
Traffic Anomaly Detection Using K-Means
Clustering

Gerhard Münz, Sa Li, Georg Carle
Computer Networks and Internet

Wilhelm Schickard Institute for Computer Science
University of Tuebingen, Germany

Abstract—Data mining techniques make it possible to search
large amounts of data for characteristic rules and patterns. If
applied to network monitoring data recorded on a host or in a
network, they can be used to detect intrusions, attacks and/or
anomalies. This paper gives an introduction to Network Data
Mining, i.e. the application of data mining methods to packet
and flow data captured in a network, including a comparative
overview of existing approaches. Furthermore, we present a novel
flow-based anomaly detection scheme based on the K-mean clus-
tering algorithm. Training data containing unlabeled flow records
are separated into clusters of normal and anomalous traffic.
The corresponding cluster centroids are used as patterns for
computationally efficient distance-based detection of anomalies
in new monitoring data. We provide a detailed description of the
data mining and the anomaly detection processes, and present
first experimental results.

I. INTRODUCTION

Increasing processing and storage capacities of computer
systems make it possible to record and store growing amounts
of data in an inexpensive way. Even though more data po-
tentially contains more information, it is often difficult to
interpret a large amount of collected data and to extract new
and interesting knowledge. The term data mining is used for
methods and algorithms that allow analyzing data in order to
find rules and patterns describing the characteristic properties
of the data. Data mining techniques are attractive as they can
be applied to any kind of data in order to learn more about
hidden structures and correlations. However, this universality
also has shortcoming because the generated knowledge does
not have to be meaningful or useful. It is necessary to evaluate
and interpret the data mining results with respect to a specific
goal or purpose of the data analysis.

Intrusion detection systems (IDS) process large amounts of
monitoring data. As an example, a host-based IDS examines
log files on a computer (or host) in order to detect suspicious
activities. A network-based IDS, on the other hand, searches
network monitoring data for harmful packets or packet flows.
In the late 1990s, progress in data mining research and
the necessity to find better methods for network and host-
based intrusion detection resulted in research activities at-
tempting to deploy data mining techniques for anomaly and
attack detection. Following this trend, the ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining dedicated the KDD-CUP’99 competition to intrusion
detection [1].

This paper focuses on Network Data Mining (NDM), i.e.
the application of data mining methods to monitoring data
recorded in computer networks. Section II gives an intro-
duction to NDM and provides an overview and comparison
of existing approaches. Most of them rely on rule learning
algorithms.

In Section III, we present a novel NDM approach for
anomaly detection based on the K-means clustering algorithm.
The raw data consists of flow records that have been exported
by routers and/or network monitors using Cisco Netflow [2]
or the IPFIX protocol [3]. Flow records are easily available in
many networks since flow monitoring techniques are already
widely deployed for accounting purposes. We transform flow
records into datasets with a small number of features for
predefined time intervals and service-specific port numbers.
Our goal is to identify time intervals showing anomalous traffic
behavior, as it may be caused by network malfunctions or
malicious attack traffic. The processing steps of our approach
can be summarized as follows:

1) Training data containing flow records of both normal and
anomalous traffic are transformed into feature datasets.

2) The datasets are divided into different clusters for nor-
mal and anomalous traffic using the K-means clustering
algorithm.

3) The resulting cluster centroids are deployed for fast
detection of anomalies in new monitoring data based
on simple distance calculations.

While clustering monitoring data and identifying anomalies
based on outlier detection has already been tried before, we are
not aware of previous attempts generating additional clusters
for anomalous traffic as we do.

Although a profound evaluation is still subject to ongoing
work, we are already able to present some initial results in
Section IV, demonstrating the general feasibility of the pro-
posed anomaly detection method. Section V finally concludes
the paper with an outlook on future work.

