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Abstract. Existing and upcoming distributed multimedia applications require highly diverse
services to satisfy their communication needs. Service integrated communication systems
should be capable of providing high-performance real-time multipoint communication service
with guaranteed quality of service (QoS). Existing communication systems and known strate-
gies for resource reservation face increasing difficulties in fulfilling these requirements, in
particular in high-speed wide area networks. Therefore, new concepts are required to support
the variety of emerging applications in a heterogeneous internetworking environment. In this
paper, a framework for real-time multipeer services is presented. It is based on the separation
of service requirements into network bearer and transfer service requirements. The transfer
service enhances the network bearer service in order to meet the service requirements of the
applications. Applications and transport systems interact using an enhanced service interface,
which offers several QoS parameters. The transfer service is supported by transfer compo-
nents (layer 2b-4 protocol functions in end and intermediate systems), resource management
functions and the integration of specialized VLSI modules for time-critical processing tasks.
The hardware components can be parametrized and selected individually dependent on the re-
quired service. The transfer system guarantees specified service qualities by assigning proc-
essing resources to specific connections. Selection of the appropriate combination of compo-
nents and their parametrization enhances the bearer service of the underlying network in order
to provide the required multimedia service at the transport service interface. Guaranteed
services are realized by the reservation of resources both in the network (for guaranteeing
network bearer service) and in transfer components (for guaranteeing transfer service). The
paper describes a general approach towards high performance multipeer services, and dedi-
cated parts in more detail. Preliminary performance results of VLSI components are presented
and compared with measurements of typical software implementations.

1 Introduction
In the recent years, several new distributed applications with diverse service re-
quirements have been developed. Frequently, these emerging applications require
both high performance as well as support of a wide variety of real-time communica-
tion services. High-speed networks, (e.g., ATM-based networks) are able to fulfill
bearer service requirements by providing data rates exceeding a gigabit per second
and supporting different kinds of services. However, the service required by applica-
tions usually differs from the bearer service. Protocol processing in the end systems
is needed to enhance a basic bearer service in order to meet application require-
ments. Yet, current communication systems (including higher layer protocols) are
even facing problems in delivering the available network performance to the appli-
cations and demand for enhancements. Different approaches [1], [2], [3], [4], [5], [6]
on implementing high performance communication subsystems have been under-



taken during the last few years: software optimisation, parallel processing, hardware
support and dedicated VLSI components. Some of the approaches deal with efficient
implementations of standard protocols such as OSI TP4 or TCP. Others developed
protocols especially suited for advanced implementation environments. The use of
dedicated VLSI components is mostly limited to very simple communication proto-
cols (e.g., [7], [8]).

Another issue in the evolution is the increasing importance of group communica-
tion scenarios. Upcoming applications, for example in the areas of computer-
supported co-operative work (CSCW), distributed systems, and virtual shared mem-
ory systems require point-to-multipoint (Multicast, 1:N) as well as multipoint-to-
multipoint (Multipeer, M:N) communication [9]. For a growing number of applica-
tions such as multimedia collaboration systems, the provision of a multicast service
associated with a specific quality of service (QoS) is necessary. If multipoint com-
munication is not supported by the network or by the end-to-end protocols, multiple
point-to-point connections must be used for the distribution of identical information
to the members of a group. The use of multicasting is beneficial in various ways: It
saves bandwidth, reduces processing effort for the end systems and the mean delay
for the receivers, and furthermore, simplifies addressing and connection manage-
ment. Various issues need to be addressed in order to provide group communication
services in high-speed networks [10], [11]. Intermediate systems need to incorporate
a copy function to support 1:N connections. Communication protocols must be ca-
pable of managing multipoint connections, and group management functions need to
be provided for the administration of members joining and leaving a group. Another
key problem that must be solved for a reliable multipoint service is the recovery from
packet losses due to congestion in the network nodes and end systems. In this paper,
we present VLSI support that is targeted towards complex multicast protocols. Es-
pecially, time-critical and processing intensive functions, e.g., selective retransmis-
sion are provided by dedicated VLSI components.

This paper is organised as follows: Section 2 gives an overview of an integrated
approach for multimedia communication in high-speed networks and presents the
conceptual framework for integrating VLSI components for multicast functions into
end systems and group communication servers. The framework is not limited to a
certain protocol and allows the use of high-speed protocols with fixed size packet
headers. Section 3 presents a performance evaluation of different scheduling
mechanisms and of different error control strategies in multicast scenarios. Section 4
discusses the functionality of a dedicated connection processor for managing mul-
ticast retransmission and presents some preliminary complexity and performance re-
sults of the discussed component. Section 5 summarises the paper and points out
some future directions.

2 Multipoint Multimedia Communication Systems
Advanced multimedia applications are sensitive to the quality of service parameters
throughput, delay, jitter, and reliability. Furthermore, they need to concurrently
process different data streams, e.g., audio, video, and conventional data communica-
tion. Each of these streams requires a different QoS combination. As not only point-



to-point but multipoint-to-multipoint communication models with several senders
and receivers are needed, specific QoS parameters are associated with all members of
a group or only with a subset of receivers.

There is a need to accommodate traditional communication systems to these new
application requirements. Therefore, several new components have to be introduced,
and existing components of the communication system have to be modified. In the
following, the distinct components of an enhanced communication subsystem for
multimedia multipoint services are described.

