
Flexible Design of Hardware-supported High-performance
Protocol Processing Units

Georg Carle, Günter Schäfer, Jochen Schiller

High Performance Networking Group
Institute of Telematics, University of Karlsruhe, Germany

[carle, schaefer, schiller]@telematik.informatik.uni-karlsruhe.de

Abstract
Emerging applications mostly require both, high performance as well as support of a wide variety
of communication services. For example, audio, video, and data transmission may require highly
different services, e.g., guaranteed delay, jitter, or bandwidth. An additional challenge arises by
the growing demand for multipoint communication services. ATM networks are capable of satis-
fying the basic application requirements by providing multipoint bearer services with data rates
exceeding a gigabit per second. However, current communication subsystems (including higher
layer protocols) that provide reliable services are not able to deliver the available network per-
formance to the applications.
In order to provide the required high performance services to the applications, new protocols as
well as high-performance implementation architectures for the communication subsystems need to
be designed. Dedicated VLSI components should be used in flexible implementation platforms
used for time-critical processing tasks in order to provide high performance.
This paper presents a new approach for the flexible design of hardware-supported high-
performance communication subsystems. The design process allows mapping of a formal protocol
specification onto a parallel, hardware-based implementation architecture. The highly modular
VLSI implementation architecture designed with parametrizable and programmable components
allows for service flexibility. The architecture is not limited to a certain protocol, but allows the
implementation of a variety of high-speed protocols. We validated our approach with a design ex-
ample using a formal specification of the protocol RMC-AAL (Reliable Multicast ATM Adapta-
tion Layer, RMC-AAL [CaZi95])

Design Flow
One global goal of research is the automatic derivation of a high-performance communication
subsystem from a formal specification [KrKS87, Kris92, Schi95]. Figure 1 shows the overall de-
sign process of our approach based on individual design steps that are customized for the design
of hardware-supported high-performance ATM protocol processing units. The specification
mentioned here consists of the protocol itself and a set of configuration parameters. The stan-
dardized language SDL (Specification and Description Language, [ITU88]) is used for specifica-
tion. Therefore, we can use different tools for formal verification of the protocols to be imple-
mented.
The configuration parameters describe the desired performance, the existing software environ-
ment, and the maximum costs of a system. Costs may be expressed in terms of processing costs,
or hardware complexity. For determination of the required number of processing units, simulation
results and measurements at results of previous design cycles can be used.
From these parameters, an implementation framework is composed from a set of predefined func-
tional units. This framework consists of the interfaces to an environment, static memory for pro-
tocol data and a central crossbar to connect all components (c.f. Figure 2). We describe all hard-
ware components shown in Figure 2 using the standardized hardware description language VHDL
(VHSIC Hardware Description Language, [IEEE87]).



From protocols like RMC-AAL we have extracted several functions, e.g., timer, CRC, FEC,
transmit, or acknowledgement processing. These functions can be implemented on four different
alternative architectures depending on the desired performance:
• RISC-processors: The tool Geode [Veri95] can be used to generate C-code from an SDL-

specification. A RISC-processor can execute this code after compilation. Descriptions of dif-
ferent RISC-processors are available for example as VHDL-code or gate-level schematic.

• Synthesisable Protocol Automata (SPA): With the help of a customized SDL-to-VHDL-
compiler we can automatically map an SDL-description of a protocol automaton onto a
VHDL-description of a hardware unit. After synthesis onto real hardware (e.g., with the tool
Synopsys) this unit acts as a protocol automaton. Due to the dedicated hardware for protocol
processing, the performance of such a unit may be significantly higher compared to a general
purpose RISC-processor. However, existing hardware synthesis tools do not achieve optimal
performance when synthesising netlists from high-level VHDL descriptions.

configuration 
parameters

protocol
(RMC-AAL)

functions

specification
(SDL)

assembly
(Geode, stov,

µPPC, Synopsys)

implementation
framework

(I/F, Crossbar)

RISC
SPA

PPA

high-performance ATM
protocol processing unit

PFU

Figure 1: Customized design flow for high-performance ATM protocol processing units

DMA
Unit

Crossbar

Static Memory
SPA1 SPAj

Xmit.
Cell
I/F

Rcv.
Cell
I/F

Utopia
ATM

Interface

...

PPA1 PPAk... Host
Interface

RISC
PFU1
(Timer
Unit)

PFU2
(CRC
Unit)

Figure 2: Flexible architecture for high-performance ATM protocol processing



• Programmable Protocol Automata (PPA): For even higher performance we have designed mi-
croprogrammable automata. These automata consist of only 2895 standard cells in CMOS-
technology and can run with 100 MHz. Up to now, we program these units directly with mi-
crocode using a custom microcode compiler µPPC (microprogram protocol compiler).

• Protocol Function Units (PFU): To achieve highest performance, we implement time-critical
protocol functions as hardware macros. Examples are timer, CRC, and FEC (Forward Error
Correction) units. Gate-level VHDL is used for implementation of PFUs.