II. NETWORK DATA MINING

NDM may serve two different purposes. First, knowledge
about the analyzed monitoring data is generated. This allows
determining dominant characteristics and identifying outliers
within the data records that can be considered as anomalous
or suspicious. Secondly, NDM can be deployed to define
rules or patterns that are typical for specific kinds of traffic,



��������	
����

�

���������

�

��������
����
��

���������
�
��

��������������

��

�������

�

������

����

���	�
�����


����

������
���


����

���������

�����

��������

��
���
��

Fig. 1. Knowledge Discovery in Databases [4]

e.g. normal web traffic or traffic observed during a denial of
service (DoS) attack. These rules and patterns can be used
to analyze new sets of monitoring data and to check if these
show similar properties and characteristics as the original data.
Obvious applications profiting from such rules and patterns are
network-based intrusion detection systems (NIDS) and traffic
analyzers that characterize and classify traffic flows.

A. The KDD Model

NDM is applied to large amounts of monitoring data de-
scribing packet, flow, or connection attributes and statistics.
These data are usually stored and processed in a database in
order to retrieve the desired rules and patterns. Following the
KDD (Knowledge Discovery in Databases) model [4] shown
in Figure 1, five processing steps can be distinguished:

1) Selection of raw data. As an example, the data mining
process can be restricted to monitoring data recorded in
a specific period of time or observed at a certain monitor
in the network.

2) Data preprocessing. Depending on the monitoring data
and the data mining algorithm, it may be necessary
or beneficial to perform cleaning and filtering of the
data in order to avoid the generation of misleading
or inappropriate rules or patterns. Disturbances can be
noise, known changes such as dependencies on the time
of day, missing data fields in some of the data records
etc.

3) Data transformation. Applying data mining methods
to raw monitoring data usually does not yield useful
results since the numerous attributes within the original
records are not equally relevant for the goal of the data
mining task. Hence, a transformation has to be found
that converts the raw data into datasets with a small
number of relevant features. Also, it might be necessary
to aggregate the data in order to decrease the number of
datasets as well as the required memory and processing
resources of the data mining algorithm.

4) Data mining. In this step, a data mining algorithm is
applied in order to find rules or patterns.

5) Interpretation and Evaluation. It has to be evaluated
if the data mining step generated useful results and
which subset of the rules and patterns contains the most

valuable information. In order to validate the rules and
patterns, it might be necessary to repeat the process with
a different selection of raw data.

As can be seen, the KDD model can be adopted to describe the
necessary NDM processing steps at an abstract level although
concrete realizations do not have to strictly follow this model.
For example, some steps may be omitted and others performed
in a slightly different order or jointly within in a single step.

B. Classification of Existing NDM Approaches

In this subsection, we present a selection of NDM ap-
proaches and compare them according to the following prop-
erties:

• Type of raw data. NDM can be applied to different types
of monitoring data. Typical examples are packet data such
as header information and/or payload, and statistical data
about packet flows or connections including start and end
time stamps, number of exchanged packets and bytes
etc. Obviously, the data mining process as well as the
achievable result depends very heavily on the type of raw
data.

• Extracted features. The raw monitoring data is prepro-
cessed and transformed in order to extract a set of relevant
features. Extracting the set of most relevant features is
essential for good data mining results.

• Applied data mining algorithm. A whole bunch of
data mining algorithms have been presented in literature.
They can be categorized according to the accomplished
data mining task, e.g. clustering, classification, mining of
association rules, characterization and discrimination etc.

• Generated knowledge. Finally, NDM approaches can
be distinguished by the generated knowledge about the
analyzed monitoring data and the capability to generate
rules or patterns that can be applied to new sets of
monitoring data.

In the following, we briefly describe the selected NDM ap-
proaches and compare them to our anomaly detection scheme.
Table I summarizes the comparison based on the criteria listed
above.

In the late 1990s, Lee and Stolfo studied different data
mining methods for intrusion detection based on various
kinds of monitoring and audit data. In the area of NDM,
they used tcpdump [11] output as raw data and transformed
it into connection records with the following features [5]:
start time, duration, participating hosts, ports, the statistics
of the connection, connection termination flag, and protocol
(TCP or UDP). Additional attributes were added, e.g. the
number of connections to the same host or service in the
last w seconds. The rule-learning engine RIPPER [12] is
applied to the training data with feature datasets labeled as
normal or attack in order to generate rules for probing and
denial-of-service attacks. These rules can later be used for
misuse detection, i.e. in order to detect similar attacks in new
monitoring data. However, they are not suitable for anomaly
detection or the detection of new attacks showing a different
behavior.