2.1 Enhanced Service Interface

Traditionally, a limited set of QoS parameters was used to describe the requested
service, and often no enforcement of these parameters was provided. Moreover, most
communication protocols targeted towards pure data transfer, like TCP/IP, offer only
a reliable point-to-point service (with the single QoS parameter 'reliability'). The
service interface of these protocols no longer reflects the requirements of upcoming
multimedia applications. These applications have strong throughput and delay re-
quirements, while they often tolerate a reduced reliability for some communication
channels. In particular, for networks under heavy load, certain data losses may be
better tolerated by humans than additional delay introduced by retransmissions.

Enhanced service models and interfaces are required in order to serve emerging
applications. Applications and the communication system need a common language,
so a source is able to specify the traffic characteristics of the flow and, in turn, the
communication system guarantees a specific service. The QoS parameters through-
put, delay, jitter, and reliability can be specified by a minimum, maximum, and aver-
age value. Applications prefer to specify their requirements in an application related
syntax and semantics, which usually differs from the one used in the communication
system. In this case, a mapping of the parameters used at the service interface valid
for TSDUs (e.g., frames of a video source) to parameters inside the communication
system valid for TPDUs, is necessary. Additionally, the requested service needs to be
described by different service classes, which specify how the service parameters
should be guaranteed. Service classes can be classified as deterministic, statistic, and
best effort services. Deterministic services guarantee QoS parameters even in the
worst case, statistic services guarantee QoS parameters with a given probability, and
best effort services are targeted towards applications which have no specific require-
ments. Real time services based on statistical multiplexing achieve either statistical
or best effort reliability. Fully reliable services need additional mechanisms for error
correction and are therefore limited to statistical or best effort delay. The complete
service is described in a service contract. In this contract, the application agrees to
limit the traffic passed to the service interface, while the service provider is obliged
to reserve the resources required to maintain the specified service quality.

2.2 Resource Management

To deliver a requested service to a particular connection, it is usually necessary to re-
serve certain resources in all involved communication systems for that connection
[12]. Such resources are the bandwidth of a link, processing power, and buffer space.



Resource management is an important feature, not yet included in most existing
communication systems, that describes the ability to create and maintain resource
reservations. Resource management consists of three different parts:

• • admission control and
• • reservations during the connection establishment, and
• • assignment of resources during the data transfer phase.

Because the resources of communication systems are finite, not all connection re-
quests can be accepted. In order to meet all service commitments, a communication
system must contain an admission control algorithm that determines if a connection
request with specific QoS requirements can be accepted without violating already ac-
cepted requests or if it must be denied. If all admission control tests are positively
passed, reservations are made.

During the data transfer phase the communication system must provide mecha-
nisms to assign the resources dependent on the reservations to the connections. Re-
sources can be classified as active and passive resources [13], where active resources
execute a process and passive resources hold data of the process. Dependent on the
selected service class, the passive resource buffer space can be used exclusively by
one connection or can be shared among several connections. In this case it is impor-
tant to determine which packets have to be dropped if there is no more buffer avail-
able. All active resources are exclusive resources and are assigned by a scheduler. A
scheduler decides which packet is processed next. There exist many proposed
scheduling algorithms with different capabilities.

Scheduling Algorithms. Recently, several scheduling disciplines have been pro-
posed [14], [15], [16] and compared [17]. The algorithms differ in the ability to
provide guarantees for the QoS parameters throughput, delay, and jitter. In particular
for the delay parameter, considerable research has been devoted towards the devel-
opment of methods for providing a provable analytic upper bound, which will be ex-
perienced by all data packets. However, in many cases a very high percentage of
packets will observe a delay far lower than the computable worst case bound.

In [17] a classification of scheduling disciplines in Sorted Priority Queue Mecha-
nisms and Framing Strategies is proposed. Sorted Priority Queue Mechanisms use a
state variable for each connection. Upon the arrival of a packet from this connection,
the variable is updated and the packet is stamped with the new value. Packets are
served in order of increasing stamps. In Framing Strategies, the time axis is divided
into periods of some constant length, each called a frame. Bandwidth is allocated to
each connection as a certain fraction of the frame time. Sorted Priority Queues are
flexible in reserving different delays and bandwidth combinations to connections,
while framing strategies couple the allocation of delay and bandwidth. The advan-
tages of framing strategies are an easier implementation and no need of a test for
schedulability at connection establishment time. However, for several disciplines of
both classes it has been shown that they provide throughput as well as worst case
delay guarantees. Although these disciplines guarantee a delay bound, these delays
are often very long. Experiments [18] have shown that traffic scheduled by a simple
FIFO discipline provides significantly lower delays even for heavy traffic load. If the



implementation overhead of complex scheduling schemes is taken into account,
FIFO seem to be a good trade-off for high performance networks.

