
203

CHAPTER 10

MODELING, SIMULATION, AND SYNTHESIS
OF HIGH-PERFORMANCE ATM PROTOCOLS

AND MULTIMEDIA SYSTEMS

Georg Carle and Jochen Schiller

10.1. INTRODUCTION
Emerging applications mostly require both high performance as well as
support for a wide variety of communication services. For example, audio,
video, and data transmission may require highly different services, e.g.,
guaranteed delay, jitter, or bandwidth. An additional challenge arises
through the growing demand for multipoint communication services. ATM
networks are capable of satisfying the basic application requirements by
providing multipoint bearer services6 with data rates exceeding a gigabit
per second. However, current communication subsystems (including
higher layer protocols) that provide reliable services are not able to deliver
the available network performance to the applications.14,35 In particular in
multipoint communication scenarios, severe degradations of service
quality can be observed. Additional problems need to be addressed in
scenarios where quality of service (QoS) requirements and processing
capabilities of individual receivers differ.
In order to provide the required high performance services to the
applications, new protocols29,25 as well as high-performance implemen-
tation architectures for the communication subsystems need to be
designed.28,16,5 Dedicated VLSI components should be used in flexible
implementation platforms for time-critical processing tasks, such as
retransmission support or memory management, in order to provide high
performance communiation services.
This chapter presents a new approach for the flexible design of hardware-
supported high-performance communication subsystems together with a
framework for the provision of multipoint multimedia services in ATM
networks and heterogeneous internetworks. The design process allows

Reprint of Chapter in Book: "State-of-the Art in Performance Modeling and
Simulation", G. Zobrist, J. Walrand, K. Bagchi (Eds.), Gordon and Breach
Publishers, Dec. 1998, ISBN: 90-5699-635-5

204 CARLE, SCHILLER

mapping of a formal protocol specification onto a parallel, hardware-based
implementation architecture. The highly modular VLSI implementation
architecture designed with parameterizable and programmable components
allows for service flexibility. The architecture is not limited to a certain
protocol, but allows the implementation of a variety of high-speed
protocols. We validated our approach with a design example using a
formal specification of the protocol RMC-AAL (Reliable Multicast ATM
Adaptation Layer, RMC-AAL9). This protocol provides error control
functions for ATM end and intermediate systems in order to enhance the
reliability of an ATM service. The concept of integrating error control
functions into Group Communication Servers (GCSs) allows for the
efficient provision of reliable multipoint services in large, widespread
groups. The multicast error control capabilities of GCSs allow for
increased throughput and reduced delay. GCSs provide protocol processing
support for multicast transmitters and reduce the acknowledgement
implosion problem. 10 They also support groups consisting of end systems
with direct ATM access, as well as end systems connected over
heterogeneous internetworks. 8

This chapter is structured as follows. Section 2 presents the developed
ATM protocol for multipoint error control. Section 3 describes the design
flow for implementation in detail and gives some examples for each design
step. Section 4 presents conclusions and potential further work.

10.2. ATM PROTOCOL FOR MULTIPOINT ERROR
CONTROL
The Reliable Multicast ATM Adaptation Layer features the options of
frame-based automatic repeat request (ARQ), cell-based ARQ and forward
error correction (FEC) for an efficient provision of reliable multicast
services under varying cell loss rates. RMC-AAL offers a fully reliable
service and a service that assures delivery to a subset of K receivers. It can
be used in ATM end systems and also in dedicated servers within the
network (see Figure 10.1).
Lost retransmissions contribute significantly to the QoS of a reliable group
communication service.10 It is therefore of high importance to decrease the
probability of lost retransmissions. This goal can be achieved by FEC.3

The mean number of retransmissions required for the successful delivery
of a frame can also be decreased by establishing virtual channels (VCs) for
retransmissions which have a lower cell loss rate than the VCs used for the
first transmission of a frame. This capability of ATM is in contrast to

DESIGN OF HIGH-PERFORMANCE ATM SYSTEMS 205

single service networks, where initial transmissions and retransmissions
will generally observe identical loss rates.
RMC-AAL allows to send retransmissions by multicast or by unicast in
selective repeat or go-back-N mode. It can be selected if retransmissions
are frame-based (by retransmission of the original data frames) or cell-
based (by retransmission of frame fragments). When FEC is used, the
information cells of the frame are protected by additional redundancy cells.
Encoding and decoding can be based on Reed-Solomon-Codes,23 or on
simple XOR-operations and matrix interleaving.27

In the following, the data format used by RMC-AAL is briefly explained.
RMC-AAL consists of a service specific convergence sublayer (SSCS)
with ARQ and FEC functions, based on the common part convergence
sublayer (CPCS) of AAL5.17 AAL5 uses a trailer of 8 bytes and protects
the payload of an AAL frame by the cyclic redundancy check CRC-32. In
addition to this 8 byte trailer, RMC-AAL data frames use a 10 byte frame
header. Frames are identified by a frame sequence number (FSN, 24 bit) in
the frame header. When using cell-based ARQ, each cell has an additional
protocol overhead of one byte: 2 bits for specifying the cell type, and a 6
bit cell sequence number (CSN). Even for high speed VCs in WANs, no
large cell numbering space is required, because a hierarchical sequence
numbering scheme is used, where each cell is identified by both FSN and
CSN. The alternative solution of identifying cells entirely by their cell
sequence numbers leads to a significantly higher overhead per cell. For

ATM Layer

Group
Communication

Servers

Local ATM Network Public B-ISDN

Buffer

Error Control
Mechanism

ATM Layer

End System

ATM Layer

ATM Layer

ATM Layer
RMC-AAL

Higher L.
End System

Higher L.

