
Abstract-- Charging provides an effective control mechanism

for resource allocation in multi-service networks. In many
cases fair charging requires the metering of used resources.
Meter requirements heavily depend on the expected traffic
characteristics, the charging scheme and the QoS provisioning
technique. Meters for accounting are deployed in various
scenarios. For a given meter architecture, performance is
mainly influenced by two factors: the characteristics of the
traffic mix and the classifier rules. We present a meter
assessment method with a flexible testbed that allows to
measure meter performance for different rule sets and a
variety of traffic mixes. Our measurement setup allows to
derive traffic generation from the specification of classifier
rules. Our measurement results show the influence of traffic
mixes and classifier rules onto needed processing resources.

Index terms-- IP metering, classification, accounting, traffic
generation

I. INTRODUCTION

Technicians and economists have proposed a wide variety
of charging schemes for Internet services. Proposed
solutions for measuring techniques include moving the
measurement to the edge of the network [ShCE96] or
integrating specialized modules into switches [DeWD97].
Different measurement granularity levels, e.g. virtual
connections [CoKW97], or TCP flows, also have been
considered.
Charging for QoS-enhanced IP Services based on resource
reservations gives incentives against wasting of resources.
As accurate estimation of traffic profiles in advance may be
difficult for certain applications, tariffs that reflect the actual
usage of resources can increase fairness. For determining
resource usage, metering is required. As metering costs
should not exceed a small fraction of the service
provisioning costs, it should be performed efficiently for
requiring little additional resources and causing little
overhead.

Metering requires the classification of packets.
Classification differs from filtering as follows: the result of
a filtering process is a match or no-match statement while
the result of a classification is an identifier for the class to
which the packet matches.
For the development of accounting meters two different
approaches can be distinguished. One approach is to capture
all traffic with a fine granularity and to extract and group
the relevant data later. An alternative approach is to provide
for a flexible classification within the meter, and to meter
with required granularity only the relevant flows. Both
approaches have advantages and disadvantages. Capturing
of all flows with a high granularity produces a high amount
of accounting data that has to be sent to the accounting
process and that might be stored in databases. At the same
time the meter needed can be much simpler.
Meters that capture only the relevant data can reduce the
amount of accounting data significantly. On the other hand
they have to be configurable and must support a more
complex classification process.
Cisco Netflow [Cisc99] provides a meter of the first type.
All flows are captured. Classification is based on a number
of header fields, which allows to achieve a fine granularity.
The NeTraMet meter [RFC2123] supports both concepts. It
can be configured to explicitly classify a certain subset of
the existing flows. Additionally it can be run in a modus that
captures all flows. The desired granularity is controlled by
an arbitrary set of configurable attributes.
A direct performance comparison of NeTraMet and Netflow
is difficult because Netflow runs on Cisco IOS only.
NeTraMet can be used on different platforms. Typically it
resides on a dedicated workstation or PC.
In order to assess resource consumption of the metering
process, the particular accounting scenario has to be
considered. Meter performance depends on traffic mix,
number of flow classes and number of attributes used to
distinguish the classes. In our tests we investigate how the
number of rules affects needed CPU resources and compare
the two different metering approaches.

Assessment of Accounting Meters with
Dynamic Traffic Generation based on

Classification Rules

Georg Carle, Jens Tiemann, Tanja Zseby

GMD FOKUS
Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany

[carle, tiemann, zseby]@fokus.gmd.de

II. ASSESSMENT OF ACCOUNTING METERS

For assessment of accounting meters different network
scenarios (technique for QoS support, number of customers,
charging scheme etc.) have to be considered. Meters can be
assessed by applying different traffic mixes against a given
set of classifier rules. Techniques for assessment of
classifiers vary from the usage of real packet traces, either
against standard rules defined for testing purposes (c.f.
[BeMG99, McJa93, BaGP94]) or for randomly picked
header field combinations [BoSS99], to the analysis of
classifier rules from real ISPs and enterprise networks
[GuMc99].
Structured meter testing requires not only the testing of
various classifier rules, but also the definition of an
appropriate traffic mix depending on the loaded rules and
the objectives of testing (e.g. worst case, standard/average
situation, special load conditions to certain rules, etc.). This
allows a selective testing of various conditions and
scenarios. Additionally it is desirable to use self generated
test traffic as well as recorded real packet traces.

