice of
the "best" security protocol reflects only badly the true security requirements at a given time. During a session only
certain data need strong protection. Another example for potential lower security requirements is communication
in trusted environments, say inside the company network.

The configuration, especially of IPSec, is awkward. It is up to the administrator (and additionally to the user in
case of VPN clients) to configure the installation of IPSec as well as to provide device-specific and appropriate
security policies. IPSec stores security policies in a security policy database (SPD). These policies determine if
and how to secure a particular packet. Such a static approach ignores the particular requirements of the different
stakeholders and cannot adapt to volatile requirements.

In contrast to the system-wide configuration, security at application-level must be supported already during the
development by such programs. Applications which deal with the configuration of security protocols on their own
are therefore forced to support the particularities of the protocol interfaces. Such applications break if old protocols
become unavailable even if new security protocols are introduced into the system as a replacement. At the time of the
development unforeseen security configurations cannot be used. This is ignorant of many use-cases and cannot adapt
to new developments and the introduction of innovative security mechanisms. If an application is closely coupled
with a security policy the administrator can only influence the behavior through application specific configuration
options and cannot enforce the security policies at a single point in the system.

1.2 Autonomic Configuration and Adaptation

The basic principle of our approach to autonomic configuration is the consistent separation of communication
requirements from the configuration of existing protocols. Applications specify their requirements agnostic of the
implementation details of the available protocols. Application, administration, and user provide the system with
high level policies. Given such an initial basic rule set ESAF [2] provides full autonomy and adapts the security
mechanisms accordingly. Thus the framework is easily extensible with new protocols without the need to rebuild
the applications.

Security requirements are influenced by all communication partners; the minimum requirements are therefore deter-
mined during a negotiation process. The partners agree upon a protocol choice and the corresponding configuration
matching the most demanding security requirements of each participant.

Autonomous components must adapt their behavior in many cases to their environment. The logic how to determine
the context could be realized by the application. The application can then modify its high level policies during
runtime to reflect different trust levels.

1.3 Structure of the document

The remaining sections of the paper are organized as follows. First we give a short overview about current research
in the field of Quality of Security Service in Section II. In Section III we introduce ESAF with its architecture
and components. We describe how requirements can be expressed with policies and the API for applications. Next
we discuss the applicability of ESAF for a typical scenario in Section IV. Finally we summarize our approach in
Section V.

II RELATED WORK

Levine was the first to discuss the effects of Quality of Security Service[7] in depth and to describe how to
adapt the system to defined requirements. Her system offers security choices to reflect the different behavior of
the mechanisms. The user, the application and the system determine the adequate algorithm jointly. The decision
is derived from security ranges and performance ranges specified in form of policies. The core argument behind
her reasoning is: If a user decides on a minimum security level for an application, would she ever agree to more
security if that increases her costs?

The GSS-API[13] was developed prior to the QOSS approach to support applications with generalized security ser-
vices. The per-message protection mechanism is enhanced by an option to take a so called Quality of Protection(QoP)
parameter to select a particular security option based on performance values and the protection requirements of single
messages. However, the use of the option is limited, because the QoP parameter depends on the implementation of
the underlying algorithm which breaks the encapsulation of the mechanisms.

Ganz introduced the security broker[9] architecture for WLANs. This framework chooses security services upon
security requirements specified by the user, available network performance and the performance of security routines.
There exist three security classes to choose from, each with a different level of protection and different performance.
Another contribution to adaptive security in WLANs was published by Saxena in [5]. The required security level
depends mainly on the trust in the environment, say how hostile one expects the environment to behave. The paper
argues that the spare processing and transmission resources are wasted in mobile environments if security is over-
provisioned. Hence the tradeoff between security and performance is essential for the choice of security services.

