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Abstract
A large range of applications exists with demand for high-performance point-to-point and point-to-
multipoint communication. Existing communication subsystems frequently represent a major per-
formance bottleneck. To overcome this bottleneck, a framework for high-performance multicast
transfer protocol processing is presented, based on hardware support for multicast error control in
transmitters and in dedicated intermediate systems called Group Communication Servers. The design
of a protocol processing coprocessor for selective retransmissions by end systems and servers in
multicast scenarios is presented. High scalability for a large number of receivers can be ensured by
the deployment of a VLSI component for list management of acknowledgement processing. The in-
tegration of the VLSI component into a generic coprocessor (the Generic ATM Protocol Processing
Unit, GAPPU) is shown. Details of processing delays and implementation costs of the proposed
hardware implementation are given, and compared with measurements of a typical software imple-
mentation.
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1 INTRODUCTION

Emerging applications, mostly, require both high performance as well as support of a wide variety of
real-time and non-real-time communication services. For example, audio, video, and message passing
of distributed systems may require different services. Networks, (e.g., ATM-based networks) are
able to fulfil the basic requirements by providing data rates exceeding a gigabit per second and by
supporting different kinds of services. However, current communication subsystems (including
higher layer protocols) are not able to deliver the available network performance to the applications.
In the evolution of high speed networking, various multipoint communication services will be of in-
creasing importance. Examples of applications that require point-to-multipoint (Multicast, 1:N) as



well as multipoint-to-multipoint (Multipeer, M:N) communication can be found in the areas of com-
puter-supported cooperative work (CSCW), distributed control, and distributed computing as, e.g.,
in workstation clusters (Heinrichs, 1993). For a growing number of applications such as multimedia
collaboration systems, the provision of a multicast service with a specific quality of service (QoS) in
terms of throughput, delay, and reliability is crucial.
If multipoint communication is not supported by the network or by the end-to-end protocols, multi-
ple point-to-point connections must be used for distribution of identical information to the members
of a group. The support of multicasting is beneficial in various ways: It saves bandwidth, reduces
processing effort for the end systems, reduces the mean delay for the receivers, and simplifies ad-
dressing and connection management.
Various issues need to be addressed in order to provide group communication services in high-speed
networks (Waters, 1992), (Bubenik, 1992). Intermediate systems need to incorporate a copy func-
tion for support of 1:N connections. Communication protocols must be capable of managing mul-
tipoint connections, and group management functions need to be provided for administration of
members joining and leaving a group. A key problem that must be solved to provide a reliable mul-
tipoint service is the recovery from packet losses due to congestion in the network nodes and end
systems.
Different approaches (Ito, 1992), (Strayer, 1992), (Feldmaier, 1994), (Sterbenz, 1991), (Braun,
1993a) on implementing high performance communication subsystems have been undertaken during
the last few years: software optimisation, parallel processing, hardware support, and dedicated VLSI
components. Some of the approaches deal with efficient implementations of standard protocols such
as OSI TP4 or TCP. Others developed protocols especially suited for advanced implementation envi-
ronments.
The use of dedicated VLSI components is mostly limited to very simple communication protocols,
only (e.g., (Balraj, 1992), and (Krishnakumar, 1993)). In this paper, we present VLSI support that is
especially targeted towards more complex multicast protocols. As an example for the provision of
specific support for processing intensive functions, the implementation of a dedicated coprocessor
for selective retransmissions in a multicast environment is shown. It is also shown how this coproc-
essor can be integrated into a protocol processing unit featuring parallel processing and direct ATM
access.
This paper is organised as follows: Section 2 gives an overview of multipoint communication in high-
speed networks and presents the conceptual framework for integrating VLSI components for mul-
ticast support into end systems and Group Communication Servers. Section 3 discusses the func-
tionality of a dedicated coprocessor for managing retransmission, and presents performance results
as well as implementation complexity of the discussed component. Section 4 summarises the paper
and points out some future directions.