Higher L.

Higher L.

ATM Layer

RMC-AAL

RMC-AAL

RMC-AAL

Figure 10.1: Multicast error control in servers and end system

206 CARLE, SCHILLER

example, the protocol BLINKBLT,13 which also offers cell-based
retransmissions, has a per-cell overhead of 4 bytes. The RMC-AAL frame
header contains a transmitter identifier and the length of the SSCS PDU
payload. The frame header also contains a discriminator field with an
identifier for the frame type, a flag to request an immediate acknowledge-
ment, a flag for identifying the last frame of a burst, and a field for the
number of redundancy cells that follow the data frame. Frame fragments
consist of a Fragment Header Cell, followed by a selection of original data
cells of this frame. The fragment header cell contains the header
information of a regular frame, as well as a bitmap for identification of the
data cells which follow. Further details of the RMC-AAL protocol are
presented in Carle and Zitterbart.9

10.2.1. Group Communication Server
The application of the presented error control mechanisms is not limited to
ATM end systems. The deployment of so-called Group Communication
Servers with multicast error control mechanisms provides reliable high-
performance multipoint services for a wide range of parameters. Further
improvements of performance and efficiency can be achieved by using
GCSs hierarchically.
GCSs support an efficient use of network resources by performing
multicast error control within the network. Allowing retransmissions
originating from the server avoids unnecessary retransmissions over
common branches of a multicast tree. The integration of FEC mechanisms
into the GCS allows for the regeneration of lost cells and for the
reinsertion of additional redundancy for adjusting the FEC coding scheme
according to the needs of subsequent hops.
By providing protocol processing support for multicast transmitters, GCSs
also improve scalability. They also support heterogeneous multicasting by
allowing different protocol parameters for different branches of a multicast
tree, and by converting between different error schemes. For example, the
simple frame-based go-back-N retransmission scheme could be used
between a GCS and local receivers, while the more complex cell-based
ARQ scheme with additional FEC could be used for a wide area
connection between transmitter and GCS.
For groups with multiple transmitters, the GCS provides support for multi-
plexing of frames onto a single point-to-multipoint connection. This
reduces the number of required VCs significantly for large groups with
many transmitters.36 Virtual LANs frequently require this multiplexing
functionality. However, an additional queuing delay may be introduced by

DESIGN OF HIGH-PERFORMANCE ATM SYSTEMS 207

this multiplexing function. If LAN Emulation1 is used in a local ATM
network, a GCS might be incorporated into the service elements ‘LAN
Emulation Server’ (LES) and ‘Broadcast and Unknown Server’ (BUS),
thus making it possible for applications to ensure the reliable delivery of
multicast and broadcast messages to all peers.

10.2.2. Formal Protocol Specification
RMC-AAL for end systems as well as for GCSs has been formally
specified in SDL (Specification and Description Language).18 Figure 10.2
shows the structure of a simplified GCS. Each octagon represents a process
in SDL.
A data frame arriving from the sender enters the diagram at the upper right
corner and is lead to the process Frame Manager Receive (FM_Receive) by
the receiver process Filter_snd, which forwards frames depending on the
frame type. FM_Receive allocates memory and stores the frame. The
frame is then scheduled for transmission by the process Send_Manager.
The process Frame Manager Send (FM_Send) assembles the head of the
frame and passes the frame to the transmitter process (Switch_rcv). This
process ensures that cells of different frames are not interleaved. The
Pool_Manager manages the buffer of the GCS and the lower window
edges (LWEs) of all receiving entities, which can be either end systems, or
GCSs. Acknowledgements arrive at the process Filter_rcv. FM_Repeat
interprets the acknowledgements and passes the results on to the
Pool_Manager. The core of the frame-based error handling is formed by
the process Frame_Control. Acknowledgement frames are created by the
process FAck_Creator.

10.2.3. Protocol Simulation
It is important to know which error control scheme of RMC-AAL is best
suited for a given situation. The achievable performance of the proposed
error control schemes was evaluated by applying discrete-event simulation
with the simulation tool BONeS/Designer.31 For modeling the correlation
properties of lost cells, a two state Markov chain (Gilbert Model) was
applied. Based on the worst case observations of Ohta and Kitami,24 a
probability of 0.3 was used for a cell discard following a cell discard. This
is equivalent to cell losses with a mean burst length of 1.428 cells. A
multicast VC was simulated, where cell losses may occur on the common
link or on individual links. The same error model was applied to all links.
A data rate of 100 Mbit/s, a distance of 100 km, and a frame length of 50
cells was used. Figure 10.3 shows the efficiency (relation of successfully