Host A : Host B
1
1
1
1
Application : Application
1
1
1
}
ESAF ESAF 1 ESAF ESAF
Runtime IH' Virtualization : Virtualization IH' Runtime
Environment Layer : Layer Environment

1

Protocol 1| Protocol

Wrapper : Wrapper

Control 1 Control

SCTP | linterface| ! || SC™P || |interface

IPSec : IPSec
1
1
1

Communication Security Context

Protected L J Negotiation of
1
i
1
1

Fig. 1. Extensible Security Adaptation Framework/Extensible Security Adaptation Framework

III EXTENSIBLE SECURITY ADAPTATION FRAMEWORK

The Extensible Security Adaptation Framework (ESAF) was designed to provide applications with a novel
interface that provides virtualization especially for security. Applications can take control over the security protocols
without the need to know anything about the parameters and interfaces of the protocol at all. The decision which
protocol and which configuration should be used has to be derived directly form the security and communication
requirements of the different stakeholders in the system: user, application, system, communication partners and
many other instances determine the configuration needs.

These requirements are defined in high level policies. These policies describe in an abstract form the required security
and communication parameters. The ESAF can map these high level policies internally onto system capabilities
policies to derive the particular configuration that must be applied to the protocols.

Virtualization offers a compelling solution to solve two problems at once. The security and communication require-
ments must be formulated independently from a particular protocol, but they must still be expressive enough to
state the requirements in necessary depth. The usage of the security protocol must be generic enough to replace
the protocol in the system without the need to reconfigure or rebuilt the existing applications.

Exchangeability of the protocols only works if the necessary configuration does not introduce hard dependencies to
a specific protocol. The socket interface achieves today a certain level of abstraction for applications but only after
the socket is established. The initialization is done through a protocol specific sequence of commands including the
sockopt() option. It is not possible in this case to exchange the old protocol with a new innovative and unforeseen
protocol without breaking the application. This is especially true in cases when, for example, security was formerly
provided through SSL, but now IPSec is the only secure communication option. Most often such an exchange is
not possible at all.

Our solution is to introduce similar interface to the standard socket interface but offer generic configuration with
high level policies.

ESAF not only acts system local, but can also assist the applications with the establishment of secure connections.
A security context negotiation is performed during connection setup to determine the requirements of the commu-
nication partners. High level policies are exchanged and their intersection leads to a list of supported and required
protocols for the connection. A choice can be made then, what the "best" protocol for this session will be.

In order to proof the concept we already implemented basic mechanism of ESAF for Linux in C++. The ESAF
environment is still under development and misses central functionalities like mechanisms for key exchange or the
use of certification authorities.

The next subsections will highlight the individual specialties of the different tasks of the ESAF approach.

Application System
E'SAFl . ESAF Runtime
Virtualization Environment
Layer

Negotiation Negotiation
Handler Manager
Control 1)
Interface ’ System
Capabilities
Policy

Configuration
Offer

Fig. 2. ESAF Policy Processing/Traitement d’ESAF Policy

III.1 Architecture

The layered architecture was designed to achieve communication virtualization and configuration transparency
for the application. Consequently the ESAF Virtualization Layer is the core of the framework. This layer is the
generic communication interface for the application. It accepts high level policies as configuration requests and
chooses autonomously appropriate communication setups. The application utilizes the Generic Socket Interface to
carry out the communication then. The application is linked directly to the Generic Socket Interface contained in
the ESAF library.

The Virtualization Layer uses internally the generic Protocol Wrapper interface. This wrapper also comprises a

generic interface and takes system capabilities policies for configuration. The wrapper allows the ESAF to easily
introduce new protocols into the system without the need to recompile the ESAF library. The system capabilities
policies allow to configure the protocols in depth while still being able to provide interchangeability of the particular
protocols.

The ESAF Runtime Environment is designed as a daemon running constantly in the system. One functionality of
the runtime is to make protocol configurations which require root privileges, for example of IPSec. Another aim is
to keep the ESAF Virtualization Layer comparable lightweight and implement policy related functionalities here.
Retrieval of the high level policies is such a functionality whereas the demon can keep track of the currently active
security contexts.