Depending on the specification, the different units are chosen and configured to assemble the
high-performance protocol processing unit. Currently, we are using 0.7µm standard-cell technol-
ogy for layout synthesis and, alternatively, FPGA-boards inserted into workstations for rapid
prototyping.

Design Tools
Our design flow comprises several tools as shown in Figure 1. Up to now it is not possible to use
a single tool for the whole design flow that is flexible enough for the different requirements and
produces communication components with the required performance. The following gives a short
overview of the tools used in our approach, and summarizes their advantages and disadvantages.
• SDL-to-C compiler (GEODE code generator): GEODE [Veri95] is a commercial tool set for

the design of event-driven real time systems, using the language SDL’88 [ITU88], and Mes-
sage Sequence Charts (MSC, [ITU93]) for formal specification. The tool set provides support
for graphical editing, simulation, debugging, and C code generation. Both the graphical form
called SDL/GR and the textual phrase form called SDL/PR are supported. SDL specifications
are logically composed of a hierarchy of structural objects. It can be selected how the GEODE
code generator performs mapping of the SDL objects process, process instance, block, and
system onto operating system processes. Specific functionalities which are specified as abstract
data types can be mapped onto separately specified C functions. In our flexible design ap-
proach, we also perform mapping of abstract data types onto specific hardware functions im-
plemented in PFUs.

• SDL-TO-VHDL compiler (stov): In order to facilitate the process of hardware implementation
of SDL specifications we developed a dedicated SDL-TO-VHDL compiler called stov. The
compiler generates VHDL code that is specially suited to the flexible architecture shown in
Figure 2. The generated code makes use of the existing VHDL libraries that describe the archi-
tecture. This allows for rapid prototyping of protocol processing units after successful simula-
tion of the SDL specification. As there are some SDL constructs that cannot be translated into
hardware descriptions, an appropriate subset of SDL is supported by the compiler.

• VHDL compiler (Synopsys): Based on VHDL-descriptions of hardware on the register-transfer
level, this commercial tool synthesises netlists for different technologies [Syno95]. These
netlists can be used for further synthesis on ASICs or FPGAs. Compared to hand-coded
netlists, this tool does not achieve the optimum speed and size of the hardware due to the
complexity of the synthesis. On the other hand, using such a powerful synthesis system is the
only way to manage the complexity of large hardware systems. In addition to synthesis, this
tool also allows for simulation and debugging of VHDL-descriptions.

• Microcode compiler (µPPC): Our custom microcode compiler allows for easy programming of
the PPAs using a simple assembly level language. The language comprises 19 operations,
comments, labels, and macros. Figure 3 gives a short microcode example for illustration. This
microcode inserts the parameters of i.gap into a queue if the event i.gap arrives at the
component. Afterwards, it gets the value of arr_gap_no from the memory, increments it by
1 and stores it back. The new state of the component is now ARR_ACTIVE.



 @if event i.gap arrives
*/ARR_ACTIVE_i.gap
@insert i.gap into queue
/:PutQueue(ARRQueue, [inp,inp])
@store gap_no + 1
arr_gap_no mv mem a_r xx CNT MOVE S,A
inc a_r xx CNT MOVE S,A
arr_gap_no mv a_r mem xx CNT MOVE S,A
ARR_ACTIVE xx CNT SAVE
/*LabelARR xx JMP SLEEP
/*END

 Figure 3: Microcode example

The compiler converts this microcode into a binary format which can be downloaded to the
PPA. The disadvantage of this microcode is its low level language. Therefore, an additional
SDL-to-Microcode-Compiler is under development.

Design Example: Timer PFU
To present not only high-level configuration of the architecture, we discuss one unit in more de-
tail. The timer PFU manages a dynamic list of timers. Several commands exist to manipulate the
list (c.f. Table 1). The parameters are defined as follows: conn_id indicates the unique identifica-
tion of the connection the timer belongs to, and time_out is a 32 bit value indicating the time-out
value. The appropriate receiver(s) of an alarm are listed in the receiver vector. The timer_ids are
managed by the global accessible timer component itself. The resolution of this component im-
plemented using 0.7µm CMOS technology is 100 ns, the maximum time-out value is, therefore
more than 7 minutes. Larger time-out values can be handled completely by software in case they
are not time-critical and do not require high precision. In other cases, the timer component can be
used in combination with additional software functions.