In this paper we want to present preliminary simulation results of three different
scheduling disciplines: FIFO, Virtual Clock [14], and a packet-by-packet version of
Round Robin [16]. Virtual Clock is a Sorted Priority Queue Mechanism, which aims
to emulate Time Division Multiplexing. Each packet is associated with a virtual
transmission time, which is the time at which the packet had been transmitted under
Time Division Multiplexing. Virtual Clock is able to guarantee a specified through-
put. The packet-by-packet round robin server uses separate queues for each connec-
tion and serves in each round the specified bandwidth of a connection. Statistical
multiplexing using FIFO scheduling may provide a satisfying mean delay, while al-
lowing a simple implementation. However, its firm delay bounds may often be far
longer than applications wish to accept [19]. More sophisticated scheduling algo-
rithms allow to reduce the firm delay bounds, while leading to more complex imple-
mentations.

Protocols for Resource Reservation. To reserve resources, the service requirements
have to be distributed to all involved end and intermediate nodes. Several special
reservation protocols have been developed [12], [20], [21] during the last years. They
are characterised by a connection oriented simplex concept. To establish a connec-
tion with service commitments, the reservation protocols have to distribute a data
structure, the so-called flowspec, which describes both, the characteristics of the
traffic sent by the source and the service requirements. The protocol entities in the
involved communication systems activate the resource management entities, which
decide to accept or deny the connection. Furthermore, reservation protocols define
rules to modify service parameters or mechanisms to detect errors. To support
emerging multimedia applications efficiently, the protocols are not only required to
provide mechanisms for guaranteeing a requested service in point-to-point commu-
nications, but also to accommodate receivers of a multicast group. Specific problems
occur if each of these receivers has different service requirements.

2.3 Reliable Services

Packet Loss due to Congestion. The dominant factor which causes high speed net-
works to discard packets is buffer overflow due to congestion. In packet switched
networks, statistical multiplexing allows a high degree of resource sharing. Short
periods of congestion may occur due to statistical correlations among variable bit rate
traffic sources, resulting in buffer overflow. The probability for packet loss may vary
over a wide range, depending on the applied strategy for congestion control. Packet
losses due to buffer overflow are caused by superposition of traffic bursts. Therefore,
they do not occur randomly distributed, but in bursts and show a highly correlated
characteristic. If a reliable service has to be provided, mechanisms are required
which are able to handle this type of error efficiently. For multicast connections, the
problem of packet losses is even more crucial than for unicast connections. Colli-
sions of the multicast connections with independent unicast connections may occur



independently at every output port of a node. Therefore, the packet loss probability in
multicast connections will be higher than in unicast connections.

Error Control Mechanisms. For applications that cannot tolerate packet losses of
the network, error control mechanisms are required. Error control consists of two
basic steps: error detection and error recovery. For error recovery, two mechanisms
are available: Automatic Repeat ReQuest (ARQ) and Forward Error Correction
(FEC). Error control is difficult in networks that offer high bandwidth over long
distances. High data rates in combination with a long propagation delay result in
high bandwidth-delay products. A large amount of data may be in transit. For ex-
ample, at a distance of 5000 km and a data rate of 622 Mbit/s, more than 2 MByte
may be stored by the link. This causes problems for the following reasons:

• End-to-end control actions require a minimum of one round-trip-delay, and re-
transmissions require large buffers and may introduce high delays;

• Efficient error control with timer-based loss detection is difficult, because delay
variations do not allow very accurate timer setting, causing deterioration of the
service quality;

• Processing of error control needs to be performed at very high speeds, if no
bottle-neck is to be introduced.

ARQ Methods: ARQ (Automatic Repeat ReQuest) mechanisms are widely used in
current data link and transport protocols. In every retransmission based scheme, the
transmitter needs to store messages upon acknowledgement. At least the data of one
round-trip delay needs to be stored. For go-back-N protocols, implementation of
transmitter and receiver may be very simple, and no buffering is required for the re-
ceiver. For selective repeat protocols, implementation of transmitter and receiver is
more complex, and a large buffer is required by the receiver. Processing overhead of
ARQ methods is proportional to the number of data and acknowledgement packets
that are processed. For point-to-point communication, ARQ mechanisms are well
understood, and a number of protocols for data link layer or transport layer, employ-
ing these mechanisms, are known. For multicast communication, there are still many
open questions concerning acknowledgement and retransmission strategy, achievable
performance and implementation. Large groups require that the transmitter stores
and manages a large amount of status information of the receivers. The number of
retransmissions is growing for larger group sizes, decreasing the achievable per-
formance. Additionally, the transmitter must be capable of processing a large num-
ber of control information. If reliable communication is required to every multicast
receiver, a substantial part of the transmitter complexity is growing proportionally to
the group size. In addition, individual receivers may limit the service quality of the
whole group. To overcome these problems, a scheme that provides reliable delivery
of messages to K out of N receivers may be applied (K-reliable service).

FEC Methods: Forward error correction (FEC) methods promise a number of advan-
tages [22]. All FEC methods have in common that redundant information is trans-
mitted to the receiver, together with the original information, permitting detection



and correction of errors. The delay for error recovery is independent of the distance,
and large bandwidth-delay products do not lead to high buffer requirements. There-
fore, FEC is a promising approach in high-speed networks. In contrast to ARQ
mechanisms, FEC is not affected by the number of receivers. However, FEC has
three main disadvantages when applied for error correction in high speed networks.
It is computationally demanding, leading to complex VLSI components. It requires
constantly additional bandwidth, limiting the achievable efficiency and increasing
packet loss during periods of congestion. FEC achieves best performance for random
errors. However, packet losses frequently occur in bursts [23]. If FEC is used for
packets of variable length, parity packets will be calculated for data units of fixed
size, leading to inefficient use of parity information.