TABLE I
CLASSIFICATION OF NDM APPROACHES

Approach Raw data Features DM algorithm Knowledge

Lee & Stolfo (1998) [5] Packets (tcpdump) Connection records Rule learning Association rules and fre-
quent episodes

Dokas et al.
(2002) [6]

Packets (tcpdump)
converted into TCP
connection records

Time-based features Outlier detection Anomalies in
analyzed data

Ertoz et al. (2003) [7] Flow records
(Cisco Netflow)

Time-based and
connection-based
features

Outlier detection Anomalies in
analyzed data

Esposito et al.
(2005) [8]

Packets (tcpdump) Connection records Rule learning Classification rules

Barbará et al.
(2001) [9]

Packets (tcpdump) Connection records Rule learning Association and classifica-
tion rules

Luo et al. (2000) [10] Packets (tcpdump) Counters for TCP
SYN/FIN/RST
packets and
number of different
destination ports

Rule learning Fuzzy association
rules and fuzzy frequent
episodes

Our approach Flow records (Cisco
Netflow, IPFIX)

Counters of bytes, pack-
ets, active flows for dif-
ferent time intervals and
service-specific ports

K-means clustering Centroids for normal and
anomalous clusters

Researchers of the Computer Science Department at Uni-
versity of Minnesota performed similar studies applying rule-
learning algorithms to connection records supplied as part of
the KDD-CUP’99 competition [13] which consist of similar
features as used by Lee and Stolfo. Later, they focused on
outlier detection in order to detect anomalies based on time-
based and connection-based feature sets [6], [14]. The LOF
(local outlier factor) detection method [15] was selected to
be integrated into the Minnesota Intrusion Detection System
(MINDS) [7]. In MINDS, connection records ranked as highly
anomalous by the LOF algorithm are further examined by an
association pattern analysis module in order to generate rules
and patterns for misuse detection. MINDS uses Cisco Netflow
data as raw data of the data mining process.

Esposito et al. [8] deploy ToolDiag, a pattern recognition
toolbox, to identify a small subset with the maximum dis-
criminating power out of the connection features used by Lee
and Stolfo. After, network behavior patterns are generated by
applying a rule-learning algorithm to the selected features.
Unfortunately, the authors do not disclose which connections
features they finally used. Barbará et al. achieved very good
results in the DARPA’99 intrusion detection test applying
classification and association rules to connection records [9] .
In [10], [16], the usage of fuzzy association rules and fuzzy
frequent episodes is proposed.

In the next section, we present a novel NDM approach
which is comparable to MINDS since it also uses flow records
as input of the data mining process. However, we do not aim
at classifying individual flows as normal or anomalous, but we
use a smaller feature set in order to detect time intervals at
which traffic anomalies occur. While MINDS groups normal
flow records in a single cluster, we assume that normal and

anomalous traffic form different clusters in the feature space.
Therefore, we deploy K-means clustering to determine clusters
for normal and anomalous traffic. Finally, we use a fast
distance-based method to classify new monitoring data and
detect outliers.

III. K-MEAN CLUSTERING OF MONITORING DATA

Our NDM approach deploys the K-mean clustering algo-
rithm [17] in order to separate time intervals with normal
and anomalous traffic in the training dataset. The resulting
cluster centroids are then used for fast anomaly detection in
new monitoring data.

In the next subsection, we describe the raw data and the
extracted features that serve as input for the data mining algo-
rithm. Thereafter, we explain the K-mean clustering algorithm
and the resulting patterns. Finally, we show how the patterns
can be used for classification and outlier detection.

A. Raw Data and Extracted Features

As input to the data mining process, we make use of flow
records which are available in many networks due to the
wide deployment of Cisco Netflow [2], [18] and compatible
exporters. In this context, a flow is defined as a unidirectional
stream of IP packets identified by a common IP five-tuple
(protocol type, source IP address, destination IP address,
source port, destination port). Apart from the IP five-tuple
information, a flow record contains statistical information such
as the number of packets and bytes observed in a certain period
of time.