The Control Interface is part of the application. The application is responsible for accessible ports from outside of the
system and runs the control interface there. A remote host, willing to connect, initially negotiates a security context
for the communication link, before data exchange can commence. The Control Interface allows the negotiation of
security contexts during connection setup and the modifications of the context during runtime.

<?xml version="1.0" encoding="UTF—8"?>
<!DOCTYPE esaf_high_level_policy SYSTEM "esaf_high_level_policy.dtd">
<esaf_high_level_policy>
<security_requirements>
<message_authentication>
<minimum>5</minimum>
<ideal>7</ideal>
</message_authentication>
<data_integrity>
<minimum>7</minimum>
<ideal>10</ideal>
</data_integrity>
<confidentiality>

</confidentiality>
<traffic_flow_confidentiality>

</traffic_flow_confidentiality>
<non—repudiation>

</non—repudiation>

</security_requirements>

<communication_requirements>
<connection_type>connection—oriented</connection_type>
<reliability>reliable</reliability>
<sequencing>yes</sequencing>
<error_control>yes</error_control>
<performance>
<minimum>5</minimum>
<ideal>10</ideal>
</performance>
</communication_requirements>

</esaf_high_level_policy>

Listing I. High Level Policy/High Level Policy

111.2 Requirements Description Language - RDL

We defined the Requirements Description Language RDL to pass configuration requests along. The public
interface of ESAF accepts High Level Policies whereas internally a system capabilities policy is used to describe
the installed protocols.

We decided to use XML as a policy language, because it is easily extensible. Different versions of the ESAF can
choose to ignore sections they do not understand. This is of course only possible if the section provides information
marked as optional.

I11.2.1 High Level Policies: It is important that these policies are truly protocol and configuration independent
and describe the full range of requirements in a general manner. For such a policy language it is important to identify
a set of language constructs and keywords that are able to express the full range of communication requirements.
The security of a communication link is usually judged based on the degree it provides the following characteristics:
authentication, integrity, confidentiality and non-repudiation. We identified two more parameters of high importance

for secure communication: reliability and performance.

Security protocols are not equally optimized for all identified parameters. The level of security varies depending
on key lengths and utilized encryption algorithms. The performance of the algorithm may also be an important factor,
imagine a resource constrained device like a handheld computer. These thoughts led us to the decision to attach a
scalar value to each service requirement to express the importance of the parameter on a scale between 0 and 10.
The value 0 would mean "no importance" while 10 would give the parameter the highest priority. To differentiate
even further we introduced the notion of minimum as a knock out barrier and ideal as the desired configuration value.

The security requirements are kept apart from the communication requirements in the policy. Inside the se-
curity_requirements element each parameter is stated with its minimum and ideal value. This element describes
the typical security requirements as stated above. The tag communication_requirements encloses parameters like
performance or reliability. Listing I depicts an example of such a high level policy.

High level policies which reside at the same system can be joined by the ESAF. The application specifies an
application specific high level policy as well as the administrator can specify a system policy. These policies can
easily be unified because they refer to the same system capabilities policy. The algorithm is easy, all minimum
elements of the policy are compared and always the higher value is kept.

<?xml version="1.0" encoding="UTF—8"?>
<!DOCTYPE esaf_system_ability SYSTEM "esaf_system_capability.dtd">

<esaf_system_capability>
<supported_security_protocols>
<security_protocol id="ipsec">
</security_protocol>

</supported_security_protocols>

<supported_communication_protocols>
<transport_layer>

</transport_layer>
<network_layer>

</network_layer>
</supported_communication_protocols>

</esaf_system_capability>

Listing II. Excerpt of System Capabilities Policy/Extrait du System Capabilities Policy

111.2.2 System Capabilities Policy: High level policies helped the stakeholders express their requirements. Now

the question is how these high level policies get mapped onto particular protocols providing the desired properties.
Our approach is to use system capabilities policies. These policies describe the available communication and
configuration means of the system.
The basic elements of this format are the security protocols and the communication protocols. Here are the
descriptions what a protocol can do and how it must be configured. If critical bugs in a security protocol are
disclosed, the administrator can easily disable the corresponding entries in the system capabilities policy or degrade
the security level. This will allow that the applications to use more secure protocols for their connections. The user
will not even notice the change and the application does not have to bother.