2 MULTIPOINT COMMUNICATION IN HIGH-SPEED NETWORKS

2.1 Error Control
The dominant factor which causes high speed networks to discard packets is buffer overflow due to
congestion. The probability for packet loss may vary over a wide range, depending on the applied
strategy for congestion control. For multicast connections, the problem of packet losses is even more
crucial than for unicast connections. It is more difficult to ensure a low packet loss rate. Losses oc-
cur more frequently, and every loss causes costly processing for a multicast transmitter.



For applications that cannot tolerate packet losses of the network, error control mechanisms are re-
quired. Error control is a difficult task in networks that offer high bandwidth over long distances,
where a large amount of data may be in transit. Two mechanisms are available for error correction:
Automatic Repeat ReQuest (ARQ) and Forward Error Correction (FEC).
In contrast to the retransmission schemes, FEC promises a number of advantages (McAuley, 1990).
The delay for error recovery is independent of the distance, and large bandwidth-delay products do
not lead to high buffer requirements. Therefore, FEC is a promising approach in high-speed net-
works. In contrast to ARQ mechanisms, FEC is not affected by the number of receivers. However,
FEC has three main disadvantages when applied for error correction in high speed networks. It is
computationally demanding, leading to complex VLSI components. It requires constantly additional
bandwidth, limiting the achievable efficiency and increasing packet loss during periods of congestion.
The latter limits the usefulness of FEC in many cases. For an accurate assessment of FEC it must be
considered that its best performance is achieved for random errors, while packet losses frequently
occur in bursts (Biersack, 1993). The question when to apply FEC for real-time applications in high-
speed networks requires extended assessments of various trade-offs. FEC has certain attractive
properties in high-speed WANs and for multipoint connections. However, only retransmission
schemes are able to provide fully reliable services. In many cases, retransmission schemes are supe-
rior to FEC in terms of the achievable throughput, the delay properties, or the implementation costs.
Protocols based on ARQ mechanisms are widely used in current data link and transport protocols.
However, for high-performance multicast communication, there are still many open questions con-
cerning acknowledgement and retransmission strategy, achievable performance and implementation.
Retransmissions may be performed as go-back-N (e. g, in TCP) or as selective repeat (e. g., offered
in XTP (XTP Forum, 1994a) and PATROCLOS (Braun, 1993b)). While go-back-N schemes are ap-
propriate for point-to-point communication with low error rates and moderate path capacities, selec-
tive repeat schemes are essential for high-performance multicast communication in wide-area net-
works that may observe congestion (Carle, 1994). Large groups require that the transmitter stores
and manages a large amount of status information of the receivers. The number of retransmissions is
growing for larger group sizes, decreasing the achievable performance. Additionally, the transmitter
must be capable of processing a large number of control information. If reliable communication to
every multicast receiver is required, a substantial part of the transmitter complexity is growing pro-
portionally with the group size. In addition, individual receivers may limit the service quality of the
whole group. To overcome these problems, a scheme that provides reliable delivery of messages to
K out of N receivers may be applied (K-reliable service, (Santoso, 1992)).

2.2 High-Performance Multicast Services
In order to meet the QoS requirements of many real-time applications, it is a common approach to
meet the application reliability requirements without performing error control mechanisms. In situa-
tions where it is difficult to provide a network bearer service which meets the reliability requirements
of the application directly, the following strategy may be applied: providing high protocol processing
capability with a low latency and for ensuring that real-time requirements are met even after one or
two retransmissions of a message. This strategy potentially offers a way for a better utilisation of
network resources in particular for highly bursty source, as it allows to increase the load of interme-
diate systems up to a level in which losses relatively frequent.
In the past it was frequently debated whether real-time applications can be based on services with
retransmissions. In (Dempsey, 1993), it was shown by simulation that a real-time retransmission