First, flow records are classified according to the transport
protocol and predefined port numbers which are typical for
commonly used services. As an example, TCP records with



source or destination port 80 are grouped as Web/HTTP
traffic. The reason for this classification is that normal traffic
looks very different depending on the service or application.
Distinguishing flows by their protocol and service-specific
port numbers thus allows applying the K-means clustering
algorithm separately for different services identified by their
(protocol, port) pairs. Flow records that do not fit into any of
the predefined service classes are assigned to the correspond-
ing default class for TCP, UDP, or ICMP traffic.

Separately for each class, we aggregate and transform
flow records into datasets for equally spaced time intervals,
considering the start time of each flow. The lengths of the time
interval is chosen to be equal to or greater than the maximum
expected flow duration in order to avoid that records of long-
lasting flows cover multiple intervals. Note that the maximum
flow duration is a configuration parameter of the router or
network monitor exporting the flow records. Hence, setting
this parameter to a small value (e.g. 1 minute or 10 seconds)
allows generating datasets at a comparable small time scale.
Each dataset contains the following features:

• Total number of packets sent from and to the given port
in the considered time interval.

• Total number of bytes sent from and to the given port in
the considered time interval.

• Number of different source-destination pairs1 matching
the given service-specific port and protocol and being
observed in the considered time interval.

The motivation behind this feature selection is that the number
of packets and bytes allows detecting anomalies in traffic
volume, while the third feature helps detecting network and
port scans as well as distributed attacks, which both result in
an increased number of source-destination pairs.

The K-means clustering algorithm is applied to these
datasets as explained in the next subsection.

B. K-means Clustering

K-means clustering [17] is a clustering analysis algorithm
that groups objects based on their feature values into K

disjoint clusters. Objects that are classified into the same
cluster have similar feature values. K is a positive integer
number specifying the number of clusters, and has to be given
in advance. Here are the four steps of the K-means clustering
algorithm:

1) Define the number of clusters K.
2) Initialize the K cluster centroids. This can be done by

arbitrarily dividing all objects into K clusters, comput-
ing their centroids, and verifying that all centroids are
different from each other. Alternatively, the centroids can
be initialized to K arbitrarily chosen, different objects.

3) Iterate over all objects and compute the distances to the
centroids of all clusters. Assign each object to the cluster
with the nearest centroid.

4) Recalculate the centroids of both modified clusters.
5) Repeat step 3 until the centroids do not change any more.

1considering IP addresses and port numbers

A distance function is required in order to compute the
distance (i.e. similarity) between two objects. The most com-
monly used distance function is the Euclidean one which is
defined as:

d(x, y) =

√

√

√

√

m
∑

i=1

(xi − yi)
2

where x = (x1, ..., xm) and y = (y1, ..., ym) are two input
vectors with m quantitative features. In the Euclidean distance
function, all features contribute equally to the function value.
However, since different features are usually measured with
different metrics or at different scales, they must be normalized
before applying the distance function.

An alternative to Euclidean distance is the Mahalanobis
distance function that uses the inverse covariance matrix S−1

to reflect statistical correlations between different features:

d(x, y) =
√

(x− y)T S−1 (x− y)

However, calculating and inverting the covariance matrix is
computationally demanding for feature vectors with a large
number of dimensions.

For initial evaluation of the proposed anomaly detection
approach, we used a weighted Euclidean distance defined as:

d(x, y) =

√

√

√

√

m
∑

i=1

(

xi − yi

si

)2

where si is an empirical normalization and weighing factor
of the i-th feature. Note that the larger si, the smaller is
the influence of the i-th feature on the distance. We found
that good coefficients for the number of packets, bytes, and
source-destination pairs (src-dst) are spackets = sbytes = 5
and ssrc−dst = 1.