208 CARLE, SCHILLER

Sw
itc

h_
rc

v

Se
nd

_M
an

ag
er

[S
en

dD
at

aF
ra

m
eP

ar
t,

St
op

D
at

aF
ra

m
e]

m
ac

ro
T

ra
ns

p_
D

cl

bl
oc

k
T

ra
ns

po
rt

Fi
lte

r_
rc

v

Po
ol

_M
an

ag
er

Sw
itc

h_
sn

d

FM
_R

ec
ei

ve

[D
el

ay
ed

R
eq

ue
st

,
C

ol
le

ct
R

eq
ue

st
]

Fr
am

e_
C

on
tr

ol
 (

0,
n)

FA
ck

_C
re

at
or

[F
A

ck
L

is
t.i

nd
,

FA
ck

St
ar

t]

[F
ra

m
eS

ta
rt

, F
ra

m
eC

on
tin

ue
,

Fr
am

eE
nd

, F
ra

m
eD

is
ca

rd
]

[D
is

ca
rd

R
eq

ue
st

,
R

eq
ue

st
D

on
e]

[S
en

dF
ra

m
e,

 S
en

dC
on

tin
ue

,
Se

nd
D

is
ca

rd
]

FM
_S

en
d

Se
tF

ra
m

eP
ar

t.r
eq

, I
A

ck
, S

nd
L

W
E

]

FM
_R

ep
ea

t

[F
A

ck
A

rr
iv

ed
]

G
et

Fr
am

eP
ar

t.r
eq

,
G

et
Fr

am
eI

nf
o.

re
q]

[R
el

ea
se

Fr
am

e.
re

q,

G
et

Fr
am

eI
nf

o.
in

d]
[O

K
.in

d,
 N

O
K

.in
d,

 G
et

Fr
am

eP
ar

t.i
nd

,

Fi
lte

r_
sn

d

C
PC

S_
sn

d

[C
PC

S.
U

ni
tD

at
a.

Si
gn

al
]

[C
PC

S.
U

ni
tD

at
a.

In
vo

ke
]

[W
ai

tin
gF

or
Pa

rt
]

C
PC

S_
rc

v

C
PC

S_
rc

v_
ou

t

[F
ra

m
eS

ta
rt

, F
ra

m
eE

nd
]

C
PC

S_
sn

d_
in

C
PC

S_
rc

v_
in

C
PC

S_
rc

v

[C
PC

S.
U

ni
tD

at
a.

Si
gn

al
]

C
PC

S_
sn

d_
ou

t

C
PC

S_
sn

d

[C
PC

S.
U

ni
tD

at
a.

In
vo

ke
]

[S
en

dF
A

ck
]

[D
at

aF
ra

m
eA

rr
iv

ed
]

[O
K

.in
d,

 N
O

K
.in

d]

[F
A

ck
St

ar
t]

R
ec

FA
ck

N
eg

, R
ec

FA
ck

Po
s]

[R
ec

L
W

E
, R

ec
U

W
E

,

[F
A

ck
D

on
e,

FA
ck

L
is

t.r
eq

]

[S
et

R
eq

ue
st

]
[O

pe
nF

ra
m

e.
re

q,
 P

re
pa

re
Fr

am
e.

re
q,

Figure 10.2: SDL specification of RMC-AAL for Group Communication
Servers

DESIGN OF HIGH-PERFORMANCE ATM SYSTEMS 209

transmitted useful frames to total number of transmitted frames) for the
four schemes frame-based ARQ, frame-based ARQ/FEC, cell-based ARQ,
and cell-based ARQ/FEC for varying cell loss probability.
Figure 10.4 shows how the achievable efficiency of frame-based ARQ
decreases for an increasing number of receivers.8

In order to select an appropriate error control mechanism, the following
question is of interest: up to which cell loss probability does a frame-based
ARQ scheme result in higher efficiency than a framebased hybrid ARQ
scheme? An interpolation of the simulation results shows a cell loss
probability qs of approximately log(qs) = - 3.4. A similar threshold qcf

exists for the efficiency equilibrium of the cell-based and the frame-based

Efficiency

0

0.2

0.4

0.6

0.8

1.0

-6 -5 -4 -3 -2 -1
log (cell loss rate)q q

scf

Frame-based
ARQ

ARQ/FEC
Frame-based

ARQ/FEC
Cell based

Cell based
ARQ

Parameters

- Distance (100 km)
- Loss correlation (B=0.3)
- Frame length (50 Cells)
- Redundancy (5 Cells)
- Cell loss rate

Figure 10.3: Simulation of efficiency for different error control schemes

0

0.2

0.4

0.6

0.8

1

-6 -5 -4 -3 -2 -1
log(cell loss rate)

Efficiency

1 Receiver

16 Receivers
4 Receivers

Frame-based
ARQ

#Receivers

Frame-based ARQ
1 / 4 / 16 Receivers
Unlimited receiver buffer
50 cells/frame
50 km link
150 Mbit/s

Figure 10.4: Influence of a growing number of receivers

210 CARLE, SCHILLER

ARQ. An analytical treatment of these questions can be found in G.
Carle.10

10.3. IMPLEMENTATION
For the provision of high performance communication services, not only
suitable protocols but also high performance implementations are required.
Traditional implementation by hand is error prone due to the high
concurrency of different processes forming the protocol. Therefore, it is
much better to derive an implementation of a protocol at least semi-
automatic. But this is only practicable, if the synthesis tools are powerful
enough to produce implementations that fulfill the performance
requirements. The following section shows some design steps performed
with commercial tools in combination with tools we developed ourselves,
resulting in high-performance implementations.