The question when to apply FEC for real-time applications in high-speed networks
requires extended assessments of various trade-offs. While investigations of FEC are
subject of our ongoing work, this paper concentrates on multicast error control by
ARQ protocols.

2.4 Conceptual Framework for Support of Real-Time Multicast Services

A conceptual framework was developed that allows to select the mechanisms best
suited to provide a specific service. Depending on the required combination of delay
and reliability for a specific scenario with given distances, and depending on the tar-
gets for utilisation of network resources, different strategies are appropriate to
achieve the most appropriate trade-off. These strategies differ in the mechanisms for
scheduling and resource reservation, and in the error control mechanisms that are
applied.

While the integration of specialised multicast components into the end systems
represents an important step towards a high performance reliable multicast service,
further improvements of performance and efficiency may be achieved by the integra-
tion of dedicated servers in the network that provide support for group communica-
tion. In many cases of multicasting, the achievable throughput degrades fast for
growing group size. A significant advantage can be achieved if a hierarchical ap-
proach is chosen for multicast error control.

Group Communication Servers. Figure 1 presents a network scenario with mul-
ticast mechanisms in the transport component of end systems and in dedicated serv-
ers. The proposed Group Communication Server (GCS) integrates a range of
mechanisms that can be grouped into three main tasks:

• Provision of a high-quality multipoint service with efficient use of network re-
sources;

• Provision of processing support for multicast transmitters;
• Support of heterogeneous hierarchical multicasting.

For the first task, performing error control in the server permits to increase network
efficiency and to reduce delays introduced by retransmissions. Allowing retransmis-
sions originating from the server avoids unnecessary retransmissions over common
branches of a multicast tree. For the second task, the GCS releases the burden of a
transmitter that deals with a large number of receivers, providing scalability. Instead



of communicating with all receivers of a group simultaneously, it is possible for a
sender to communicate with a single GCS or with a small number of GCSs. The
servers may be used hierarchically, where every server provides reliable delivery to a
subset of the receivers. Integrating support for reliable high performance multipoint
communication in a server allows better use of such dedicated resources. The servers
will exploit possible multicast capabilities of the bearer service. For bearer services
that do not offer multicasting, it is preferable to integrate a copy function into a
server instead of integrating it into the transmitter. If multiple transmitters are con-
nected to a server and a single multicast connection is used originating from the
server, the transmitters will receive a copy of their own transmissions. To avoid this,
multiple multicast connections originating from the server must be used. For the
third task, a GCS may use the potential of diversifying outgoing data streams, allow-
ing conversion of different error control schemes and support of different service
qualities for individual servers or subgroups. The group communication server may
offer a large range of error control mechanisms. For end systems, it is not required to
have VLSI components for multicast error control. It will be sufficient to have access
to a local GCS for participation in a high performance multipoint communication
over long distances. Then, the error control mechanisms of individual end systems
have only negligible influence on the overall performance, as simple error control
mechanisms are sufficient for communication with a local GCS. If a priority field is
used in the frame format, the server is able to distinguish packets of different impor-
tance. One example application would be hierarchically coded video. For informa-
tion with different importance, specific packets may be suppressed for certain outgo-
ing links. This may be used to reduce unnecessary traffic in case some receivers in a
multicast group do not need the complete information. As an example, colour infor-
mation may be eliminated for receivers that do not use it. Additionally, it may be
used to protect packets with higher priority against loss due to buffer overflow.

High Speed Wide Area Network
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Figure 1. Real-time Multicast Support in Server and End Systems



Configuration and Reservation. While existing protocols for resource reservation
are limited to exchange information required for the provision of a bearer service,
our framework plans to extend this information by the choice of error control
mechanisms that may be applied in intermediate and end systems. The following
strategy is proposed for reservation of resources and selection of appropriate error
control mechanisms: After a connection setup request is passed from the application
across the service interface, the transmitter evaluates its resources that are required
in worst case in order to fulfill the required service quality. It preallocates these
maximum resources and passes the connection setup request together with the list of
preallocated resources and supported error control mechanisms to intermediate and
end systems. This allows the receivers to evaluate the combination of bearer service
and transfer service best suited for the required service, based on the selection of the
appropriate error control mechanism in combination with an economical reservation
of resources. The result of the evaluation is passed back to the transmitter, resulting
in a two-way handshake for minimum information exchange. Resources that were
preallocated in excess are subsequently released. If the application requested to guar-
antee the QoS only to a subset of the receivers, an additional information transfer
from transmitter towards the receivers may be performed, resulting in a three-way
handshake for minimum resource allocation for QoS guarantees to K out of N re-
ceivers.