We apply the K-means clustering algorithm to training
datasets which may contain normal and anomalous traffic with-
out being labeled as such in advance. The rationale behind this
approach is the assumption that normal and anomalous traffic
form different clusters in the features space. Of course, the data
may contain outliers which do not belong to a bigger cluster,
yet this does not disturb the K-means clustering process as
long as the number of outliers is small. As already mentioned,
the clustering is done individually for the predefined services,
identified by their typical (protocol, port) pair, as well as for
the default classes that cover the remaining flows distinguished
by the protocol value only.

The clustering algorithm divides the training data into K

clusters, but does not determine if a cluster reflect time
intervals of normal or anomalous traffic. This decision has
to be made manually or by heuristics. For example, a higher
average in the number of packets can be taken as an indicator
for an anomalous cluster. It may occur that clusters are very
close to each other. This can have several reasons: Either the
number of clusters K has been badly chosen or the training
data is very homogeneous, e.g. because it does not contain any
anomalous traffic or because the anomalous traffic looks very



�

������

���������

Fig. 2. Classification for K = 2

similar to normal traffic. Nevertheless, the cluster centroids
can still be used for outlier detection as explained in the next
subsection.

An essential problem of the K-means clustering method is
to define an appropriate number of clusters K. As initial value,
we chose K = 2, assuming that normal and anomalous traffic
in the training data form two different clusters. Obviously,
a different number of clusters may result in better clusters,
e.g. if the considered service already shows distinct periods of
very low and very high traffic volume under normal conditions.
However, the determination of an optimum number of clusters
based on a cluster evaluation criterion is subject to our ongoing
research and not covered in this paper.

C. Classification and Outlier Detection

The K-means clustering process results in cluster centroids
for normal and anomalous traffic which can be used to detect
anomalies in new flow records monitored in the same network.
New flow records have to be preprocessed and transformed
like the training data in order to obtain the same features. For
the purpose of anomaly detection, we deploy two distance-
based methods – classification and outlier detection – that both
use the K-means clustering results and that can be applied
individually or in a combined way.

Classification. The distances to the cluster centroids of the
corresponding traffic class are calculated using the weighted
Euclidean distance function. An object is classified as normal
if it is closer to the normal cluster centroid than to the
anomalous one, and vice versa. This is illustrated in Figure 2
with a two-dimensional feature space: Object P is closer to
the normal cluster, therefore P is normal. This distance-based
classification allows detecting known kinds of anomalies, i.e.
anomalous traffic with similar characteristics as in the training
datasets.

Outlier detection. An outlier is an object that differs from
most other objects significantly. Therefore it can be considered
as an anomaly. For outlier detection, only the distance to the
appropriate centroid of the normal cluster is calculated. If the
distance between an object and the centroid is larger than a
predefined threshold dmax, the object is treated as an outlier

��

�
�

�
�

����

������

Fig. 3. Outlier detection

������

���������

����

�
�

��

Fig. 4. Combined classification and outlier detection

and anomaly. This is depicted in Figure 3 where P2 and P3

lie outside the dmax circle. In contrast to the classification
method, outlier detection does not make use of the anomalous
cluster centroid, i.e. it may be less accurate in detecting known
kinds of anomalies. On the other hand, it allows detecting new
anomalies that do not appear in the training datasets.

Combined classification and outlier detection. Classifica-
tion and outlier detection can be used in a combined way in
order to overcome the limitations of each individual method.
If the two methods are applied simultaneously, an object is
treated as an anomaly if it is closer to the anomalous cluster
centroid than to the normal one, or if its distance to the
normal cluster centroid is larger than the predefined threshold.
In Figure 4, for example, both objects P1 and P2 are regarded
as anomalies. P1 is closer to the anomalous cluster and P2’s
distance to the normal group is larger than the threshold dmax.

In the following section, we present and discuss first ex-
periments with the proposed clustering and anomaly detection
approach.

IV. EXPERIMENTAL RESULTS

We tested and evaluated our NDM approach with moni-
toring data from two different sources. First, we generated
traffic in a local testbed. Secondly, we played back tcpdump
traces recorded in a real network. Both times, we deployed



Fig. 5. Ping flood detection with generated traffic

the monitoring probe Vermont [19] to perform flow accounting
and to store the resulting flow records in a database. In order to
implement the data mining and anomaly detection algorithms,
we extended the traffic analysis tool of the HISTORY (HIgh-
Speed neTwork mOnitoRing and analYsis) project [20], [21].