10.3.1. Design Flow
A significant amount of research analyzes the automatic derivation of a
high-performance communication subsystem from a formal
specification.22,20 Figure 10.5 shows this goal embedded into several
additional steps, representing the design flow of CHIMPSY
(communication-oriented high-performance modular processing system).26

The specification mentioned here consists of the protocol itself and a set of
configuration parameters. These parameters comprise the chosen
integration alternative, technology, and interface depending on the desired
performance, the existing software environment, and other non-formal
values. From these parameters an implementation framework is derived.4

The configuration parameters describe the desired performance, the
existing software environment, and the maximum costs of a system. Costs
may be expressed in terms of processing costs or hardware complexity. We
use simulation and measurement results of architectures synthesized in
previous design cycles to determine the required number of processing
units.
Using these parameters, an implementation framework is composed from a
set of predefined functional units. This framework consists of the
interfaces to an environment, static memory for protocol data, and a central
crossbar to connect all components (see Figure 10.6). We describe all
hardware components shown in Figure 10.6 using the standardized
hardware description language VHDL (VHSIC Hardware Description
Language15).

DESIGN OF HIGH-PERFORMANCE ATM SYSTEMS 211

configuration
parameters

protocol
(RMC-AAL)

functions

specification
(SDL)

assembly
(Geode, stov,

µPPC, Synopsys)

implementation
framework

(I/F, Crossbar)

RISC
SPA

PPA

high-performance ATM
protocol processing unit

PFU

Figure 10.5: Customized design flow for high-performance ATM protocol
processing units

10.3.2. Architectures for Implementation of Functional Units
From protocols like RMC-AAL we have extracted several functions, e.g.,
timer, CRC, FEC, transmit, and acknowledgement processing. These
functions can be implemented on four different alternative architectures
depending on the desired performance:
• RISC-processors: The tool GEODE33 can be used to generate C-code

from an SDL-specification. A RISC-processor can execute this code
after compilation. Descriptions of different RISC-processors are
available for example as VHDL-code or gate-level schematic.

DMA
Unit

Crossbar

Static Memory
SPA1 SPAj

Xmit.
Cell
I/F

Rcv.
Cell
I/F

Utopia
ATM

Interface

...

PPA1 PPAk... Host
Interface

RISC
PFU1
(Timer
Unit)

PFU2
(CRC
Unit)

Figure 10.6: Flexible architecture for high-performance ATM protocol
processing

212 CARLE, SCHILLER

• Synthesizable Protocol Automata (SPA): With the help of a customized
SDL-to-VHDL-compiler we can automatically map an SDL-description
of a protocol automaton onto a VHDL-description of a hardware unit.
After synthesis onto real hardware (e.g. with the tool Synopsys30) this
unit acts as a protocol automaton. Due to the dedicated hardware for
protocol processing, the performance of such a unit may be significantly
higher compared to a general purpose RISC-processor. However,
existing hardware synthesis tools do not achieve optimal performance
when synthesizing netlists from high-level VHDL descriptions.

• Programmable Protocol Automata (PPA): For even higher performance
we have designed microprogrammable automata. These automata
consist of only 2895 standard cells in CMOS-technology and can run
with 100 MHz. Up to now, we program these units directly with
microcode using a custom microcode compiler µPPC (microprogram
protocol compiler).

• Protocol Function Units (PFU): To achieve highest performance, we
implement time-critical protocol functions as hardware macros.
Examples are timer, CRC, and FEC units. Gate-level VHDL is used to
implement PFUs.

Depending on the specification, the different units are chosen and
configured to assemble the high-performance protocol processing unit.
Currently, we are using 0.7µm standard-cell technology for layout
synthesis and, alternatively, FPGA-boards inserted into workstations for
rapid prototyping.

10.3.3. Design Tools
Our design flow comprises several tools as shown in Figure 10.5. Up to
now it is not possible to find a single tool for the whole design flow that is
flexible enough for the different requirements and that produces
communication components with the required performance. The following
items give a short overview of the tools used in our approach, and
summarizes their advantages and disadvantages.
• SDL-to-C compiler (GEODE code generator): GEODE33 is a

commercial tool set for the design of event-driven real time systems,
using the language SDL’88,18 and Message Sequence Charts (MSC19)
for formal protocol specification. The tool set provides support for
graphical editing, simulation, debugging, and C-code generation. Both
the graphical form of SDL called SDL/GR and the textual phrase form
called SDL/PR are supported. SDL specifications are logically
composed of a hierarchy of structural objects. It can be selected how the

DESIGN OF HIGH-PERFORMANCE ATM SYSTEMS 213

GEODE code generator maps the SDL objects process, process
instance, block, and system onto operating system processes. Specific
functionalities which are specified as abstract data types can be mapped
onto separately specified C functions. In our flexible design approach,
we also map abstract data types onto specific hardware functions
implemented in Protocol Function Units.