<supported_security_protocols>
<security_protocol id="ipsec">
<supported_security_services>
<confidentiality>

</confidentiality>
<message_authentication>
<message_authentication>
<auth_algorithm id="none">
<key_length>0</key_length>
<security_level>0</security_level>
<performance>10</performance>
</auth_algorithm>

<auth_algorithm id="hmac—md5">
<key_length>128</key_length>
<security_level>2</security_level>
<performance>9</performance>

</auth_algorithm>

<auth_algorithm id="hmac—shal">
<key_length>160</key_length>
<security_level>5</security_level>
<performance>6</performance>

</auth_algorithm>

<auth_algorithm id="hmac—sha2 —256">
<key_length>256</key_length>
<security_level>8</security_level>
<performance>3</performance>

</auth_algorithm>

</message_authentication>

<non—repudiation>
</non—repudiation>
</supported_security_services>
<required_communication_protocols>
<!—protocols , which can be used with this security protocol —>

</required_communication_protocols>
</security_protocol>

</supported_security_protocols>

Listing III. Security Services in the System Capabilities Policy/Security Services dans le System Capabilities Policy

The system capabilities policy describes in detail the possible configuration options for each security protocol.
We call policies at this detail level low level policies. These elements correlate directly with the elements of the
high level policy. It is now possible to determine all possible encryption algorithms in the system which can provide
a certain security service, for example, confidentiality.

Listing III shows an excerpt of the security section of an example system capabilities policy. Here are some
supported configuration options for IPSec security services defined. This particular part shows some available
encryption algorithms. Note how the key-length of 256bits for the AES algorithm increases the security level to
10 but decreases the performance level to 4. If implementations get more efficient or algorithms are considered
less secure it is easy to change this policy to reflect the changes. The security_protocol tag can contain special
information for each algorithm on how to configure the algorithm. In this example it is the key_length element.
The system must be aware of the dependencies between the different protocols. Each security protocol contains the
section required_communication_protocols which determines in what combinations the protocol can be used.

111.2.3 Communication Interface: The communication interface provides abstraction of the actual protocols.

Virtualization is reached by using high level policies. The interface itself must be general enough to allow the
exchangeability of the underlying protocols but must must not limit the way a protocol can be used. The level
of abstraction of the BSD socket interface[19] has already proved itself. The Socket++ interface[8], we chose to
mimic, is an evolution of the BSD socket interface and tries to enhance the ease of use for programmers.
We added the method negotiate_policy to the interface for configuration by the means of high level policies. This
method performs internally several steps to establish an agreement about the configuration of the communication
link as described in the next section III.3. After the agreement is reached it establishes the communication with
these parameters.

class SecureConnection
{
private:
void negotiatePolicy (const std::string &from, const std::string &to,const std::string &policy);
public:
//create secure connection
inline SecureConnection(const std::string &from,const std::string &to, const std::string &policy) {

this —>negotiatePolicy (from, to, policy);
}

~SecureConnection () ;

//send data
size_t sc = send(const charx data, size_t len);

Host A Host B
_ _ 1.) Connection Request
Configuration
2.) Context Prepared Session _
|
| 3.) Communication Setup I j

[4.) Runtime Modification]

Fig. 3. Security Context Negotiation Sequence/Séquence de negotiation de contexte

//receive data
size_t rc = receive (charx data, size_t len);

//disconnect
void disconnect();

//renegotiate the context of the connection
void renegotiatePolicy (std::strings* policy);

//get context of the connection as xml
std ::string get_context() const;

Listing IV. An Excerpt of the Secure Connection Class/Extrait de la Secure Connection Class

The approach of providing a new socket layer provides the benefit that it does not matter at which layer of the

protocol stack the required communication and security services are provided. It is even possible to replace the
protocols during runtime and take for example, IPSec instead of SSL. The interface offers the method renegoti-
ate_policy() for doing this.
The concept of using high level policies for configuration allows to extend the functionality of the framework
without changing the interface. Applications must not be rebuilt to include these new functionalities. The extensible
structure of the XML parameter will allow us to support low level policies in the future. These policies contain
additional configuration options at the detail level of the system capabilities policy. One interface can be used then
to provide loose or close control depending on the needs of the application.