scheme is feasible within the end-to-end delay constraints of packet voice transmissions for overall
one-way delays with an average of 12 ms and a maximum of 36 ms. While the authors of (Dempsey,
1993) used relatively high network access delays and protocol processing delays in transmitter and
receiver in modelling the one-way delay, the propagation delay of 5 ms for a fibre-optic transmission
over a distance of 1000 km shows that retransmission schemes for real-time applications may also be
applied for relatively large distances.
A conceptual framework was described (Carle, 1994) for the use of error control mechanisms best
suited for a specific multipoint communication scenario at locations that allow highest performance.
The integration of specialised multicast components into the end systems represents an important
step towards a high performance reliable multicast service. Further improvements of performance
and efficiency may be achieved by the integration of dedicated servers in the network that provide
support for group communication. In many cases of multicasting, the achievable throughput de-
grades fast for a growing group size. A significant advantage can be achieved if a hierarchical ap-
proach for multicast error control is chosen.
The support for protocol processing presented in this paper allows selective retransmissions to mul-
tiple receivers. This error control functionality may be part of a transport protocol, such as XTP Re-
vision 4.0 (XTP Forum, 1994b) in combination with a connectionless network layer. This function-
ality may also be part of a transfer protocols combining layer 3 and layer 4 functions, such as XTP
Revision 3.7  and PATROCLOS (Braun, 1993a) with multicast extensions. Such a transfer protocol
may be used over a conventional LLC service, or over an adaptation layer service as for example
offered by AAL5.
The framework on which this paper is based applies to protocols that use gaps of packet sequence
numbers for positive and negative acknowledgements. Typical protocols use either sequence num-
bers identifying the first byte of the payload (as for example TCP, XTP and PATROCLOS), or they use
packet sequence numbers (such as TP4, SNR (Sabnani, 1990), and SSCOP (ITU, 1994)). While byte
sequence numbers usually have a length of 32 bit (or even 64 bit in XTP 4.0), packet sequence num-
bers with a length of 24 bits are sufficient even for high-speed WANs.
Figure 1 presents a network scenario with multicast mechanisms in the transport component of end
systems and in dedicated servers. The term Group Communication Server describes an intermediate
system with multicast error control capability which may be attached to conventional subnetworks or
to an ATM network. It may be combined with routing functionality of, e.g., an XTP router.
The Group Communication Server (GCS) presented in this paper may integrate a number of mecha-
nisms that can be grouped into three main tasks:
•   Provision of a high-quality multipoint service with efficient use of network resources;
•   Provision of processing support for multicast transmitters;
•   Support of heterogeneous hierarchical multicasting.
For the first task, performing error control in the server permits to increase network efficiency and to
reduce delays introduced by retransmissions. Allowing retransmissions originating from the server
avoids unnecessary retransmissions over common branches of a multicast tree. In order to ensure
low delay, the server does not guarantee an in-sequence forwarding of packets. Instead, it will for-
ward every packet to the receivers as soon as possible. In combination with a network node with
copy function, it is not required that the server processes a packet before forwarding to the receivers.
Instead, copies may be forwarded in parallel to the server and the receivers. This guarantees minimal
delay while allowing that the server detects losses prior to the receiver and initiates a retransmission
by the sender.



For the second task, the GCS releases the burden of a transmitter that deals with a large number of
receivers, providing scalability. Instead of communicating with all receivers of a group simultane-
ously, it is possible for a sender to communicate with a small number of GCSs, where each of them
provides reliable delivery to a subset of the receivers. Integrating hardware support for reliable high
performance multipoint communication in a server allows better use of dedicated resources such as
coprocessors. For end systems, it is not required to have VLSI components for multicast error con-
trol. It will be sufficient to have access to a local GCS for participation in a high performance mul-
tipoint communication over long distances. Then, the error control mechanisms of individual end
systems have only negligible influence on the overall performance, as simple error control mecha-
nisms are sufficient for communication with a local GCS.
For the third task, a GCS may use the potential of diversifying outgoing data streams, allowing sup-
port of different qualities of service for individual servers or subgroups, may apply filtering functions
for specific data streams. It may support different subnetworks, such as FDDI and ATM, where a
different set of protocol parameters may be appropriate, and may also support different error control
schemes, such as Go-back-N and selective repeat.