• SDL-TO-VHDL compiler (stov): In order to facilitate the process of
hardware implementation of SDL specifications we developed a
dedicated SDL-TO-VHDL compiler called stov. The compiler generates
VHDL code that is adapted for the flexible architecture shown in Figure
10.6. The generated code makes use of the existing VHDL libraries that
describe the architecture. This allows for rapid prototyping of protocol
processing units after successful simulation of the SDL specification.
As there are some SDL constructs that cannot be translated into
hardware descriptions, an appropriate subset of SDL is supported by the
compiler.

• VHDL compiler (Synopsys): Based on VHDL-descriptions of hardware
on the register-transfer level, this commercial tool synthesizes netlists
for different technologies.30 These netlists can be used for further
synthesis on ASICs or FPGAs. Compared to hand-coded netlists, this
tool does not achieve the optimum speed and size of hardware due to
the complexity of the synthesis. On the other hand, using such a
powerful synthesis system is the only way to manage the complexity of
large hardware systems. In addition to synthesis, this tool also allows
for simulation and debugging of VHDL-descriptions.

• Microcode compiler (µPPC): Our custom microcode compiler allows
for easy programming of the PPAs using a simple assembly level
language. The language comprises 19 operations, comments, labels, and
macros.
The compiler converts this microcode into a binary format which can be
downloaded to the PPA. The disadvantage of this microcode is its low
level language. Therefore, an additional SDL-to-Microcode-Compiler is
under development.

10.3.4. Protocol Implementation
Several non time-critical finite state machines (FSM) of a protocol can be
mapped onto a single PPA in the implementation architecture. Table 10.1
shows some lines from the specification of a retransmission FSM. The
table comprises the actual state, incoming events, and conditions to check
before actions and the transition into the next state are performed.

214 CARLE, SCHILLER

State Event Conditions Actions Next State

NULL i.new_context init_context(ARR) ACTIVE

ACTIVE i.rec_closing signal(TI, i.rec_seq) ACTIVE

GAPTEST gap_no = 0 s.base = s.offset ... ACTIVE

Table 10.1: Example lines from the retransmission FSM

The shaded line shows that the FSM issues the signal i.rec_seq to the FSM
TI in the state ACTIVE as soon as the event i.rec_closing has been
received. The next state is also ACTIVE. The translation of this line into
microcode for the implemented FSM is shown in Table 10.2. The first
three lines wait for receiving a signal via the input port and branch to the
appropriate piece of microcode after receiving the signal. The last five
lines send the signal i.rec_seq to the FSM TI, save the new state (ACTIVE),
and jump back to the beginning to wait for the next signal.

10.3.5. Synthesis
As one example for a resulting component, Figure 10.7 shows the layout of
a PPA synthesized using Synopsys30 and Cadence7 together with the
0.7 µm CMOS standard-cell library from ES2.11 Due to a critical path of
9.6 ns of the control logic this chip can run with approximately 100 MHz.
This means that every 10ns one row of microcode from Table 10.2 can be
executed. We implemented together with the control logic 11 kbyte of
SRAM, with 9.5 kbyte for microcode (approx. 1750 rows) and the
remaining 1.5 kbyte for registers and stacks. The chip area is 52.5 mm²
with a utilization of 78%. This size is mainly due to the SRAM technology
used with the prototype design.

DESIGN OF HIGH-PERFORMANCE ATM SYSTEMS 215

1 kbyte
SRAM
vector
table

2 kbyte SRAM
protocol

control
logic

2 kbyte SRAM
protocol

2 kbyte SRAM
protocol

2 kbyte SRAM
protocol

1.5 kbyte
SRAM

protocol

Figure 10.7: VLSI chip layout of the programmable protocol automata

10.3.6. Performance Evaluation
In order to study processing delay and implementation complexity, the
prototype implementation of a GCS on a network adapter with the
following properties was investigated: Protocol processing is performed on