111.3 Security Context Negotiation

When a connection has to be established it is necessary to perform a security context negotiation. The participants
must agree on a set of possible protocols and a selection must then be made which protocols to use. At the moment
ESAF supports only end-to-end communication for two participants.

Figure 3 shows the sequence of the negotiation. First a connection request must be made in step 1) by A. For this
reason the ESAF at host A joins the high level policy of A with the system capabilities policy of system A. It tries to
determine a set of protocols and configurations meeting the requirements. Only the entries which possess a security
rating of equal or better then the minimum requirement specified by the high level policy will be included and
form a special policy, the Configuration Offer. The generated Configuration Offer is now sent to host B inside the
connection request. As an option the high level policy can be included to inform B about the ideal value for host A.

After host B received the request, it starts processing it together with its local policies. First, it must evaluate
its own high level policy provided by its application and join it with its system capabilities policy to get the
locally available configuration options. Then, the algorithm starts to determine the adequate configuration taking
the minimum and ideal values into account. If the configuration is found the connection is prepared and a Context
Prepared message is sent to A in step 2), containing the Session Policy.

Caching of the locally available configuration options can speed up the negotiation process. For hosts which must
serve many similar requests it can save resources to implement a caching scheme at this stage.
In case host B is not able to find a possible intersection it will send an Agreement Failed message back to A

and attach its own high level policy and system capabilities policy. In the failure case host A could try to adapt
its policies to find at least one possible communication link with host B. This modification should not be done
automatically but through human intervention because it could lead to degradation of the security level.

After host A received the Session Policy, the connection setup of the protocol can start with the exchanged con-
figuration information as shown in step 3). Furthermore, the application can always perform a runtime modification
of the communication setup by renegotiating the parameters, as shown in step 4).

Of course, the ESAF middleware on host A must verify that the selected configuration is consistent with the request
it sent in step 1). This must be done to detect manipulation attempts. However, it is a matter of mutual trust that
the two hosts do not misuse their various decision options.

Authentication of messages is very important for the negotiation process to avoid manipulation attempts of the
messages. Challenging is that at the time of the first negotiation possible authentication mechanisms are unknown.
We decided to perform a sort of "optimistic authentication". The host A signs its initial request message with some
authentication mechanisms which are likely to be supported by host B. Additionally, host A puts a nonce into the
message which it expects to be included in the response from host B. Host B can proof the integrity of the message.
When the response is received host A can detect replay attacks.

111.4 Support for Authentication and Trust

The virtue of ESAF is to decouple the protocol usage by a virtualization layer from the protocol instance and its

configuration. However, certain security relevant information must be evaluated jointly by the application and the
framework. Authentication is important in two respects, one is the level of trust ESAF puts into the authenticity of an
entity and the other one is the provisioning of the identifier of the entity itself. A minimum required authentication
level can be enforced by automatic means, connections below this thresholds will be blocked. The accomplished trust
level can serve additionally as input for the application. The framework utilizes internally the strongest applicable
authentication mechanism, for instance, if authentication via web of trust is rated with a medium confidence level
the higher rated certificate based authentication with a trusted certification authority would be preferred. Yet the
accomplished authenticity confidence level should be available to the application which can use it as a parameter
for its authorization function.
Authorization is also an important issue for applications. Although an application could implement rule based
authorization with the authenticated identifiers we provide an alternative functionality by offering a credential
interface. A service request for a resource is tied to the provisioning of a particular credential. Access is solely
granted if a valid credential is presented containing, for example, the certificate that an entity belongs to the
group administrators which has special management commands at hands. Credentials must therefore be checked
for authenticity and integrity themselves.