These first experiments proof the general feasibility of
the concept, yet they are not meant to provide quantitative
results, such as false-positive and false-negative ratios. In
subsection IV-C, we finally discuss the algorithmic complexity.

A. Evaluation with Generated Traffic

In a testbed environment, we evaluated the capability to
detect port scans and DoS attacks. Therefore, we generated
normal background traffic and attack traffic using multiple
PCs and captured the traffic at the monitoring port of the
interconnecting switch. As background traffic, we generated
several TCP, UDP and ICMP flows of variable bit rate using
the traffic generator npag [22]. This tool was also used to
produce a ping flood and a UDP flood against port 53 (DNS).
Additional port scans were performed with nmap [23].

Even though the generated traffic is not representative for
real Internet traffic, it enables us to verify the basic capability
to detect anomalous attack traffic. As an example, we illustrate
the detection of an ICMP ping flood. The K-means clustering
algorithm was applied to training data that included flow
records of normal and attack traffic. Hence, the data mining
process resulted in cluster centroids for normal and anomalous
traffic.

Figure 5 shows the detection of a similar ICMP ping flood

observed in a monitoring data set. The upper diagram depicts
the three features number of packets, number of bytes, and
number of source-destination pairs over time for the ICMP
traffic class (interval length T = 1 min). As can be seen,
the ping flood starts at t = 70 min. In the lower diagram, it
is shown how the anomaly is detected: At t = 71 min the
distance to the anomalous cluster falls below the distance to
the normal cluster. The traffic is classified as normal again
after the distance to the normal cluster becomes smaller than
the distance to the anomalous cluster and at the same time
smaller than the threshold dmax = 7 used for outlier detection
(t = 84 min). Similarly, UDP floods as well as port scans
could be detected.

B. Evaluation with Real Traces

In order to obtain first results on how the clustering method
performs in real networks, we applied it to packet traces
recorded at a gateway router that connects a student’s resi-
dential network to the Internet. These anonymized traces are
publicly available as tcpdump files from the traffic measure-
ment data repository of the University of Twente [24], [25].
Each trace file contains a snippet of 15 minutes monitored at
a 300Mbit/s Ethernet link.

We played back the trace file loc1-20020526-1115.bz2 at
10 percent of the recording speed using tcpreplay [26]. This
allowed us to use standard PCs for monitoring and flow
accounting without risking packet losses by the software
monitoring processes. As a result of the reduced playback
speed, the duration of the trace was stretched to 150 minutes.
Again, the interval length was set to T = 1 min, corresponding
to T = 6 sec at the original time scale.

A port analysis of the monitoring data revealed that more
than 85 percent of both incoming and outgoing traffic was
directed to unusual destination port numbers. This corresponds
to the expectation that traffic of a student’s residential network
shows a large amount of traffic from peer-to-peer applications
and online games. Nevertheless, we applied the K-means
clustering algorithms to specific services such as HTTP, FTP
and SSH. The resulting centroids of the normal and anomalous
cluster were very close to each other, which indicates that
there were no traffic anomalies in the analyzed data. Only
the clusters for FTP control traffic (TCP port 21) can be
clearly distinguished by a large difference in the number of
packets and bytes (the difference in cn was small). However,
we assume that both clusters represented normal behavior:
The cluster with large number of packets and bytes can be
explained by FTP clients scanning the directories on an FTP
server.

A more interesting result was obtained by analyzing the
UDP traffic of the default class. The K-means clustering
resulted in the following two cluster centroids:

Cluster pkts bytes src-dst

normal 28274 3288007 1896
anomalous 39725 3510792 14831

As can be seen, the average value of source-destination pairs in



the anomalous cluster is eight times higher than in the normal
cluster. The corresponding anomalous traffic was detected in a
time interval of about three minutes which corresponds to 15 to
20 seconds on the original time scale. More than 22.000 small
UDP packets of 37 bytes were sent from a single IP address in
the residential network to more than 20.000 different, mostly
external IP addresses. The predominating destination port was
27015 (more than 14.000 packets), the main source port was
1830, followed by 1831, 1832, and 1833. The majority of
the transmitted packets resulted in a small reply packet (34
bytes) sent back to the IP address in the residential network.
According to some information found on the Web, UDP port
27015 is used by servers of the online game half-life. Hence,
this traffic anomaly was probably caused by the client program
of this game updating its list of available game servers in the
Internet.