III. TESTBED FOR METER ASSESSMENT

In order to assess how meters perform in different
accounting scenarios, we built a testbed that couples the
traffic generation process with the classification rules used
for metering. A classifier specification notation (CSN) is
used as generic input for classification and traffic generation
in order to control and adjust the traffic mix to the loaded
rules (Figure 1). This allows to investigate worst case
scenarios as well as different average conditions.
For the classification process CSN instructions are compiled
into the appropriate filter notation of the meter. For the
traffic generation process CSN is used as a basis for
defining traffic flow variations. CSN supports
instrumentation by allowing to express additional settings,
to control how frequently conditions of certain classification
rules become true (i.e., the "load" of individual rules) and to

define additional traffic characteristics (e.g. packet size,
burstiness, remaining header fields). This allows to
investigate the influence of different weighting strategies
(e.g. "20% of all generated flows will be classified by the
first rule"). In addition to the generation of artificial traffic,
our generator has the capability to send previously captured
real packet traces, and to generate new traffic mixes from
recorded samples. The output of the meter (metering results
and internal meter statistics) can be correlated with the
instrumented CSN flow description.

A. The Classifier Specification Notation (CSN)

The NeTraMet package provides a Simple Ruleset
Language (SRL) [Brow98, RFC2723] for the definition of
rules. Despite its name, SRL is not simple enough for our
purposes. SRL can contain nested if-then-else statements,
which complicate the automatic editing of rules. Therefore
we developed a even simpler notation, the Classifier
Specification Notation (CSN). CSN can be used to express
Traffic Classes for the classification in the meter and for
traffic generation. It can be converted into different
classifier rule representations used by different meters. Key
objectives for the development of CSN was a good
readability and the capability to allow automated adding and
removing of rules. An example for a CSN file is given
below.

Classification based on portnumbers
define: tanya-gen= 192.168.75.106, bsd-meter =192.168.115.204;

set : class = 1;
addrule: scrip=tanya-gen, dstip= bsd-meter, proto= udp,
dstport =2000;

set : class = 2;
addrule: scrip=tanya-gen, dstip= bsd-meter, proto= udp,
dstport =2001;

real
flows

traffic
model

test
flows

sender
flow

generator

test
network

CSN

test
markup

ext.
CSN

instrumentation

rule
compiler rules

data sets &
statistics

meter

correlate

classification

traffic generation

Figure 1: Test Method

CSN is used to control both, the classification process and
the generation of appropriate test traffic. This allows to
investigate the performance of the meter in different
scenarios. With a rule compiler CSN files are translated into
the appropriate rule notation which the classifier within the
meter can understand. For traffic generation further
information is required to define different conditions.

B. Traffic Generation with CSN

The traffic flow generation is based on an ATM test system
developed at GMD FOKUS. The test system includes a
special hardware, the TANYA ATM test interface. The card
offers as key feature an open programming interfaces.
Together with several basic software modules for
measurements and testing that are running on a workstation,
this system is highly flexible and can be used for a variety
of measurement purposes and conditions. The test hardware
TANYA offers real time features like filtering and time-
stamping of incoming traffic, which is not used within our
meter assessment testbed. Our testbed uses programmable
hardware (FPGA, Field Programmable Gate Array) of
TANYA to send ATM cells within tight time constraints.
The testbed uses software modules from our FAST
Advanced Tool Set which offers (beside others) traffic
generation of IP flows, AAL5 segmentation/reassembly,
decoding of ATM/IP traffic and presentation of interarrival
and bandwidth statistics. The mentioned functionality is
needed for the low-level generation of the traffic and to
check the correctness of the streams.
The architecture of the flow generator used for measuring
meter performance is shown in Figure 2. The system
consists of a SUN workstation running Solaris with up to
four TANYA ATM test interfaces. Using one or several
traffic models, the workstation generates in software a
traffic flow or an aggregation of traffic flows. These models
can run in real-time and send the traffic directly to the
network. The traffic also can be constructed off-line and
loaded into a FIFO (also used for decoupling the processes
during real-time access) that can hold over 2000 complete
ATM cells and play them repeatedly. The number of flows
for this off-line traffic generation is limited (e.g. up to 200
flows for 425 Byte IP packets, the average packet length in
the German research network B-WiN), but the play-out is
completely done in hardware and introduces no load to the
workstation. There are also some features of the
TANYA/FAST system which allow an efficient real-time