Figure 4 shows the internal hardware architecture of the timer PFU. Key components are a queue,
a timer control unit, ALU, and RAM. The queue decouples this component from other compo-
nents connected to the central crossbar. Therefore, the execution speed of this component can
differ from other components. The same mechanism is applied to all components inside our archi-
tecture.
All timer values are stored in the RAM. The ALU performs all necessary operations like data
movement, comparison, and incrementing. The execution unit inside the timer control performs
the signalling to other components via the crossbar and moves data inside the component. The
execution of the commands listed in Table 1 is controlled by the control unit.

command input parameter output parameter comment
create conn id,

time out,
receiver

timer_id create a new timer entry in the timer list;
return the timer identification

set conn id,
timer id,
time_out

set an existing timer to a new time-out
value

reset conn id,
timer_id

reset an existing timer to its original time-
out value

delete conn id,
timer_id

delete an existing timer

alarm timer_id time-out has occurred

 Table 1: Example commands of the timer PFU



from
crossbar

ALU

Timer
PFU

queue

control                   data                     address

timer control

control
unit

execution
unit

RAM

to
crossbar

Figure 4: Internal hardware architecture of timer PFU

Figure 5 shows some performance results of the component implemented on programmable
hardware (FPGA). For rapid prototyping we use a FPGA-board inside a workstation that is ac-
cessible via a C-programming interface. The disadvantage of this approach is the lower speed of
FPGAs compared to ASICs and the need for accessing the FPGA-board via the system bus. After
synthesis of the hardware, the FPGA can be configured and then used as a co-processor to speed-
up execution time of time-critical functions. Therefore, we are able to compare pure software so-
lutions with this first step of hardware support.

1

101

102

103

104

105

10 100 1000 10000

insert position

duration [µs] AXP21064, 5ns

FPGA, 5ns

FPGA, 50ns

SPARC, 20ns

Figure 5: Performance comparison of timer implementations



Our current FPGA implementation runs with a clock-speed of 20 MHz (50 ns cycle time) on a
Xilinx XC4013-4 FPGA. Figure 5 compares this performance with a software solution using the
Digital Alpha Processor AXP21064 running with 200 MHz and a SPARC processor with
50 MHz. The fourth line shows the theoretical performance of our timer component using faster
technology allowing the same clock-speed as the Alpha processor. The figure shows clearly that
our solution is as powerful as workstation processors, although we are using only a small FPGA.
Furthermore, the software solutions suffer from heavy system load, the operating system and,
therefore, cannot guarantee a certain execution time.
Using the same hardware description of the timer PFU we also synthesised the component based
on 0.7µm CMOS technology. This results in a critical path of 13 ns, allowing a clock-speed of
more than 70 MHz. The chip area needed for the timer PFU is 1.8 mm².

Conclusion
The flexible design process presented in this paper allows for the efficient development of high-
performance protocol processing units. Using a single, formal protocol specification allows to de-
rive a number of alternative implementations on different architectures. This method is highly
suitable for the development of protocol-specific solutions. Simulation and instrumentation of de-
signs allow to gain valuable insight into protocol-specific and architecture-specific bottle-necks
that may occur under specific scenarios. The alternative target architectures for the protocol
functions allow to achieve highest performance, as well as a suitable compromise between costs
and performance.

References
[CaSc95] Carle, G., Schiller, J.:  Enabling High-Bandwidth Applications by High-

Performance Multicast Transfer Protocol Processing, 6th IFIP Conference on Per-
formance of Computer Networks, Istanbul, Turkey, October 23-26, 1995; in S.
Fdida, R. Onvural (Eds.): "Data Communications and their Performance"; Chap-
man&Hall 1996, pp. 82-96

[CaZi95] Carle, G., Zitterbart, M.: ATM Adaptation Layer and Group Communication Serv-
ers for High-Performance Multipoint Services, 7th IEEE Workshop on Local and
Metropolitan Area Networks, pp. 98-106, March 26-29, 1995, Duck Key, Mara-
thon, Florida, U.S.A.

[IEEE87] IEEE: IEEE Standard VHDL Language Reference Manual, IEEE Std. 1076-1987

[ITU88] ITU-T Recommendation Z.100: Functional Specification and Description Lan-
guage (SDL), Telecommunication Standardization Sector of ITU, Geneva, 1988

[ITU93] ITU-T Recommendation Z.120: Message Sequence Chart (MSC), Telecommunica-
tion Standardization Sector of ITU, Geneva, 1993

[Kris92] Krishnakumar, A.S.: A Synthesis System for Communication Protocols, Proceedings
of the 5th Annual IEEE International ASIC Conference and Exhibit, Rochester, New
York, September 1992

[KrKS87] Krishnakumar, A.S.; Krishnamurthy B.; Sabnani, K.: Translation of Formal Proto-
col Specifications to VLSI Designs, Protocol Specification, Testing and Verification,
VII, Elsevier Science Publishers B.V., North-Holland, May 1987, pp. 375-390

[Schi95] Schiller, J.: CHIMPSY - a Modular Processor-System for High-Performance Com-
munication, 1. GI/SI Jahrestagung, Zurich, September 18-20, 1995

[Syno95] Synopsys Inc.: Documentation of Simulator, Design Compiler, and Design Ana-
lyzer, Version 3.2a, Synopsys, Inc., Mountain View, California, USA, 1995

[Veri95] Verilog SA: Technical documentation of the GEODE toolset, Verilog SA, Tou-
louse, France