3 Performance Evaluation

3.1 Simulation of Scheduling Algorithms

It is of high importance to identify a scheduling algorithm that allows to guarantee a
specific service quality, while efficiently using network resources. The following
simulations allow to determine differences in the achievable performance. However,
the final selection of a suitable scheduling mechanism will not only be determined by
a performance evaluation based on simplifying assumptions. Implementation com-
plexity leading to additional processing delay and to high system costs also needs to
be considered.
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A detailed comparison of the following three scheduling algorithms was performed:
FIFO, Round Robin, and Virtual Clock. Simulations were performed to investigate
the influence of the three scheduling algorithms on mean and maximum delay for
real-time services. The sources for the simulation are modeled using Markov modu-
lated Bernoulli processes with three states [24]. The sources represent a typical data
stream produced by video applications. The minimum data rate of a source is 3.0
Mbit/s, the average data rate 6.3 Mbit/s, and the peak rate 30.0 Mbit/s. In the first
step, the simulation model consists of a single node with several input and output
links and only homogenous sources. An almost saturated output link was assumed.
19 or 22 sources were multiplexed for a load of 86% and 98% (155Mbit/s link), re-
spectively. In the simulation, ideal processing delay of the scheduling algorithms was
assumed, while the only time consuming process in the node was the sending of data.

The delay distribution of Virtual Clock, Round Robin, and FIFO shown in Figure 3
gives an example of the different behavior of the algorithms under the load shown in
Figure 2. They show different end-to-end delay variance and end-to-end delay
maxima.
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Although none of the algorithms gives tight delay bounds, only Virtual Clock and
Round Robin have a long tail in the delay distribution. This fact also can be seen in
Table 1 and Table 2. Using Virtual Clock or Round Robin, most of the packets have
a relatively low delay, but some packets have a very high delay. FIFO scheduling
leads to a higher mean delay, while avoiding the very high delay of a small fraction
of the packets that was observable for the other two scheduling algorithms. For a
single node, the following tables present the fraction of packets delivered with the
specified delay bound:

load delay [ms] algorithms
Virtual Clock Round Robin FIFO

86.40%
< 0.122
< 1.0

> 70.117

0.854
0.868
0.017

0.639
0.701
0.003

0.497
0.574

0

98.16%
< 0.122
< 1.0

> 70.117

0.730
0.745
0.030

0.379
0.458
0.011

0.146
0.213

0

Table 1. Delay distribution for different load

The Virtual Clock algorithm is based on packets with time stamps. A large maxi-
mum delay is the result of the sometimes fast growing gap between the virtual and
the real clock. In these cases, timestamps of some packets are very large.

The simulations show that under certain conditions even very simple algorithms
may have a satisfying behavior. The implementation complexity of a simple algo-
rithm, such as Round Robin or, in particular, FIFO, is much lower than, for exam-
ple, Virtual Clock. For the latter, complex search and insert operations for the packet
queue have to be implemented.

delay [ms] load algorithms
Virtual Clock Round Robin FIFO



minimum 86.40%
98.16%

0.0054
0.0054

0.0054
0.0054

0.0054
0.0054

average 86.40%
98.16%

3.4585
8.1802

3.4585
8.9743

3.4585
9.1624

maximum 86.40%
98.16%

134.5072
182.1402

80.7198
113.5866

22.4315
31.2514

Table 2. Absolute delay of packets in a single node

Preliminary hardware designs showed that for all three algorithms, implementations
for more than 1 million packets/s are feasible based on standard semi-custom VLSI
technology. A detailed hardware design of a more complex type of round robin, the
hierarchical round robin algorithm, was developed using the hardware description
language VHDL. The implementation allows for a maximum of 1024 different con-
nections, 16 levels of hierarchy, 64 slots per frame, up to 15 packets per connection
queued in the node, and a maximum of 1024 packets over all. Gate level synthesis
and simulation has shown that the implementation can easily handle more than 2.5
million packets/s for 1.0 µm CMOS technology, the area is 12696 gates for the con-
trol logic and 66784 bits of memory for control registers. Processing effort of the
scheduling algorithms is per packet. Increasing the packet size will increase the
achievable throughput, if the component for processing of the scheduling algorithm
happens to be the bottleneck.

3.2 Delay Distribution for Retransmissions

Simulations were performed and analytical methods were applied in order to evalu-
ate the influence of the proposed framework on delay and throughput for the envis-
aged multicast scenarios. The deployment of GCSs permits a significant delay re-
duction in case of packet losses and allows to increase efficiency substantially.

Figure 4 shows how a GCS may save one round-trip-time from transmitter to GCS
for errors that occur between GCS and receiver. For a GCS serving many groups,
extremely large retransmission buffers might be necessary to fulfill all retransmis-
sion requests. For GCSs with limited retransmission buffers, negative acknowledge-
ments may be passed to the transmitter if requested packets are not available in the
buffer of the GCS. Simulations were performed for a variable bitrate video source, a
GCS with limited retransmission buffer, and a network element under congestion.
For the simulation scenario, cf. Figure 5. Figure 6 shows the packet delay times ob-
served by the receiver for a distance of 1000 km between transmitter and GCS, and a
distance of 100 km between GCS and receiver. In the simulation, between 2000 and
2500 packets were transmitted for every encoded image. The majority of packets was
delivered without retransmissions, while some packets retransmitted by the GCS ob-
served a small delay, and other packets retransmitted by the source were significantly
delayed.