data selection command control comment
CNT GETH wait for signal

move in,base CNT MOVE S,A load context
BRV MOVE H1,A jump to sub-

routine
1 CNT MOVE S,C signal
TI;
i.rec_seq

CNT SGNL i_rec_seq to
TI

OFFSET;
move mem,out

CNT MOVE A,Q

ACTIVE CNT SAVE next state
label JMP SLEEP return

Table 10.2: Microcode example of a FSM suited for a PPA

216 CARLE, SCHILLER

one or more 32 bit RISC processors with an average performance of 100
MIPS. In addition, hardware support for segmentation and reassembly,
hardware for CRC32 calculation, and hardware for FEC processing were
assumed. Based on a specification of the processes of a GCS in assembly-
level language, the number of instruction cycles necessary to perform the
required functionality was determined for each process of the GCS.
Subsequently, the delay of a process that is executed on a processor with
100 MIPS was evaluated.
In Figure 10.8, the processing delays are compared to the cell interarrival
time of 2.74 µs for an ATM link of 155 Mbit/s. The figure shows the
processing delays for GCS configurations of increasing complexity from
left to right. The configuration with the lowest processing delays is a GCS
with frame-based ARQ. The figure also shows the additional processing
delays of a GCS with cell-based ARQ, and with additional FEC. The right
edges of the bars indicate the processing delays in each component if cell-
based ARQ, FEC, and multiplexing are performed. The figure illustrates
several properties. First, the receiver process and the transmitter process
have a constant delay independent of any ARQ or FEC processing. Second,
frame-level multiplexing does not take much time in any component other
than the Send Manager which does the scheduling of the frames. Note that
the GCS does not provide a copy function for multicasting. This copy
function for multicasting is provided by an ATM switch. Third, and most
important, it can be seen that the delay is dominated by the Frame Manager
Receive whenever the first cell of a frame of a connection with cell-based
ARQ and FEC is processed. In this module, the processing delay of the
first cell of a frame is 2.71 µs when cell-based ARQ is selected in
combination with FEC. The processing delay of a cell in the middle of a
frame is 1.31 µs, while the processing delay of the last cell of a frame is
1.47 µs. Thus, this component is the first candidate for optimization, and
for the deployment of hardware components for processing support.
A single processor of 100 MIPS leads to a processing bottleneck at high
loads, as the overall delay for processing of a cell by the GCS
(summarizing the processing times of all modules) is larger than the cell
interarrival time. A set of three processors with support of dedicated
hardware to perform table lookup, filtering, and the construction of
outgoing cells allows for maximum load with an ATM link of 155 Mbit/s
even for frames consisting of a single cell. Not shown in the diagram are
queuing delays of cells that have to wait because frames of other senders in
the same group have to be sent first. Furthermore, operations caused by the
processing of acknowledgements in a GCS or in a sending host are not

DESIGN OF HIGH-PERFORMANCE ATM SYSTEMS 217

contained in the diagram. The latter operations heavily depend on the
number of receivers that acknowledge the reception of frames or cells, and
on the acknowledgement strategy (e.g., NAKs might be sent as soon as
possible after detection of an error, as opposed to ACKs which are sent
cumulatively).
This performance evaluation shows clearly that for higher performance
dedicated VLSI has to be used. With the assumed RISC processors and
only moderate hardware support only a bandwidth of 155 Mbit/s can be
achieved. For implementation in intermediate systems one has to use the
above described hardware components.

10.3.7. Summary of the Design Flow for Protocol Implementation
Figure 10.9 shows a simplified diagram of the design flow used for the
hardware implementation of high-performance communication protocols.
Cycles in the design flow have been omitted for clarity. The two basic
technologies used in our design are CMOS ASICs and FPGAs. Therefore,
the figure shows the synthesis and derivation of parameters for these two
technologies in more detail. Furthermore, we use FPGA-boards inserted in
standard workstations for rapid prototyping.34

Receiver Process
Frame Manager Receive

first cell of frame

last cell of frame
middle cell of frame

Frame Manager Send
Send Manager

first or middle cell
last cell

Transmitter Process

1.04

1.92 0.68

0.72 0.48

0.580.78

0.98

0.9

1.08

0.63 0.63

0.11

1.08
0.9

0.98

1.47
1.31
2.71

1.04

frame-based ARQ

cell-based ARQ cell-based ARQ and FEC

multiplexing

cell interarrival time

Total

(2.74 µs)

Figure 10.8: Processing delays for error control

218 CARLE, SCHILLER

10.4. CONCLUSION & FURTHER WORK
A new framework for multipoint error control is presented which has the
potential to fulfill many requirements. For small groups and low cell loss
rates, a frame-based end-to-end error control is most appropriate. Cell-
based retransmission as well as FEC allow high-performance reliable
multicasting even for significant cell loss rates. For better scalability and
support of heterogeneous scenarios, the deployment of a new network
element called the Group Communication Server (GCS) is proposed. It
allows an hierarchical approach for multicast error control and the
combination of different error control schemes.
Investigation of the processing delay demonstrated the feasibility of the
proposed error control schemes even for very high speeds. It also revealed
that cell-based error control schemes contribute little to the processing load
for error-free transmissions.
A basic idea of our work is the semi-automatic implementation of high-
performance protocols based on formal specifications. This design process
allows for rapid prototyping, and gaining valuable insight into the tradeoff
of protocol performance and protocol processing costs. With this design
flow, even processing-intensive cell-based algorithms can be implemented
at high speeds, using a high-performance parallel protocol architecture.
Based on communication requirements, e.g. group communication in the
context of multimedia applications and ATM networks, we develop
communication protocols and describe them using formal description
techniques. One example for this is the standardized language SDL.
Together with a generic implementation architecture we can now derive a
specific implementation. The generic implementation architecture consists
of several basic components with different flexibility and performance.
Depending on the protocol and performance requirements these basic
components are combined and configured. We have developed several
tools to support the different design steps, e.g. the mapping of SDL
specifications onto VHDL hardware description. In addition, for the last
design steps towards real hardware implementation we use commercial
design tools.
Future work will concentrate on the design of more complex units to
support protocol processing and the implementation of these units in
workstations as prototypes. Furthermore, additional design tools for high-
performance communication subsystems are under development.