generation of the traffic, e.g. the capability to generate an
arbitrary IP test packet with two ATM cells (for IP header
and AAL5 trailer). The timing of the transmitted stream is
controlled by hardware by means of an external time-stamp.
The task of the traffic generator(s) is to define the contents
of the ATM cells (in our case the IP headers with changing
flow attributes) and an additional time-stamp for each cell to
characterize the traffic profile. We are working with UDP
flows. For the generation of TCP flows (or higher layer
application flows based on TCP) an emulation is needed
that runs in software on the workstation.
In our scenario we use an abstract description for the traffic
flows based on CSN. The prototype traffic generator uses
scripts and existing FAST tools for the following steps of
flow generation:
- Extract flow information (e.g. number of flows, flow

attributes) from CSN file
- Generate single UDP flows of IP packets in ATM cells

(calculate traffic profile with line rate)
- Optionally generate additional traffic flow for

background load
- Merge ATM cells into one file, download result for the

transmitting process to TANYA
- Control the peak cell rate of the ATM stream for rate

control of the IP packets.
Especially the second and third step of this process, the
traffic generation of flows, require additional information
which are not included in a normal meter rule file. This
information, like packet length, data rates, attributes of
additional/background flows, etc. is controlled via
parameters of the used tools. A second version of the traffic
generator will have a more integrative approach, where this
additional information will be included in the CSN
description and can be used by the traffic generator.

C. Meter Instrumentation with CSN

One idea behind the usage of a common notation for the
representation of classification rules is to improve the
comparability of measurement results. Nevertheless, meters
uses different rule notations. Therefore it is required to
translate rules represented in CSN into the appropriate
notation for the meter under test. For this purpose we
developed the compiler CSN2ruleset. This compiler takes
CSN files as an input and generates the appropriate
NeTraMet rulesets, which can be downloaded to the meter
via SNMP by the NeTraMet manager.

IV. TEST SETUP

In the following section the test setup and conditions for the
different tests are presented in detail. The results of the
measurements are shown and interpreted in section V.

A. Test Goal

The goal of our first tests is to examine the influence of the
number of rules onto meter performance. An additional goal
is to investigate possible resource savings by restricting
classification rules to the relevant flows. Furthermore we

traffic model

header cell / packet

TANYA test interface

real-time

non real-time

Flow Generator

Figure 2: Traffic Generation with TANYA

want to compare the two basic metering approaches. We
plan to investigate a "fine-granular" approach where all
existing flows are classified in accordance to a fixed set of
attributes in comparison with a configurable approach
where all relevant flows are explicitly stated and arbitrary
attributes are used for flow distinction. One goal is to find
out which approach has lower resource consumption.

B. Tested Meters

For our first tests we used the meter NeTraMet version
4.4.b5. NeTraMet is very flexible and can be applied within
a variety of test scenarios. It can be used as a configurable
meter by explicitly defining the relevant flow classes via a
set of classifier rules. It also can act as a simple, inflexible
meter that collects data from all existing flows with a fixed
granularity by using the automatic flow distinction feature
provided by NeTraMet.
By enabling the BSD packet filter (BPF) that resides in the
BSD kernel we created a modified NeTraMet setup for
which it is possible to pre-select flows in kernel space
before packets are passed to NeTraMet. (The BPF provides
filtering functions but no classification and therefore can not
be seen as an alternative to NeTraMet.) The pre-selection
can be used in accounting scenarios to filter out in advance
all irrelevant flows, or to explicitly allow only relevant
packets to pass. For instance if provisioning of IP services
for certain networks (e.g. networks of partner providers or
networks within the same country) is for free, packets with
this destination can be neglected. Such packets can be
filtered out in kernel space and do not need to be processed
in user space by the NeTraMet classification process. In
order to keep both processes comparable, we always used
disjunctions of explicit classifier rules to form the filter rule
for the BPF.
We analyzed the behavior of NeTraMet under various
conditions. First we examined the classification process in
case explicit rules are given. That means that all relevant
flows are explicitly listed in the NeTraMet rulefile.
Secondly we looked at the alternative approach where all
flows are captured with fine granularity by using the
automatic flow distinction.