3 VLSI FOR RETRANSMISSION SUPPORT
The processing overhead associated with handling selective retransmissions and the required data
structures may be extremely high compared to other protocol functions. As an example, the follow-
ing protocol processing latencies may be observed for an XTP (XTP Forum, 1994a) implementation
on Digital Alpha Workstations (150 MHz, 6.66 ns cycle time). The function to insert a new gap in a
list needs 824 4-byte commands in the best case and takes, therefore, approximately 5.4 µs. The best
case occurs if the new entry can be inserted at the beginning of the list. If the new entry has to be in-
serted after the first 10 entries, it needs 4054 commands or approximately 27.03 µs due to the search
operations in the list. These calculations assume that the processor is not interrupted during execu-
tion of this function and all data is stored in the fast processor cache. In this example, XTP was im-
plemented using C without special inline assembly code. Data sent at a rate of 1 Gbit/s results in
more than 122,000 1024-byte packets per second. If the retransmission of each packet has to be
controlled, this results in a new entry in the list in less than 10 µs.

Clearly, retransmission support is a time-critical task especially in a multicast environment.
Therefore, we propose dedicated VLSI support for this task. The retransmission support presented
in the following section can handle negative selective, positive selective, and positive cumulative ac-
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knowledgements and can be used for gaps managed by the receiver to support the acknowledgement
function, or for gaps managed by the transmitter to support the retransmission mechanism. The ALU
has a set of commands to set, delete, insert, and read gaps for unicast or multicast connections. It
can be used in Group Communication Servers as well as in other high performance end systems
(Braun, 1994).

3.1 Logical Representation of Data
A dynamic linked list stores gaps of transmitted data in the following representation: [seq_no_1,
seq_no_2] with seq_no_1 and seq_no_2 representing the beginning and end of a gap. These gaps are
connected via linked lists (cf. Figure 2). For every multicast connection (MC), the pointers to the re-
ceivers participating in that connection are stored. For every receiver, the ALU stores a pointer to
the appropriate list of gaps. Additionally, the ALU manages special lists for every multicast connec-
tion.

seq_no_1

seq_no_2

next

. . .

32476

32538

3

16342

17023

124

. . .

3456

3571

46317

47212

1002 5264

rec_id

m-1
m-2
m-3

1
2

0
MC

. . .

25332

25380

4

25992

26080

124n-2

n-1

0

1

Figure 2  Logical structure of linked lists for retransmission support.

Depending on the implemented protocol, retransmission of data can be performed by multicast to all
receivers, or by individual retransmissions to the appropriate receivers.

3.2 Operations of the Retransmission ALU
The component performs not only the insert and delete operations for the list, but also joins two

adjoining gaps and updates the group list for a given reliability. Appendix A gives some examples of
implemented operations of the retransmission ALU. Every operation sets the error flag if it failed due
to memory overflow or violation of several conditions, such as high_ack ≤ seq_no ≤ high_seq and
other range checking.

3.3 Implementation Architecture for Retransmission Support
Figure 3 shows an overview of the internal structure of the ALU. The retransmission ALU consists
of a data memory that stores sequence numbers representing gaps, pointers of linked lists, and state
information, such as connection and multicast identification, register number of an anchor element,
and other flags indicating the state of a connection. The I/O-bus connects the input/output-port (32
bit) of the retransmission ALU with the 5 register banks (Ai through Ei, 0≤i≤3). From these registers
data can be transferred to the memory via the move unit.

Two simple ALUs (ALU A, 32 bit and ALU D, 8 bit) perform the operations OR, XOR, AND,
ADD, SUB, and NEG. Two specialised 32 bit modulo 232 comparators (COMP 1 and COMP 2)



perform fast comparisons needed for list operations. The ALUs and the comparators can work con-
currently if no data dependencies exist.

For the command set_gap_2, for example, first of all the command itself and the connection
identification are read from the I/O-bus into the registers E and D, respectively. In the next two cy-
cles the central control unit reads the sequence numbers (seq_no_1, seq_no_2) into the registers
A and B, respectively. After reading the complete command and performing several range checking
operations, the loop for searching the right position to insert the new entry in the list starts. There-
fore, the first entry of the appropriate list is loaded into the registers A and B, respectively, and com-
pared with the new entry. The loop terminates if the new entry fits. Otherwise, the next entry is
loaded and compared.
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Figure 3  Functional architecture of the retransmission ALU.