C. Complexity Estimation

The complexity of the K-means clustering algorithm is
O(K n t) where K is the number of clusters, n the number of
objects to be classified, and t the number of iterations which
depends on the initial classification of the objects and the
feature value distribution (typically, t << n). We apply the K-
means clustering algorithm with K = 2 to the feature datasets
of different predefined services separately. If m is the number
of time intervals T in the training data, for each traffic class
up to m feature datasets may occur. In case that we consider
L specific services, we get O (K (L + 3)mt) (we have to add
3 for the default traffic classes for TCP, UDP, and ICMP). As
a comparison: The LOF clustering algorithm deployed in [7]
is O(n2) complex.

More important than the complexity of the data mining
process is the detection complexity that is required to classify
new monitoring data as normal or anomalous. This is because
a low and constant detection complexity is essential for a
scalable real-time detection mechanism. Our distance-based
detection requires the transformation of new monitoring data
into the feature space. Thereby, the flow records occurring
in one time interval T are converted into one feature dataset
for each service. The corresponding distances to the normal
and anomalous cluster centroids have to be calculated and
compared to each other as well as to the outlier detection
threshold. Applying the detection to monitoring data of one
time interval T is thus O (K(L + 3)) complex.

These estimations show that the complexity of the data
mining process is acceptable and that the detection complexity
only depends on the number of clusters K and the number of
separately considered services L. In order to keep L at a low
level without losing the advantage of having distinct profiles
for different services, services with similar traffic behavior
could be analyzed as a group.

V. CONCLUSION

In this paper, we presented a novel Network Data Mining
approach that applies the K-means clustering algorithm to
feature datasets extracted from flow records. Training data

are divided into clusters of time intervals of normal and
anomalous traffic. While the data mining process is relatively
complex, the resulting cluster centroids can be used to detect
anomalies in new on-line monitoring data with a small number
of distance calculations. This allows deploying the detection
method for scalable real-time detection, e.g. as part of a
intrusion detection system. Applying the clustering algorithm
separately for different services (identified by their transport
protocol and port number) improves the detection quality. We
presented and discussed the results of first experiments using
generated and real traffic.

We are currently working on several improvements of the
presented approach, thus comparing clustering results achieved
with different K in order to determine the optimum number
of clusters, considering additional features such as the aver-
age flow duration, and considering different distance metrics,
such as the Mahalanobis distance. Finally, we are going to
evaluate the detection performance using reference data such
as DARPA’98 traces [27] as well as real Internet traffic.

REFERENCES

[1] KDD Cup 1999 Data, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,
Oct. 1999.

[2] B. Claise, G. Sadasivan, V. Valluri, and M. Djernaes, “Cisco Systems
NetFlow Services Export Version 9,” RFC 3954 (Informational), Oct.
2004.

[3] B. Claise, S. Bryant, G. Sadasivan, S. Leinen, and T. Dietz, “IPFIX
Protocol Specifications,” Internet-Draft, work in progress, draft-ietf-
ipfix-protocol-24, Nov. 2006.

[4] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining
to knowledge discovery in databases.” AI Magazine, vol. 17, no. 3, pp.
37–54, 1996.

[5] W. Lee and S. Stolfo, “Data mining approaches for intrusion detection,”
in Proceedings of the 7th USENIX Security Symposium, San Antonio,
TX, 1998.

[6] P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, and P. N.
Tan, “Data mining for network intrusion detection,” in Proceedings of
the NSF Workshop on Next Generation Data Mining, Nov. 2002.