C. Test Setup

The meter testbed for our measurements is shown in Figure
3. The flow generator workstation (a SUN SparcStation 10
under Solaris equipped with one TANYA ATM Test
interface card) is connected via an ATM switch to the test
network. Meter systems based on an ATM interface can be
connected directly to the switch. Using ATM point-to-point
connections it is an easy task to deliver all generated
packets to the system under test (SUT). An Ethernet based
meter can be connected between two routers or (in our
network) in parallel to a real addressable destination for the
generated traffic.

Flow Generator

ATM
switch

router hub

Sink
other SUTs

System Under Test

other SUTs

control network

to meter reader and terminals

ATMATM

Ethernet

EthernetEthernet

Ethernet

ATM

Figure 3: Test Network

In our scenario we use separate connections for the test
traffic flows. The meter, the generator and other equipment
is controlled via the normal infrastructure network of
FOKUS, a mixed infrastructure of ATM and Ethernet/Fast
Ethernet equipment.
The CPU load of the meter processing workstation is
measured with vmstat, an UNIX command reporting some
kernel statistics. Started with an interval option the vmstat
command outputs one line of statistical data for each
interval, summing up several kernel events over this period.
In our measurements we were mostly interested in the CPU
load, which is shown separately for user and system
processes. Additional values of interest are the number of
interrupts (e.g. the number of arriving packets plus some
clock interrupts) and the number of system calls (related to
and significantly contributing to the system load).
Although the vmstat statistics shows only the percentage of
load during an interval (e.g. over 10 s) in whole numbers,
there is still some fluctuation in the values. However, these
measurements give a good estimation of the load of the
meter processing workstation and allow to show a trend in
the measurements. Nevertheless, before applying this
method to a new operating system or to new configurations
like for multi-processor machines it is necessary to check
the accuracy of the vmstat output. (E.g., we experienced
problems with vmstat accuracy when using a certain BSD
variant.)

D. Test Conditions

We performed several tests in order to analyze meter
performance under various conditions. Most measurements
where done on a freeBSD PC with a 450 MHz Pentium III
and 128 MB RAM (tests 1-4). In addition to this we
performed tests on a SUN Ultra 1(testset 5).
In the first four tests we kept the total bandwidth (ATM
bandwidth) constant to 60 Mbit/s and always sent 100 flows
that differed only in one flow attribute (the portnumber).
We sent UDP packets with a packet size of 200 Bytes
payload. We used portnumbers in the range 2000 -2099.
In order to examine the influence of the number of rules
onto meter resource consumption, we increased the number
of classification rules from 0 to 100 (in steps 0, 10, 20, 50,
70, 100). In all tests we introduced a rule to first classify all
flows based on a source/destination combination. Since
source and destination did not vary, all packets belonged to
this class.

V. MEASUREMENT RESULTS

In the following section we analyze the results from our
tests.

A. Test 1: NeTraMet, Influence of the Number of Rules

In this test we used NeTraMet with no modifications on a
freeBSD machine. We used explicit rules that classify flows
based on the portnumber. In order to increase the
percentage of matching flows, we increased the number of
rules in the NeTraMet classifier. Packets that do not match
an explicit rule are collected in the class "others".

0

20

40

60

80

100

0 20 40 60 80 100

lo
ad

 [%
]

rules [number]

NeTraMet, w/o bpf filering

user
system
overall

theoretical

Figure 4: NeTraMet, CPU Load vs. Number of Rules

Figure 4 shows the CPU load caused by the metering
process. It can be seen that the CPU utilization for kernel
space processing (system load) remains nearly constant. As
expected the load for user space processing increases with
the number of classes distinguished by the meter. The more
classes are used the more rules have to be checked for each
packet. The overall load curve results from the user space
and kernel space load curves.
The curve marked "theoretical" shows the relative trend of
load caused by a classifier. It takes into account that all
packets that do not match have to be checked against all
rules. If there are only 10 rules, most packets have to be
compared against all 10 rules. If 90 rules are applied, most
packets match on average after 45 comparisons.