1I1.5 ESAF Components

ESAF Virtualization Layer: The virtualization layer ties the different components of the ESAF together. It
communicates with the ESAF Runtime Environment running at the system and uses the protocol wrapper to configure
and use the communication protocols. The external control interface takes care of the security context negotiations
and renegotiations as described in section III.3. The ESAF virtualization layer is the central component which
interconnects the different parts.

Protocol Wrapper: Abstraction is also an issue for the internal design of ESAF. It is important because the
ESAF virtualization layer should be changed only seldomly. The wrapper encapsulates the specific interface of the
protocol and its proprietary configuration options. It takes care to provide the functionalities of the standardized
protocol wrapper interface by using the protocol specific functions. Low level policies are translated into the
protocol dependent configuration process.

ESAF Runtime Environment: Since some functionalities can only be executed with system privileges the ESAF
Runtime Environment was introduced. We use it in our implementation to perform IPSec configuration.
Other important functionalities of the ESAF Runtime Environment are to manage the system capabilities policy
and to support the security context negotiation. When ESAF implements caching of security context negotiations,
this will also be performed by the ESAF Runtime Environment.

Control Interface: As a protocol interface the control interface is exposed to any connection requests from
foreign computers. It is a special server interface bound to a port to listen for security context negotiation requests.
Here it is crucial to avoid critical flaws in the software design in order to prevent vulnerabilities like for example
buffer overflows.

Negotiation Handler and Negotiation Manager: Several steps are necessary to conclude the security context
negotiation. Responsible are two components: the negotiation handler which accepts connection requests and the
negotiation manager which retrieves the system capabilities policy and implements the logic how to join high level
and system capabilities policies.

1I1.6 ESAF Applications

ESAF provides for a large degree of abstraction from the communication internals. Yet, the choices how to use the
API of the framework must not be limited in comparison to applications which support a particular communication
mechanism natively. The ESAF Virtualization Layer must provide for the required flexibility.

//create ESAF Server at port
Secure_Server s= Secure_Server(address ,true);

//listen
s.listen ();

Negotiation_Handle* nh=0;

try {
//accept one negotiation request
nh=s.accept();

Yeatch (...){

}
//explicit negotiation of context
nh—>negotiate (hl_policy);

//establish communication link with context
Secure_Connection* sconn=0;

sconn = nh—>establish_conn (address);

//communication can now commence

Listing V. ESAF Server Example/Exemple Serveur ESAF

The establishment of a new connection requires two communication phases: One for the negotiation of the context
and the other one for the communication itself. One important issue is how to handle incoming connections. The
ESAF API mimics this semantic with the command accept() for incoming negotiation requests and the separate
command establish_conn() for the setup of the communication link. The programmer of the application can choose
how to handle the processing, for instance, by implementing a multi-threaded execution for the distinct phases. After
the connection is established the Secure_Connection interface can be used comparable to a conventional socket.

Secure_Connectionx s=0;
//establish connection to server_addr respecting the high level policy
s= new Secure_Connection(client_addr ,server_addr ,hl_policy);

//send some data
size_t 1 = s—>send(buf,50);

//renegotiate the context
s—>renegotiate (new_hl_policy);

//receive some data
buffer=new char[200];

1 = s—>receive (buffer ,200);

Listing VI. ESAF Client Example/Exemple Client ESAF

The focus of the interface for clients is on the ease of use. One option is to establish the connection by simply
creating a Secure_Connection object for a destination. The negotiation and the establishment of the connection
happens transparently. If the client decides to use a different policy for a connection it can call renegotiate().

IV APPLICABILITY OF ESAF FOR AUTONOMIC CONFIGURATION

In this chapter we want to demonstrate the ESAF middleware in action considering as an example the composition
of a secure connection using IPSec. We demonstrate how the framework can select a configuration for the connection
autonomously which matches the specified requirements. The scenario highlights how the different components work
together, the messages are exchanged and the policies are applied.