[7] L. Ertoz, E. Eilertson, A. Lazarevic, P.-N. Tan, J. Srivastava, V. Kumar,
and P. Dokas, Next Generation Data Mining. MIT Press, 2004, ch. 3:
The MINDS - Minnesota Intrusion Detection System.

[8] M. Esposito, C. Mazzariello, F. Oliviero, S. P. Romano, and C. San-
sone, “Evaluating pattern recognition techniques in intrusion detection
systems.” in Proceedings of the 5th International Workshop on Pattern
Recognition in Information Systems (PRIS) 2005, May 2005, pp. 144–
153.

[9] D. Barbará, J. C. S. Jajodia, L. Popyack, and N. Wu, “ADAM: Detecting
intrusions by data mining,” in Proceedings of the IEEE Workshop on
Information Assurance and Security, Jun. 2001, pp. 11–16.

[10] J. Luo and S. Bridges, “Mining fuzzy association rules and fuzzy
frequency episodes for intrusion detection,” International Journal of
Intelligent Systems, vol. 15, no. 8, pp. 687–704, 2000.

[11] Libpcap/Tcpdump Homepage, http://www.tcpdump.org, 2007.
[12] W. W. Cohen, “Fast effective rule induction,” in Proceedings of the

12th International Conference on Machine Learning, A. Prieditis and
S. Russell, Eds., Tahoe City, CA, Jul. 1995, pp. 115–123.

[13] R. Agarwal and M. V. Joshi, “PNrule: A new framework for learning
classifier models in data mining,” Department of Computer Science,
University of Minnesota, Tech. Rep. 00-015, 2000.

[14] A. Lazarevic, L. Ertöz, V. Kumar, A. Ozgur, and J. Srivastava, “A
comparative study of anomaly detection schemes in network intrusion
detection,” in Proceedings of the Third SIAM International Conference
on Data Mining, May 2003.

[15] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, May 2000, pp. 93–
104.



[16] S. M. Bridges and R. M. Vaughn, “Fuzzy data mining and genetic
algorithms applied to intrusion detection,” in Proceedings of the Twenty-
third National Information Systems Security Conference, Oct. 2000.

[17] J. MacQueen, “Some methods for classification and analysis of mul-
tivariate observations,” in Proceedings of 5-th Berkeley Symposium on
Mathematical Statistics and Probability. University of California Press,
1967, pp. 281–297.

[18] “Introduction to Cisco IOS NetFlow - A Technical Overview,”
Cisco Systems, Inc., Tech. Rep., Feb. 2006. [Online]. Available:
http://www.cisco.com

[19] R. T. Lampert, C. Sommer, G. Münz, and F. Dressler, “Vermont -
A Versatile Monitoring Toolkit for IPFIX and PSAMP,” in Proc. of
IEEE/IST Workshop on Monitoring, Attack Detection and Mitigation
(MonAM 2006), Tuebingen, Germany, Sep. 2006.

[20] F. Dressler and G. Carle, “History - high speed network monitoring and
analysis,” in Proceedings of the 24th IEEE Conference on Computer
Communications (IEEE INFOCOM 2005), Poster Session, Mar. 2005.

[21] History Project Homepage, http://www.history-project.net, 2007.
[22] F. Dressler, “Policy-based traffic generation for IP-based networks,” in

25th IEEE Conference on Computer Communications (IEEE INFOCOM
2006), Poster Session, Apr. 2006.

[23] Nmap Network Scanner Homepage, http://insecure.org/nmap/, 2007.
[24] R. van de Meent, “M2C Measurement Data Repository,” University of

Twente, Enschede, The Netherlands, M2C Deliverable D1.5, Dec. 2003.
[25] University of Twente - Traffic Measurement Data Repository,

http://traffic-repository.ewi.utwente.nl, 2007.
[26] Tcpreplay Homepage, http://tcpreplay.synfin.net/trac/, 2007.
[27] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. Mc-

Clung, D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham,
and M. A. Zissman, “Evaluating Intrusion Detection Systems: the 1998
DARPA Off-Line Intrusion Detection Evaluation,” in Proceedings of
the 2000 DARPA Information Survivability Conference and Exposition,
2000.