3.4 Memory Management
The retransmission processor stores all list data in a single address space. Therefore, it is necessary
to design a special memory management unit. Memory is divided into 8 separated areas (cf. Figure
4), each with a dedicated LIFO to manage the pointers to the memory.
The connection list stores information related to a certain unicast connection, such as the lowest and
highest sequence numbers in use, a pointer to the appropriate unicast list, and additional status in-
formation (number of gaps, empty etc.). The gaps of an unicast connection are stored in the unicast
list with starting and ending sequence numbers and a pointer to the next entry. Maximum memory
for unicast applications can be calculated as follows:

memory_depth = NR + NG*NR
memory_size = memory_depth * 96 Bit



with NR denoting the maximum number of receivers and NG the maximum number of gaps stored
per receiver.

65535 multicast auxiliary list 2
multicast auxiliary list 1
multicast list
multicast start list
group list
group start list
unicast list

0 connection list

Figure 4  Memory structure for the retransmission processor.

Additional memory areas are needed to support multicast. The group start list stores besides status
information a pointer to the connection lists of its first member and a pointer to the appropriate
group list. The group list itself stores the pointers to the other members of a group. This is done to
provide a maximum of flexibility, weather there are 500 multicast connections with up to 10 receiv-
ers, 10 multicast connections with up to 300 receivers, or other combinations. The multicast start
list and the multicast list store similar to the connection list and the unicast list the lowest and high-
est sequence number in use inside a multicast group and all gap information. The multicast auxiliary
list 1 and 2 are used to support list operations. Maximum memory for multicast application is calcu-
lated as follows:

memory_depth = NR + NG*NR + MC+ MC*( RM-1)+( RM-1)+ RM*NG+NG+NG
memory_size = memory_depth * 96 Bit

with MC denoting the maximum number of multicast connections, and RM denoting the maximum
number of receivers per multicast connection. A multicast scenario with, e.g., NR = 1024 receivers
with a maximum of NG = 30 gaps per receiver and 32 multicast connections with up to RM = 256
receivers each, results in a maximum memory need of 47931 * 96 Bit = 562 kByte.
One essential feature of this implementation is its inherent flexibility. Protocols like SSCOP (ITU,
1994) or RMC-AAL (Carle, 1994) use sequence numbers of 24 bits instead of instead of 32 bit se-
quence numbers of XTP. The ALU can be easily adapted to smaller sequence numbers. An ATM
WAN with 5000 km maximum distance and a link capacity of 600 Mbit/s has a round trip capacity of
approximately 70000 cells. The component will be dimensioned as follows. If the cell loss rate is
known to be less than 10-4 for the time interval of one RTT, at most 7 cells will be lost during one
RTT. If independent cell losses are assumed, at most 7 packets are corrupted during this time inter-
val. Therefore, assuming an average of 8 gaps will be sufficient. With a maximum of 1024 connec-
tions in parallel, approximately 1024 + 8*1024 = 9216 entries will be needed in the list for unicast
connections only. Now the memory width is only 24+24+16+8+8 = 80 bit. For this scenario an addi-
tional 9216*80 = 90kbyte RAM is needed. For the multicast scenario shown above, memory size can
be calculated as follows.

memory_size = [1024 + 8*1024 + 32 +32*255 + 255 + 256*8 + 8 + 8]*80 bit = 2.4kbyte

The complete VLSI coprocessor for this scenario is described in section 3.6.



3.5 Microcode Examples of the Retransmission ALU
To provide a maximum of flexibility all functions of the Retransmission ALU  are translated into a
sequence of microcode operations. These operations are adapted to the implementation architecture
shown in Figure 3. The program counter controls the microprogram via a special micro sequencer.

Essential microcode operations of the Retransmission ALU are listed in the following table. The
operations of the ALUs, the central control unit and the comparators are always executed in parallel
in one clock cycle. A representative example for the use of the microcode operations can be found in
Appendix B, where range-checking for the operation delete_gap is listed.