Figure 4. Delay Reduction by Retransmissions from GCS

Figure 5. Simulation Scenario

3.3 Efficiency Analysis of Error Control Scenarios

Using Weldon's approximation and G/G/1 queuing models, the achievable perform-
ance of RMC (Reliable MultiCast)-AAL in selective repeat and go-back-N modes
and the potential gain by deployment of GCSs was evaluated. The analysis is based
on the following assumptions: protocol processing times may be neglected and ac-
knowledgements are transmitted over a reliable connection. In correspondance with
the results of [25], the throughput efficiency of a memoryless multicast go-back-N
protocol may be expressed to
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Figure 7 shows the efficiency of the two retransmission modes in three different sce-
narios. Scenario 1 represents a basic 1:N multicast without GCS. Scenario 2 repre-
sents 1:N multicasting with a GCS that performs retransmissions as multicast. In
scenario 3, the GCS uses individual VCs for retransmission. The analysis is based on
the following assumptions: protocol processing times may be neglected, acknow-
ledgements are transmitted over a reliable connection, and buffers are sufficiently
large. A group of 100 receivers and a data rate of 622 Mbit/s are assumed. Two cases
are distinguished. The upper diagram of Figure 7 shows the efficiency for an overall
distance of 1000 km (distance of 500 km from GCS to the receivers), and the lower
diagram shows an overall distance of 505 km (distance of 5 km from GCS to the re-



ceivers). The analysis shows that in all cases, the efficiency is increased significantly
by the GCS. Highest efficiency may be achieved for scenario 3 and selective repeat.
Scenario 2 improves significantly for a shorter distance between GCS and the receiv-
ers. Go-back-N retransmissions show acceptable performance only for moderate
bandwidth-delay products. Regarding efficiency, scenario 3 and selective repeat
should be selected. However, this solution requires the highest implementation
complexity for end systems and GCS.
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Figure 7. Efficiency Analysis for Go-back-N and Selective Repeat Retransmission Modes

4 VLSI for Retransmission Support
The processing overhead associated with handling selective retransmissions and the
required data structures may be extremely high compared to other protocol functions.
As an example, the achievable performance of an XTP [2] implementation on Digi-
tal Alpha Computers (150 MHz, 6.66 ns cycle time) may be regarded. In best case,
the function to insert a new gap in a list needs 824 4-byte commands and takes,
therefore, approximately 5.4 µs. The best case occurs if the new entry can be inserted
at the beginning of the list. If the new entry has to be inserted after the first 10 en-
tries, it needs 4054 commands or approximately 27.03 µs due to the search opera-
tions in the list. These calculations assume that the processor is not interrupted dur-
ing execution of this function and all data is stored in the fast processor cache. XTP
was implemented using C without special inline assembly code.



If data is sent at a rate of 1 Gbit/s, this results in more than 122,000 1024-byte
packets per second. If the retransmission of each packet has to be controlled, this re-
sults in a new entry in the list in less than 10 µs.

Clearly, retransmission support forms a time critical task especially in a multicast
environment. Therefore, we are implementing dedicated VLSI support for this task.
The retransmission support presented in the following can handle negative selective,
positive selective, and positive cumulative acknowledgements. It can be used for gaps
managed by the receiver to support the acknowledgement function or for gaps man-
aged by the transmitter to support the retransmission mechanism. The ALU has a set
of commands to set, delete, insert, and read gaps for unicast connections and to man-
age multicast groups.

4.1 Logical Representation of Data

A dynamic linked list stores gaps of transmitted data in the following representation:
[seq_no_1, seq_no_2] with seq_no_1 and seq_no_2 representing the beginning and
ending of a gap. These gaps are connected via linked lists (cf. Figure 8). For every
multicast group (MC) the pointers to the connections participating in that group are
stored. A connection can be a member in different groups at the same time. For every
connection the ALU stores a pointer to the appropriate list of gaps. Additionally, the
ALU manages special lists for every multicast connection.
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Figure 8. Logical Structure of Linked Lists for Retransmission Support

A simple example is given in Figure 9. First, the gap lists of the receivers R1, R2,
and R3 are shown. The receiver R1, for example, has two gaps in transmitted data,



1) Lists of gaps for unicast connections

2) List of gaps to support k-reliability

R1

R2

R3

5 12 20 22

10 16

k=2
10 12

Figure 9. Example of unicast and multicast lists of gaps

one from sequence numbers 5 to 12 and one from 20 to 22. The second type of lists
stores the gaps needed to support full reliability or k-reliability of a multicast con-
nection. In the example the gap (10,12) is stored, because less than 2 receivers have
received this data.
Depending of the implemented protocol, retransmission of data can be performed by
a multicast to the group or by individual retransmissions to the appropriate receivers.