Let us assume, that the user Alice wants to order a book via an online bookstore. She uses a web browser and
wants to establish a secure connection with the purchasing system. Because the web browser and the purchasing
service support the ESAF framework a secure connection can be setup:

We suppose that performance is an important factor for the purchasing system. Alice wants adequate security,
therefore she specified her requirements at the GUI of the application. Internally these settings are translated into
a ESAF High Level XML Policy. If she is an expert user she might modify this policy or even create the policy
manually.

Eventually a policy like the one presented in figure I states the minimum security requirements for confidentiality,
message_authentication, data_integrity and the communication requirements which are reliable, connection-oriented
and error-controlled. We investigate the security service authentication in more detail for our example and assume
that the level S is the minimum requirement for this element.

After the high level policy is defined the user can use her web browser to initiate the order. At first the web
browser passes the high level policy of Alice to the local ESAF Runtime Environment. Here the negotiation manager
becomes active and joins the high level policy with the system capabilities policy to generate the configuration
offer. Some protocols and configurations which do not match the requirements of Alice are already discarded at this
stage. To keep the example simple we consider only authentication algorithms and assume the other requirements
to be equally fulfilled. The configuration offer contains three configuration options available at Alice’s computer
which must be rated:

The ESAF examines the first option, say the MD5 algorithm and discovers a security rating of 2 in the system
capabilities policy. This rating is below the threshold of 5 and is discarded consequentially. Next, SHA-1 with 160
bits key length is rated with a 5§ for authentication. The SHA-2 option with 256 bits is rated 8 for authentication.
Because both algorithms match the requirement they will be included in the configuration offer.

Finally the configuration offer can be included in the connection request and be sent to the purchasing server.

Now, the configuration offer is received by the ESAF Control Interface of the purchasing server. Here the
negotiation handler receives the offer and passes it together with the high level policy of the online bookstore to
the negotiation manager inside the ESAF Runtime Environment.

This component has the complex task of joining three policies: the configuration offer of the web browser, the
high level policy of the online bookstore and the system capabilities policy. First of all the high level policy of
the bookstore gets joined with the local system capabilities policy. Again the protocols remain which fulfill the
minimum requirements.

Now, these locally available protocols are joined with Alice’s configuration offer. Because the purchasing server
supports both SHA variants and they fulfill its requirements they remain in the result set. The ESAF Runtime
Environment must decide which variant to choose. It assigns performance ratings of 6 for SHA-1 with 160 key
length and 3 for the more secure SHA-2. Ultimately it selects the SHA-1 with 128 key length because it fulfills
the minimum security requirements and achieves a better performance. Furthermore the ESAF selects TCP as a

compliant communication protocol, because the bank application and Alice allow only reliable, connection-oriented
and error-controlled connections. The selected configuration set is put into a session policy.

Now, the purchasing server configures itself to accept the connection from Alicet’s computer and sends the Context
Prepared message including the session policy back to the web browser of Alice.

The ESAF at Alice’s computer receives the message, and checks if the session policy is valid. It uses the policy
then to establish the connection with the negotiated parameters. The protocol wrapper takes the session policy and
establishes the chosen configuration of TCP over IPSec with SHA-1 and 160 bit key length. Finally, the purchase
can be carried out.

V CONCLUSION

We presented a framework for autonomic configuration of end-to-end communication links. We described the
concept of requirement driven configuration and how virtualization of the underlying mechanisms is achieved.
Finally we demonstrated how applications can benefit from ESAF in typical scenarios.

The systems can act autonomously during communication largely because of the strict separation between require-
ments and configuration. Applications can leverage the virtualization to introduce new communication mechanisms
and for hassle free utilization of well proven security services. The separation between requirements and particular
configuration rules grants the flexibility to choose the "best" configuration option at a time. The selection depends
on the requirements specified in form of policies and capabilities of the communication partners. The context of
the link is defined during the negotiation phase. The first priority is fulfillment of security requirements; quality of
service aspects are considered next. An ESAF application is unaware of the utilized mechanisms. Hence applications
remain operable whilst new services are introduced into the system and deprecated ones are removed. Therefore,
extensible security adaptation can foster the roll-out of innovative developments for large scale use.