Table 1  Microcode examples of the retransmission ALU

operations comment
RMOVE S, D move a complete row of entries from the registers or RAM into the registers or

RAM. S, D ∈ {Ri, RAM; 0 ≤ i ≤ 3}, Rn = (An, Bn, Cn, Dn, En), S ≠ D
ANOP no operation, ALU A
MOVE I/O, D move data from the I/O-bus into the register D; D ∈ {Ai, Bi; 0 ≤ i ≤ 3}
TBBC Ri.n, ra test bit n of register Ri and branch to relative address ra if clear; R ∈ {Di, Ei;

0 ≤ i ≤ 3}, 0 ≤ n ≤ 7
CBMOD Ri, Rj, Rk,
Rl, ra1, ra2, ra3

compare Ri ≤ Rj ≤ Rk and Rj ≤ Rk ≤ Rl modulo 232 and branch to:
result = 00 then PC := PC + 1;     result = 01 then PC := PC + ra1;
result = 10 then PC := PC + ra2;  result = 11 then PC := PC + ra3;
PC: program counter; Ri, Rj, Rk, Rl ∈ {Ai, Bi; 0 ≤ i ≤ 3}

AADD S, D S + D -> D; S, D ∈ {Ai, Bi; 0 ≤ i ≤ 3}

3.6 Implementation Results
The retransmission processor was designed, simulated, and synthesised using the hardware descrip-
tion language VHDL (IEEE, 1987) in combination with commercial design tools. The control logic
of the processor needs 28800 gates, the critical path is 45 ns using a 0.7 µm CMOS standard cell li-
brary. The two comparators COMP 1 and COMP 2 together with the ALU A need 8000 gates. The
comparators are implemented as four 8 bit carry-select adders forming a ripple carry adder. The ad-
dress generation unit consists of 2000 gates plus 7300 gates for memory management. 1600 gates
are used in the 8 bit ALU D. The data registers Ai through Ei need 8400 altogether. For the program
counter including its micro-sequencer 1500 gates are needed. The move unit is distributed over the
registers and, therefore, included in their gate count. It needs 10 ns to decode a microcode operation,
7 ns to fetch the appropriate data from a register, a maximum of 23 ns to execute the operation, and
5 ns to store the results in the registers. Performing only one half of the CBMOD (c.f. Table 1) op-
eration on an Alpha processor needs 11 operations which results in a duration of more than 72 ns
(6.6 ns cycle time, incl. load/store). The coprocessor needs only 45 ns for the complete CBMOD op-
eration and, therefore, this is the point of further optimisations. This implementation also allows to
perform up to four operations in parallel. The die size of this chip for the control logic is 49 mm² if
the chip is adapted to XTP (c.f. Appendix C). Assuming RMC-AAL as protocol, not only the data
paths can be smaller, but also operations like CBMOD will be faster. The reason for this is the trade-
of for speed and chip-area. For the comparators now only three 8 bit carry select adders will be
needed and, therefore, one does not have to wait for the forth carry select adder until it gets the
carry-bit from the third unit and finally present the result at the output. For further increase in speed
the whole adder could be built as carry select adder or other fast implementation variants. Table 2



shows the influence of four different protocols on the chip size and speed if this component is used
to support list processing. The differences are mainly due to different sizes of the sequence numbers.

Table 2  Influence of different protocols on synthesis results

XTP 3.6 XTP 4.0 SSCOP, RMC-AAL
number of gates
COMP1, COMP2, ALU A 8 000 16 000 6 000
address generation 2 000 2 000 2 000
memory management 7 300 7 300 7 300
ALU D 1 600 1 600 1 600
registers A through E 8 400 16 000 7 000
program counter, µsequencer 1 500 1 500 1 500
Σ 28 800 44 400 25 400

critical path (ns)
decoding 10 10 10
fetch data 7 7 7
execution 23 35 20
store data 5 5 5
Σ 45 57 42