B. Test 2: NeTraMet, Worst Case Scenario

In this test we generated a worst case scenario for the meter.
We purposely generated packets that never match the
classes specified in the CSN.
We again used NeTraMet with no modifications and
explicit rules for classes based on the portnumber. By
increasing the number of classes we increased the number of
rules for the NeTraMet classifier.
As none of the generated packets belongs to a given class,
each packet has to be checked against all rules before it can
be classified as belonging to the "others" class. As expected
the CPU consumption for the user space process increases
with the number of rules (Figure 5). The machine limit is
reached with 70 active rules.

C. Test 3: NeTraMet with BPF, Constant Number of
Flows Filtered in Kernel Space

In this test we used our modified NeTraMet setup to enable
the BPF in the BSD kernel. The BPF was used to constantly
filter out 25 flows in kernel space. (From the list of flows
we filtered out the last 25 with the portnumbers 2075-
2099.) We used a disjunction of explicit terms (one for each
portnumber) for the filter instruction.

0

20

40

60

80

100

0 20 40 60 80 100

lo
ad

 [
%

]

rules [number]

NeTraMet, with bpf filtering 25 flows

user
system
overall

Figure 6: NeTraMet with BPF, 25 Flows Filtered in
Kernel Space

As expected the total load of this test is less than the total
load for test 1. The system load is nearly constant, because
the BPF works for all cases with the same filter rule. Since
we filtered out the last 25 flows from the list of flows, only
a slight load increase can be observed when we increase the
number of rules from 70 to 100.

D. Test 4: NeTraMet with BPF, Variable Number of
Flows Filtered in Kernel Space

In the next test we used the modified NeTraMet setup to
enable BPF in the BSD kernel. The filter rule for BPF is
varied together with the NeTraMet rules. All packets that
belong to irrelevant flows, that means for which no class
exists in the CSN file, are filtered out by the BPF. This is
achieved by combining a set of classifier rules by

0

20

40

60

80

100

0 20 40 60 80 100

lo
ad

 [
%

]

rules [number]

NeTraMet, no match on all rules

user
system
overall

Figure 5: NeTraMet, Worst Case Scenario

disjunctions into one filter rule and then passing this filter
rule via NeTraMet to the BPF.
Figure 7 shows that enabling of BPF filtering significantly
reduces the overall load. Like in Figure 4, the first x-axis
shows the number of classes in the CSN file which directly
corresponds to the number of rules in the NeTraMet
rulefile. The second x-axis shows the number of terms used
in the BPF filter rule. In order to examine the difference to
the cases where no BPF is enabled we always applied a
filter rule to the BPF consisting at least of one term.
We varied the number of terms in filter rule for the BPF in a
way that the sum of BPF terms and NeTraMet rules remains
constant. In case of no specific rule in the NeTraMet
ruleset, the BPF contains a filter rule that combines explicit
terms for all 100 portnumbers of the traffic mix. This means
that no packet is passed to the NeTraMet classifier.
Therefore, this case leads to zero CPU consumption for the
classification process in user space. When 100 classes are
distinguished in the NeTraMet classifier, the BPF passes all
packets to the user space. In order to avoid disabling of
BPF, we apply for this case a BPF filter rule to pass all
UDP packets.
Although the number of terms in the BPF filter rule was
decreased, the system load did not decrease. This means
that additional terms in the filter rule do not incur a higher
resource consumption for the filtering process. Instead of a
decreased load we observed a slight increase. In order to
understand this effect it was necessary to look at the number
of system calls for this test. If the BPF contains less terms in
the filter rule, more packets are passed to user space.
Therefore the number of system calls and consequently the
system load increases.
One surprising effect can be observed if the results for
NeTraMet without BPF (Figure 4) and NeTraMet with BPF
(Figure 7) are directly compared. At the point where
NeTraMet has 100 active rules, in both cases all packets are
passed to the user space. Although BPF is enabled in the
second case it does not filter out any packet. BPF uses just
one filter term that allows all UDP packets (i.e., all traffic)
to pass. We expected to obtain for this case the same or a
slightly higher total load than for the case without BPF.