DESIGN OF HIGH-PERFORMANCE ATM SYSTEMS 219

to
olto
ol

ac
tio

n
ac

tio
n

de
sc

rip
tio

n
de

sc
rip

tio
n

ar
ch

ite
ct

ur
e,

co
m

po
ne

nt
s

ar
ch

ite
ct

ur
e,

co
m

po
ne

nt
s

pr
ot

oc
ol

pr
ot

oc
ol

te
xt

/g
ra

ph
ed

ito
r

te
xt

/g
ra

ph
ed

ito
r

te
xt

/g
ra

ph
ed

ito
r

te
xt

/g
ra

ph
ed

ito
r

te
xt

ed
ito

r
te

xt
ed

ito
r

S
D

L-
pr

og
ra

m
S

D
L-

pr
og

ra
m

m
ic

ro
co

de
m

ic
ro

co
de

m
ic

ro
co

de
co

m
pi

le
r

m
ic

ro
co

de
co

m
pi

le
r

S
D

L-
to

-
V

H
D

L-
co

m
pi

le
r

S
D

L-
to

-
V

H
D

L-
co

m
pi

le
rsi

m
ul

at
io

n
(G

eo
de

)

si
m

ul
at

io
n

(G
eo

de
)

V
H

D
L-

pr
og

ra
m

V
H

D
L-

pr
og

ra
m

si
m

ul
at

io
n

(S
yn

op
sy

s)

si
m

ul
at

io
n

(S
yn

op
sy

s)

gr
ap

h
ed

ito
r

(B
O

N
eS

)

gr
ap

h
ed

ito
r

(B
O

N
eS

)

si
m

ul
at

io
n

m
od

el
si

m
ul

at
io

n
m

od
el si
m

ul
at

io
n

(B
O

N
eS

)

si
m

ul
at

io
n

(B
O

N
eS

)

pe
rf

or
m

an
ce

ev
al

ua
tio

n

pe
rf

or
m

an
ce

ev
al

ua
tio

n

pa
ra

m
e-

tr
iz

at
io

n

pa
ra

m
e-

tr
iz

at
io

n

sy
nt

he
si

s
(S

yn
op

sy
s)

sy
nt

he
si

s
(S

yn
op

sy
s)

ne
tli

st
 (

A
S

IC
)

ne
tli

st
 (

A
S

IC
)

ne
tli

st
 (

F
P

G
A

)
ne

tli
st

 (
F

P
G

A
)

C
ad

en
ce

C
ad

en
ce

X
A

C
T

X
A

C
T

pl
ac

em
en

t,
ro

ut
in

g

pl
ac

em
en

t,
ro

ut
in

g

pl
ac

em
en

t,
ro

ut
in

g

pl
ac

em
en

t,
ro

ut
in

g
la

yo
ut

la
yo

ut

bi
ts

tr
ea

m
bi

ts
tr

ea
m

si
m

ul
at

io
n

si
m

ul
at

io
n

lo
ad

in
g,

te
st

lo
ad

in
g,

te
st

pe
rf

or
m

an
ce

pa
ra

m
et

er
s

pe
rf

or
m

an
ce

pa
ra

m
et

er
s

pe
rf

or
m

an
ce

pa
ra

m
et

er
s

pe
rf

or
m

an
ce

pa
ra

m
et

er
s

Figure 10.9: Simplified implementation design flow

220 CARLE, SCHILLER

REFERENCES

1. ATM FORUM, LAN Emulation Over ATM: Draft Specification,
LAN Emulation Sub-working Group, ATM Forum Technical
Committee, August 1995

2. BALRAJ, T.; YEMINI, Y., „Putting the Transport Layer on VLSI -
the PROMPT Protocol Chip,“ in: Pehrson, B.; Gunningberg, P.;
Pink, S. (eds.): Protocols for High-Speed Networks, III, 1992, North-
Holland, pp. 19-34

3. BIERSACK, E. W., „Performance Evaluation of Forward Error
Correction in an ATM Environment,“ IEEE Journal on Selected
Areas in Communication, 11, 4, pp. 631-640, (1993)

4. BRAUN, T.; SCHILLER, J.; ZITTERBART, M., „A Highly
Modular VLSI Implementation Architecture for Parallel Transport
Protocols,“ IFIP 4th International Workshop on Protocols for High-
Speed Networks, Vancouver, Canada, August 1994

5. BRAUN, T.; ZITTERBART, M., „Parallel Transport System
Design,“ in: Danthine, A.; Spaniol, O. (eds.): High Performance
Networking, IV, IFIP, North-Holland, 1993, pp. 397-412

6. BUBENIK, R.; GADDIS, M.; DEHART, J., „Communicating with
virtual paths and virtual channels,“ Proceedings of the 11th

INFOCOM'92, pp. 1035 - 1042, Florence, Italy, May 1992
7. CADENCE DESIGN SYSTEMS, INC., Documentation for DFW II

(Design Framework II), Cadence Design Systems, Inc., San Jose,
California, 1994

8. CARLE, G., SCHILLER, J., „Enabling High-Bandwidth
Applications by High-Performance Multicast Transfer Protocol
Processing,“ 6th IFIP Conference on Performance of Computer
Networks, Istanbul, Turkey, October 23-26, 1995, in S. Fdida, R.
Onvural (Eds.): Data Communications and their Performance,
Chapman&Hall 1996, pp. 82-96

9. CARLE, G., ZITTERBART, M., „ATM Adaptation Layer and
Group Communication Servers for High-Performance Multipoint
Services,“ 7th IEEE Workshop on Local and Metropolitan Area
Networks, pp. 98-106, March 26-29, 1995, Duck Key, Marathon,
Florida, USA

10. CARLE, G., „Towards Scalable Error Control for Reliable Multicast
Services in ATM Networks,“ 12th International Conference on
Computer Communication, ICCC'95, Seoul, Korea, August 20-25,
1995