3.7 System integration
Distribution of protocol processing tasks onto a number of units operating in parallel plays a key role
in the provision of high performance services (Zitterbart, 1993). The functionality of transfer proto-
cols to be executed in end systems and in the GCS can be distributed onto several general purpose
processors. Additional performance improvements can be achieved by additional support with dedi-
cated coprocessors. Advances in VLSI technology allow to integrate multiple RISC processors,
memory, a switching unit, and additional components for special processing and I/O onto a single
chip.
Figure 5 shows an integration of the list processing unit into a generic coprocessor with direct ATM
interfaces that provides multiple processing units coupled by a switching unit. This architecture is
similar to the TMS320C80 (Texas Instruments, 1994). The unit called GAPPU (Generic ATM Pro-
tocol Processing Unit) is unique in combining parallel processing with direct ATM access and com-
ponents for retransmission support. In Figure 5, the 6 microprocessors provided by GAPPU are used
for a software implementation of basic GCS modules (Receiver Processor, Transmit Processor, Send
Manger, Ack Manager, Frame Manager Receive, Frame Manager Transmit).
Special coprocessors provide more complex time-critical functions. One example is the list coproces-
sor discussed above. UTOPIA is used as interface to ATM, a DMA unit performs all data transfer
operations between host and network interface. For use in interworking units further network inter-
faces could be added. All components can communicate via a simple crossbar switch which supports
two priority levels. To guarantee certain quality of service a fair round-robin scheduling strategy is
used with the crossbar. Up to now, the list coprocessor, the timer unit and the FEC unit together
with the crossbar and memory have been implemented using VHDL and powerful synthesis tools.
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4 SUMMARY AND FUTURE WORK
Within this paper, a framework for the provision of high performance multicast services has been
presented which has the potential to fulfil the requirements of upcoming distributed applications. It is
based on VLSI components dedicated to specific processing tasks that are to be integrated into end
systems and Group Communication Servers. Details of retransmission support have been discussed.
The architecture of the generic protocol processing unit shows how multiple microprocessors and
specialised VLSI components can be combined on a single chip.
 However, not only high protocol processing performance and efficient use of network resources, but
specifically service integration are required for forthcoming communication subsystems. Components
may be parametrized based on the requested application service, providing a high degree of flexibil-
ity. Currently, the implementation of additional components for CRC and memory management are
under development..
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Appendix A: Example Operations of Retransmission ALU

operation input pa-
rameters

output pa-
rameters

comment

init_list rec_id,

seq_no
initializes a new list for the connection rec_id with
the initial sequence number seq_no, sets the error
flag if rec_id is already in use

close_list rec_id closes the list for connection rec_id, sets the error
flag if the list does not exist

init_mcg mc_con_id,

rel
initializes a new multicast group with the identifica-
tion mc_con_id and the reliability rel (rel ≥ number
of connections denotes full reliability)

close_mcg mc_con_id closes a mulitcast group and deletes all linked lists

add_mcg mc_con_id,

rec_id
adds a new connection rec_id to an existing mul-
ticast group mc_con_id

set_rel mc_con_id,

k
sets the value k for the reliability of the multicast
group mc_con_id

set_high_ack rec_id,

seq_no
sets the high_ack register to the value of seq_no;
sequence numbers less than high_ack have been al-
ready acknowledged

shift_high_seq rec_id,

length
shifts the high_seq register to high_seq + length

set_gap_1 rec_id,

seq_no,

length

inserts new entry (seq_no, seq_no + length); over-
lapping entries are automatically joined or deleted,
respectively

del_gap_1 rec_id,

seq_no,

length

deletes an existing entry, a part of an existing entry,
or several existing entries, the deleted part is of the
form (seq_no, seq_no + length); if necessary an en-
try is automatically divided into two new entries

read_reg rec_id,

reg_id

cont reads the contents cont of the register reg_id (e.g.
high_ack, high_seq, number_of_gaps)

read_mc_reg mc_con_id,

reg_id

cont reads the contents cont of the multicast register
reg_id (e.g. number_of_gaps)

get_gap_1 rec_id,

ptr

seq_no,

length,

next

reads the entry ptr points to; if ptr = 0, the first gap
is read out, if next = 0 the entry represented by
(seq_no, length) is the last one, otherwise next point
always to the next entry of the list

get_mc_gap_1 mc_con_id,

ptr

seq_no,

length,

next

analogous to get_gap_1, but now the entries of the
multicast group mc_is are read out

Dimensioning of the component: rec_id, k ∈ [0, 255]; mc_con_id ∈ [0, 63]; seq_no, seq_no_1,
seq_no_2, length, cont ∈ [0, 232-1]; reg_id ∈ [0, 15]; ptr, next ∈ [0, 216-1]
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