4.2 Operations of the Retransmission ALU

The following table shows the operations supported by the specialised ALU.

operation input

parameters

output

parameters

comment

init_list rec_id,

seq_no

initializes a new list for the
connection rec_id with the
initial sequence number
seq_no, sets the error flag if
rec_id is already in use

close_list rec_id closes the list for connection
rec_id, sets the error flag if
the list does not exist

init_mcg mc_con_id,

rel

initializes a new multicast
group with the identification
mc_con_id and the reliability
rel (rel ≥ number of connec-
tions denotes full reliability)

close_mcg mc_con_id closes a mulitcast group and
deletes all linked lists

add_mcg mc_con_id,

rec_id

adds a new connection rec_id
to an existing multicast group
mc_con_id



del_mcg mc_con_id,

rec_id

deletes an existing connection
from a multicast group

set_rel mc_con_id,

k

sets the value k for the reli-
ability of the multicast group
mc_con_id

set_high_ack rec_id,

seq_no

sets the high_ack register to
the value of seq_no; sequence
numbers less than high_ack
have been already acknowl-
edged

shift_high_ack rec_id,

length

shifts the high_ack register to
high_ack + length

set_high_seq rec_id,

seq_no

sets the high_seq register to
the value of seq_no; high_seq
represents the highest se-
quence number in use

shift_high_seq rec_id,

length

shifts the high_seq register to
high_seq + length

set_gap_1 rec_id,

seq_no,

length

inserts new entry (seq_no,
seq_no + length); overlapping
entries are automatically
joined or deleted, respectively

set_gap_2 rec_id,

seq_no_1,

seq_no_2

analogous to set_gap_1, but
the new entry is of the form
(seq_no_1, seq_no_2)

del_gap_1 rec_id,

seq_no,

length

deletes an existing entry, a
part of an existing entry, or
several existing entries, the
deleted part is of the form
(seq_no, seq_no + length); if
necessary an entry is divided
into two new entries

del_gap_2 rec_id,

seq_no_1,

seq_no_2

analogous to delete_gap_1, but
the deleted part is of the form
(seq_no_1, seq_no_2)

read_reg rec_id,

reg_id

cont reads the contents cont of the
register reg_id (e.g. high_ack,
high_seq, number_of_gaps)

read_mc_reg mc_con_id,

reg_id

cont reads the contents cont of the
multicast register reg_id (e.g.
number_of_gaps)



get_gap_1 rec_id,

ptr

seq_no,

length,

next

reads the entry ptr points to; if
ptr = 0, the first gap is read
out, if next = 0 the entry repre-
sented by (seq_no, length) is
the last one, otherwise next
point always to the next entry
of the list

get_gap_2 rec_id,

ptr

seq_no_1,

seq_no_2,

next

analogous to get_gap_1, but
the entry is represented by
(seq_no_1, seq_no_2)

get_mc_gap_1 mc_con_id,

ptr

seq_no,

length,

next

analogous to get_gap_1, but
now the entries of the mul-
ticast group mc_is are read out

get_mc_gap_2 mc_con_id,

ptr

seq_no_1,

seq_no_2,

next

analogous to get_gap_2, but
now the entries of the mul-
ticast group mc_is are read out

Dimensioning of the component: rec_id, k ∈ [0, 255]; mc_con_id ∈ [0, 63]; seq_no,
seq_no_1, seq_no_2, length, cont ∈ [0, 232-1]; reg_id ∈ [0, 15]; ptr, next ∈ [0, 216-1]

Table 3. Operations of the Retransmission ALU

Every operation sets the error flag if it failed due to memory overflow or violation of
several conditions, such as high_ack ≤ seq_no ≤ high_seq and other range checking.

4.3 Implementation Architecture for Retransmission Support

Figure 10 shows an overview of the internal structure of the ALU. The retransmis-
sion ALU consists of 5 memory banks (A through E) that store sequence numbers
representing gaps (memory A and B), pointers of linked lists (memory C), and state
information, such as connection and multicast identification, register number of an
anchor element, and other flags indicating the state of a connection (memory D and
E). The I/O-bus connects the input/output-port (32 bit) of the retransmission ALU
with the 5 register banks (Ai through Ei, 0≤i≤3). From these registers data can be
transferred to the memory.

Two simple ALUs (ALU A, 32 bit and ALU D, 8 bit) perform operations like OR,
XOR, AND, ADD, SUB, and NEG. Two specialized 32 bit modulo 232 comparators
(comp A and comp B) perform fast comparisons needed for list operations. The
ALUs and the comparators can work concurrently if no data dependencies exist.

For the command set_gap_2, for example, first of all the command itself and
the connection identification are read from the I/O-bus into the registers E and D, re-
spectively. In the next two cycles the central control unit reads the sequence numbers



(seq_no_1, seq_no_2) into the registers A and B, respectively. After reading the
complete command and several range checking operations the loop for searching the
right position to insert the new entry in the list starts. Therefore, the first entry of the
appropriate list is loaded into the registers A and B, respectively, and compared with
the new entry. The loop terminates if the new entry fits, otherwise, the next entry is
loaded and compared.

4.4 Microcode Examples of the Retransmission ALU

To provide a maximum of flexibility all functions of the Retransmission ALU are
translated into a sequence of microcode operations. These operations are specially
adapted to the implementation architecture shown in Figure 10. The central control
unit controls the microprogram via a special micro sequencer.