DESIGN OF HIGH-PERFORMANCE ATM SYSTEMS 221

11. EUROPEAN SILICON STRUCTURES, Documentation for 0.7µm-
Library, European Silicon Structures, Rousset, France

12. FELDMEIER, D.C., „An Overview of the TP++ Transport
Protocol,“ in: Tantawy A.N. (ed.): High Performance
Communication, (Kluwer Academic Publishers, 1994)

13. GOLDSTEIN, F., „Compatibility of BLINKBLT with the ATM
Adaptation Layer,“ ANSI Technical Subcommitee T1S1.5/90-009,
Raleigh, NC, USA, Feb. 1990

14. HEINRICHS, B.; JAKOBS, K.; CARONE, A., „High performance
transfer services to support multimedia group communications,“
Computer Communications, 16, 9, (1993)

15. IEEE, Standard VHDL Language Reference Manual, IEEE Std 1076-
1987

16. ITO, M.; TAKEUCHI, L.; NEUFELD, G., „Evaluation of a
Multiprocessing Approach for OSI Protocol Processing,“
Proceedings of the First International Conference on Computer
Communications and Networks, San Diego, CA, USA, June 1992

17. ITU-T, Recommendation I.363, BISDN ATM Adaptation Layer
(AAL) Specification, Geneva, 1993

18. ITU-T, Recommendation Z.100: Functional Specification and
Description Language (SDL), Telecommunication Standardization
Sector of ITU, Geneva, 1988

19. ITU-T, Recommendation Z.120: Message Sequence Chart (MSC),
Telecommunication Standardization Sector of ITU, Geneva, 1993

20. KRISHNAKUMAR, A.S., „A Synthesis System for Communication
Protocols,“ Proceedings of the 5th Annual IEEE International ASIC
Conference and Exhibit, Rochester, New York, September 1992

21. KRISHNAKUMAR, A.S.; KNEUER, J.G.; SHAW, A.J., HIPOD,
„An Architecture for High-Speed Protocol Implementations,“ in:
Danthine, A.; Spaniol, O. (eds.): High Performance Networking, IV,
IFIP, (North-Holland, 1993), pp. 383-396

22. KRISHNAKUMAR, A.S.; KRISHNAMURTHY B.; SABNANI, K.,
„Translation of Formal Protocol Specifications to VLSI Designs,“
Protocol Specification, Testing and Verification, VII, Elsevier
Science Publishers B.V., (North-Holland, 1987), pp. 375-390

23. MCAULEY, A., „Reliable Broadband Communication Using a Burst
Erasure Correcting Code,“ ACM SIGCOMM '90, Philadelphia, PA,
USA., Sep. 1990

222 CARLE, SCHILLER

24. OHTA, H.; KITAMI, T., „A Cell Loss Recovery Method Using FEC
in ATM Networks,“ IEEE Journal on Selected Areas in
Communications, 9, 9, (1991), pp.1471-1483

25. SANTOSO, H.; FDIDA, S., „Transport Layer Multicast: An
Enhancement for XTP Bucket Error Control,“ in: Danthine, A.;
Spaniol, O. (eds.): High Performance Networking, IV, IFIP, (North-
Holland, 1993)

26. SCHILLER, J., „CHIMPSY - a Modular Processor-System for High-
Performance Communication,“ 1. GI/SI Jahrestagung, Zurich,
September 1995

27. SHACHAM, N.; MCKENNY, P., „Packet recovery in high-speed
networks using coding,“ in Proceedings of IEEE INFOCOM '90, San
Francisco, CA, pp. 124-131, June 1990

28. STERBENZ, J.P.G.; PARULKAR, G.M., „AXON Host-Network
Interface Architecture for Gigabit Communications,“ in: Johnson, M.
J. (ed.): Protocols for High-Speed Networks, II, (North-Holland,
1991), pp. 211-236

29. STRAYER, W.T.; DEMPSEY, B.J.; WEAVER, A.C., XTP: The
Xpress Transfer Protocol, (Addison-Wesley, 1992

30. SYNOPSYS INC., Documentation of Simulator, Design Compiler,
and Design Analyzer, Version 3.2a, Synopsys, Inc., Mountain View,
California, USA, 1995

31. THE ALTA GROUP, Block Oriented Network SimulatorTM

(BONeSTM) User’s Guide, The Alta Group of Cadence Design
Systems, Inc., USA, 1994

32. THE XTP FORUM, XTP Protocol Definition Proposed Revision
4.0, 1994

33. VERILOG SA, Technical documentation of the GEODE toolset,
Verilog SA, Toulouse, France

34. VIRTUAL COMPUTER CORPORATION, EVC1s Technical
Reference, Virtual Computer Corporation, Reseda, Kalifornien,
USA, May 1995

35. WATERS, A. G., „Multicast Provision for High Speed Networks,“
4th IFIP Conference on High Performance Networking HPN'92,
Liège, Belgium, December 1992

36. WEI, L.; LIAW, F.; ESTRIN, D.; ROMANOW, A., LYON, T.:
„Analysis of a Resequencer Model for Multicast over ATM
Networks,“ 3rd International Workshop on Network and Operating
Systems Support for Digital Audio and Video, San Diego, CA,
USA., 1992