Surprisingly the total load is slightly smaller for this case.
The results can be explained as follows: NeTraMet uses the
libpcap function pcap_open_live to open the kernel
interface. In this function a snapsize can be specified which
determines for each packet the amount of data passed to
user space. We expect a performance difference as observed
for the case where this snapsize value is only applied if the
BPF is enabled, while a disabled BPF always passes the
complete packet payload to user space.

E. Testset 5: Automatic Flow Distinction with Fixed Set
of Attributes

In the following combined tests we looked at the second
meter approach. The question is whether the meter
performance also depends on the number of flows if the
automatic flow distinction feature of NeTraMet is used. For
this setup all existing flows are classified based on a given
set of attributes. The NeTraMet ruleset does not contain an
explicit rules for each class, but rather one rule that
specifies the set of attributes used to differentiate flows.
In the following tests the ruleset was not changed. Instead
the number of flows where increased up to 2000 flows by
modifying source addresses and portnumbers
We used two different sets of attributes to classify the
packets. The all-ip ruleset puts all IP packets into one class.
The src-dst-port ruleset classifies packets based on the
combination of source address, destination address and port
numbers.
Both tests where made on a SUN Ultra 1 workstation under
two different traffic load conditions with 1Mbit/s and
2Mbit/s ATM bandwidth respectively. The packets had
payload of only 1 Byte so that each packet fits into a single
ATM cell. This setup leads to a very high overall load even
for a low bandwidth.
For NeTraMet with automatic flow distinction the load does
not depend on the number of flows. Only one rule is active
and the additional flow table entries generated for each new
combination of attributes does not seem to influence
performance. On the other hand it can be observed that the
number of attributes used for the differentiation of flows
influences performance.

0

20

40

60

80

100

0 20 40 60 80 100

lo
ad

 [%
]

rules [number]

NeTraMet, with bpf filtering non-matched flows

user
system
overall

number of terms in BPF filter rule

0100

Figure 7: NeTraMet with BPF, CPU Load vs. Number
of Rules

0

20

40

60

80

100

200 400 600 800 1000 1200 1400 1600 1800 2000

ut
il

iz
at

io
n

[%
]

flows [number]

NeTraMet on SUN Ultra 1, Load vs. Number of Flows

"all-ip-1Mbit.txt"
"all-ip-2Mbit.txt"

"src-dst-port-1Mbit.txt"
"src-dst-port-2Mbit.txt"

Figure 8: NeTraMet with Automatic Flow Distinction

With the fine granular differentiation (src-dst-port) we
observed for the 2 Mbit/s traffic mix a CPU utilization
above 100%, which means that the workstation is in
overload condition where packet loss can occur. This heavy
load probably is caused by the very small packet size we
used which results in a about 4700 packets/s.

VI. CONCLUSION AND FUTURE WORK

We presented a flexible testbed for the assessment of
meters, where classification rules and traffic mix for
various conditions can be derived from the same Classifier
Specification Notation (CSN). CSN is used to describe
traffic classes in a simple, human readable way. Due to its
simplicity CSN allows automated editing of rules. The
traffic generation in our testbed is based on the TANYA
ATM card, which is supported by a sophisticated toolset.
We performed first measurements where we analyzed how
the performance depends on the number of distinct classes
and investigated resource consumption for different meter
approaches.
As expected the resource consumption increases with the
number of rules. We found out that for an automatic
distinction of flows the resource consumption does not
depend on the number of different flows in the traffic mix.
A surprising result was that the meter performs better if a
fixed attribute set is used and all flows are captured. This
effect might be a result of the internal structure of the
classification process and will be subject of further
investigation.
For a more detailed comparison of the different metering
approaches we will perform further tests with a larger
number of flows. We would like to investigate whether the
load for the automatic flow distinction also remains constant
for a larger number of flows in the range of 10 000.
We examined a metering setup where certain classifier
functions are performed in kernel space. This has been
achieved by enabling BPF filter functions in the BSD
kernel. As expected the overall performance can be
improved by enabling kernel-level filtering of irrelevant
packets with BPF. A further effect we observed was that we
got a slightly better performance by simply enabling the
BPF functions, even if all packets are passed to the
classification process in user space. We associate this
observation with a more efficient way copying of packets to
user space by lipbcap. We will further investigate this
effect.
Our measurement results show that not only the number but
also the order of rules may influence meter performance.
We plan to perform further tests to investigate these
dependencies, where we plan to put different weights on
specific rules by applying a different percentage of the
overall traffic to these classes. We also plan to consider
additional accounting scenarios: distance based accounting
with a classification based on source and destination
addresses, accounting for IntServ where classification is
based on microflows specified by the RSVP quintuple, and
DiffServ where DiffServ Codepoint information is used as
further attribute.