However, ESAF is still under development. It remains future work to support mechanisms for key exchange and
identity management. A thorough security analysis of the framework and a performance evaluation is under way.

REFERENCES

[1] KEROMYTIS (A.). Some IPSec Performance Indications, 2001.

[2] KLENK (A.), MASEKOWSKY (M.), NIDERMAYER (H.), and CARLE (G.). ESAF - an extensible security adaptation framework,
2005.

[3] MUKHIJA (A.) and GLINZ (M.). CASA — A Contract-based Adaptive Software Architecture Framework, 2003.

[4] XU (C.) andGONG (F.), BALDINE (I.), HAN (L.), and QIN (X.). Building security-aware applications on celestial network security
management infrastructure. In International Conference on Internet Computing, pages 219-226, 2000.

[S] SAXENA (B.). An adaptive security framework for wireless adhoc networks. Wireless World Research Forum (WWRF), 2004. Euro-
Labs.

[6] STILLER (B.), CLASS (C.), WALDVOGEL (M.), CARONNI (G.), and BAUER (D.). A flexible middleware for multimedia
communication: Design, implementation, and experience. IEEE Journal on Selected Areas in Communications, 17(9):1614-1631,
September 1999.

[7] IRVINE (C.), LEVIN (T.), NGUYEN (T.), and et al. Overview of a high assurance architecture for distributed multilevel security.
Proceedings of the 2002 IEEE Workshop on Information Assurance and Security TIB2 1555 United States Military Academy, West
Point, NY, 17U19 June 2002, 2002.

[8] SWAMINATHAN (G.). C++ socket classes (1.12), 2004.

[91 GANZ (Z.) GANZ (A.), PARK (H.). Security broker for multimedia wireless lans: Design, implementation and testbed. 1998.

[10] The Open Group. Common Security: CDSA and CSSM, Version 2 (with corrigenda), 2000.

[11] KEENEY (J.). Chisel: A policy-driven, context-aware, dynamic adaptation framework, 2003.

[12] LI {.), YARVIS (M.), and REIHER (P.). Securing distributed adaptation. Computer Networks (Amsterdam, Netherlands: 1999),
38(3):347-371, 2002.

[13] LINN (J.). Generic security service application program interface, version 2. IETF, 1997.

[14] MAO (M.) and KATZ (R.). A framework for universal service access using device ensemble.

[15] YARVIS (M.). Challenges in distributed adaptation, 2000.

[16] YARVIS (M.), REIHER (P.), and POPEK (G.). A reliability model for distributed adaptation, 2000.

[17] FERGUSON (N.) and SCHNEIER (B.). A cryptographic evaluation of IPsec. Technical report, 3031 Tisch Way, Suite 100PE, San
Jose, CA 95128, USA, 2000.

[18] YAHIAOUI (N.), TRAVERSON (B.), and LEVY (B.). Classification and comparison of adaptable platforms, 2004.

[19] LEFFLER (S.), JCKUSICK (M.), KARELS (M.), and QUARTERMAN (J.). The design and implementation of 4.3 bsd unix operating
system. Addison-Wesley, 1989.

[20] NAQVI (S.) and RIGUIDEL (M.). VIPSEC: Virtualized and Pluggable Security Services Infrastructure for Adaptive Grid Computing,
2004.

[21] RAO (S.), FORMANEK (M.), and RIGUIDEL (M.). Prospect of new concepts in securing the cyberspace: Virtual paradigms, infospheres
and pervasive computing, 2004.

[22] BRAY (T.), PAOLI (J.), SPERBERG-MCQUEEN (M.), MALER (E.), and YERGEAU (F.). Extensible Markup Language (XML) 1.0
(Third Edition), 2004.