Example microcode operations of the Retransmission ALU are listed in Table 4. In
addition, there are the microcode operations of the ALU D and complex comparison
operations of the two comparators comp A and comp B. The operations of the ALUs
and the comparators are always executed in parallel in one clock cycle.
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memory
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memory
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memory
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memory

flag
memory
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Figure 10. Structure of the Retransmission ALU

operations comment
RMOVE S, D move a complete row of entries from the registers or RAM into the

registers or RAM. S, D ∈ {Ri, RAM; 0 ≤ i ≤ 3},
Rn = (An, Bn, Cn, Dn, En), S ≠ D

ANOP no operation, ALU A



AMOVE I/O, D move data from the I/O-bus into the register D;
D ∈ {Ai, Bi; 0 ≤ i ≤ 3}

ACLR D clear register D; D ∈ {Ai, Bi; 0 ≤ i ≤ 3}
AINC S, D S + 1 -> D; S, D ∈ {Ai, Bi; 0 ≤ i ≤ 3}
ADEC S, D S - 1 -> D; S, D ∈ {Ai, Bi; 0 ≤ i ≤ 3}
AMOVE S, D S -> D; S, D ∈ {Ai, Bi; 0 ≤ i ≤ 3}
AADD S, D S + D -> D; S, D ∈ {Ai, Bi; 0 ≤ i ≤ 3}
ASUB S, D S - D -> D; S, D ∈ {Ai, Bi; 0 ≤ i ≤ 3}

Table 4. Microcode Examples of the Retransmission CPU

4.5 Implementation Detail: A 32 bit Modulo 232 Comparator

Due to the complexity of the complete design, only a selected part is presented in
detail. This section shows the design of a 32 bit modulo 232 comparator (cf. comp A
and comp B in Figure 10). Such a comparator is needed to compare three 32 bit val-
ues at the same time. This comparison is done while searching for the right position
in the retransmission list to insert a new entry or to delete an existing entry. Due to
the modulo 232 arithmetic and the need for fast search operations in the dynamic lists
common comparators with only two inputs cannot be used.

Four functions are calculated at the same time:
le_le (a, b, c) = true ⇔ ((a ≤ c) ∧ (a ≤ b ∧ b ≤ c)) ∨ ((a > c) ∧ (a ≤ b ∨ b ≤ c))
le_lt (a, b, c) = true ⇔ ((a < c) ∧ (a ≤ b ∧ b < c)) ∨ ((a > c) ∧ (a ≤ b ∨ b < c))
lt_le (a, b, c) = true ⇔ ((a < c) ∧ (a < b ∧ b ≤ c)) ∨ ((a > c) ∧ (a < b ∨ b ≤ c))
lt_lt (a, b, c) = true ⇔ ((a < c) ∧ (a < b ∧ b < c)) ∨ ((a > c) ∧ (a < b ∨ b < c))
a, b, c ∈ IN mod 232; le: less or equal; lt: less than

The complete architecture and its components are described with the standardized
hardware description language VHDL[28]. This allows for simulation and synthesis
based on the same language.

library IEEE;
  use IEEE.std_logic_1164.all;
  use IEEE.std_logic_arith.all;

entity MOD_KOMPA is
  port ( A, B, C : IN std_logic_vector (31 downto 0);
         le_le, le_lt, lt_le, lt_lt: OUT boolean);
end MOD_KOMPA;

architecture BEHAVIORAL of MOD_KOMPA is
begin
  process (A,B,C)
  variable h1, h2, h3, h4, h5, h6 : boolean;
  begin
   h1 := A < B; h2 := A <= B;
   h3 := A < C; h4 := A >  C;
   h5 := B < C; h6 := B <= C;



   le_le <= (NOT(h4) AND (h2 AND h6)) OR (h4 AND (h6 OR h2));
   le_lt <= (h3      AND (h2 AND h5)) OR (h4 AND (h5 OR h2));
   lt_le <= (h3      AND (h1 AND h6)) OR (h4 AND (h6 OR h1));
   lt_lt <= (h3      AND (h1 AND h5)) OR (h4 AND (h5 OR h1));
  end process;
end BEHAVIORAL;

The above listed VHDL description was synthesized into a gate level description us-
ing a high level synthesis tool. The area of the design is 1084 gates and the estima-
tion of the critical path 9.6 ns. The implementation of only the le_le function on an
Alpha processor needs 20 4-byte commands which results with 6.6 ns cycle time
(150 MHz) in a duration of more than 132 ns.

5 Summary and Future Work
 Within this paper, a framework for the provision of high performance real-time
multicast services has been presented which has the potential to fulfill the require-
ments of upcoming distributed multimedia applications. It is based on VLSI compo-
nents dedicated to specific processing tasks that are to be integrated in end systems,
special network elements called group communication servers, and the deployment
of resource reservation in intermediate and end systems. Simulation results on the
suitability of selected scheduling algorithms for services with guaranteed delay are
presented. A performance evaluation is given which shows the potential benefits of
selective retransmissions in multipoint connections, and potential improvement of
efficiency if GCSs are integrated into the network. Implementation details of mul-
ticast retransmission support have been discussed. It was shown how certain system
and support functions may be implemented efficiently by the use of dedicated hard-
ware.

 Not only high performance, efficient use of network resources and resource reser-
vation, but specifically service integration will be a major requirement for forthcom-
ing communication subsystems. System components that may be selected and
parametrized based on the requested application service will be important for provid-
ing a high degree of flexibility. The presented framework thus may be viewed as a
hardware implementation of the function-based communication subsystem F-CSS
presented in [29]. Currently, the implementation of additional components for FEC
and memory management are under development. A more detailed evaluation of the
achievable performance is also subject of ongoing work, including investigation of
the influence of processing times and of limited buffers.
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