VII. ACKNOWLEDGEMENTS

We would like to thank Lars Karow and Carsten Schmoll
for their help with the measurements and the
implementation of the CSN2rulefile compiler.

VIII. REFERENCES

[BaGP94] Mary L. Bailey, Burra Gopal, Michael A. Pagels, Larry L.
Peterson, Prasenjit Sarkar: PATHFINDER. A Pattern-Based
Packet Classifier, In Proceedings of the 1st Symposium on
Operating System Design and Implementation, Monterey,
California, November 1994.

[BeMG99] Andrew Begel, Steven McCanne, and Susan L. Graham:
BPF+: Exploiting Global Data-Flow Optimization in a
Generalized Packet Filter Architecture, Proceedings of ACM
SIGCOMM 1999, Cambridge, Massachusetts, USA,
September 1999

[BoSS99] Niklas Borg, Emil Svanberg, Olov Schelén: Efficient Multi-
field Packet Classification for QoS Purposes. International
Workshop on Quality of Service (IWQoS'99), London, UK,
June 1999.

[Brow98] N. Brownlee: srl Compiler and Language User's Guide
Version 4.2, Information Technology Systems & Services,
The University of Auckland, New Zealand, August 1998
(http://www.auckland.ac.nz/net/Accounting/ntm.Release.not
e.html)

[Cisc99] Cisco Systems: Cisco IOS Software solutions, NetFlow
Services and Applications,
http://www.cisco.com/warp/public/732/netflow/

[CoKW97] C. Courcoubetis, F. Kelly, and R. Weber. Measurement-
based Charging in Communication Networks. Statistical
Laboratory Research Report 1997-19, University of
Cambridge, 1997

[DeWD97] D. Decasper, M. Waldvogel, Z. Dittia, H. Adiseshu, G.
Parulkar, and B. Plattner. Crossbow - A Toolkit for
Integrated Services over Cell-Switched IPv6. In Proc. of the
IEEE ATM'97 Workshop, Lisboa, Portugal, June 1997.

[EnKa99] Dawson Engler, Frans Kaashoek: DPF: Fast, Felxible
Message Demultiplexing using Dynamic Code Generation.
Proceedings of ACM SIGCOMM 1999, Cambridge,
Massachusetts, USA, September 1999

[GuMc99] Pankaj Gupta and Nick McKeown: Packet Classification on
Multiple Fields, Proceedings ACM SIGCOMM 1999,
Cambridge, Massachusetts, USA, September 1999

[McJa93] Steve McCanne, Van Jacobson: The BSD Packet Filter: A
New Architecture for User-Level Packet Capture, USENIX
Winter Technical Conference, Monterey, California,
November 1993, pp. 259-269.

[RFC2123] N. Brownlee. Traffic Flow Measurement: Experiences with
NeTraMet. IETF RFC2123, March 1997.

[RFC2723] N. Brownlee: SRL: A Language for Describing Traffic
Flows and Specifying Actions for Flow Groups, RFC 2723,
October 1999

[ShCE96] S. Shenker, D. Clark, D. Estrin and S. Herzog. Pricing in
Computer Networks: Reshaping the Research Agenda.
Communications Policy. Vol. 20(1), 1996.

